CN108037341A - 一种用于电容积分型微弱电流测量电路的低漏电流复位器 - Google Patents

一种用于电容积分型微弱电流测量电路的低漏电流复位器 Download PDF

Info

Publication number
CN108037341A
CN108037341A CN201711391101.6A CN201711391101A CN108037341A CN 108037341 A CN108037341 A CN 108037341A CN 201711391101 A CN201711391101 A CN 201711391101A CN 108037341 A CN108037341 A CN 108037341A
Authority
CN
China
Prior art keywords
current
voltage
circuit
resetting
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201711391101.6A
Other languages
English (en)
Other versions
CN108037341B (zh
Inventor
倪宁
宋明哲
高飞
魏可新
张曦
徐阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Institute of Atomic of Energy
Original Assignee
China Institute of Atomic of Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Institute of Atomic of Energy filed Critical China Institute of Atomic of Energy
Priority to CN201711391101.6A priority Critical patent/CN108037341B/zh
Publication of CN108037341A publication Critical patent/CN108037341A/zh
Application granted granted Critical
Publication of CN108037341B publication Critical patent/CN108037341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

本发明属于微弱电流测量技术领域,具体涉及一种用于电容积分型微弱电流测量电路的低漏电流复位器,连接在对待测微弱电流(1)进行测量的电容积分型微弱电流测量电路(2)上,包括复位电流电路(3)、多路复用器(4)、D/A转换器(5)、电压跟随器(6)、逻辑控制单元(7);电压跟随器(6)能复制待测微弱电流(1)的电压作为复位电流电路(3)的关断电压,D/A转换器(5)能为复位电流电路(3)提供极性和大小能调节的导通电压;还包括控制多路复用器(4)选择输出关断电压或导通电压、控制D/A转换器(5)输出的导通电压的极性和大小的逻辑控制单元(7)。本发明能大幅提升电容积分型微弱电流测量电路***的测量下限及最小分辨力。

Description

一种用于电容积分型微弱电流测量电路的低漏电流复位器
技术领域
本发明属于微弱电流测量技术领域,具体涉及一种用于电容积分型微弱电流测量电路的低漏电流复位器。
背景技术
一般将nA(10-9A)量级以下的电流称为微弱电流。在辐射探测、电化学、新型材料等领域的科学研究工作中,经常需要进行微弱电流测量。微弱电流测量难点不仅仅在于待测量的信号幅度非常小,还由于它极容易受到各种类型干扰,有时甚至会被干扰噪声淹没。干扰源的类型不仅仅是电子学噪声,还有电场、磁场和电磁场,甚至机械振动产生的摩擦生电效应,施加外力产生的压电效应,电化学物质与湿气混合形成的电化学噪声和绝缘材料引入的漏电流都会严重影响微弱电流的测量结果,甚至使测量无法正常进行。尤其在进行pA(10-12A)级乃至fA(10-15A)级的微弱电流测量时,这些影响尤其明显。目前微弱电流的测量方法主要有两大类:
一类是I-V变换法,该方法通过高值电阻(根据待测量电流的大小,通常在109Ω量级至1011Ω量级),将待测量微弱电流信号转换为较易测量的电压信号,通过公式便可以计算出电流值;
另一类是电容积分法(采用该法的电容积分型微弱电流测量电路见图 1),该方法利用积分电容收集电荷,随着电荷在电容极板上的积累,电容两端的电压逐渐增加,通过计算一定时间内在已知容值电容端电压的变化率,通过公式可以计算出该段时间内电流的平均值。由于电容相对高值电阻的稳定性更好、温度系数更低,并且电容通过积分的方式可以抑制部分类型电子学噪声和外部干扰的影响。因此,电容积分法较I-V变换法更加适合应用于测量精度较高的场合,如电离辐射计量领域中广泛使用基于电容积分法的测量装置完成各种类型电离室输出微弱电离电流信号的测量。
基于电容积分法的测量方案中,一个重要的过程是释放电容上积累的电荷,以便进行下一次测量。为了释放这部分电荷,需要加入额外的复位装置。目前,复位装置的实现形式主要通过开关方式和电流源方式两种类型。开关方式,即使用开关与积分电容并联,当开关导通时电容两端短接释放电荷。该方法结构简单,但因对开关断开时引入的漏电流有较高要求,常用的晶体管式开关无法满足要求,故一般采用机械式的干簧管继电器作为开关。该方法的缺点一是由于电容积累了大量电荷继电器导通放电的瞬间会形成大的电流冲击,该电流冲击可能会造成芯片损坏,二是机械式继电器断开瞬间会因机械接触与摩擦产生电荷,积分电容收集后产生电压变化,而产生的电荷量不可控,故会对测量产生影响。因此,一般较多采用电流源方式,该方法使用恒流源输出与输入电流极性相反的电流对电容进行反向充电,使积分电容的电荷完成释放,恒流源电路大多由场效应管或晶体管组成,其组成的恒流源电路关断时的电位与输入端存在电位差,如辐射探测领域中经常使用的电离室其电荷收集极(即电流输出端)电位常在几十毫伏,与恒流源关断时的零电位(或PN结反向偏置电位)存在较大的电位差,该电位差会形成漏电流,多为pA级(10-12A)甚至nA(10-9A)级,该漏电流不仅会产生测量误差,更会影响测量电路的测量下限和最小分辨能力。
发明内容
针对目前积分式微弱电流复位装置漏电流大,严重影响电路测量下限和最小分辨能力的问题,本发明研制一种低漏电流复位器,该低漏电流复位器的漏电流小于1fA(10- 15A),并且可以实现输出大小可调节的双极性复位电流,从而大幅降低低漏电流复位器对微弱电流测量***测量下限和最小分辨能力的影响,大幅提高微弱电流测量***的性能指标。
为达到以上目的,本发明采用的技术方案是一种用于电容积分型微弱电流测量电路的低漏电流复位器,连接在对待测微弱电流进行测量的电容积分型微弱电流测量电路上,包括输出端连接复位电流电路的输入端、输入端连接电压跟随器、D/A转换器的输出端的多路复用器,所述复位电流电路的输出端和所述电压跟随器的输入端连接在所述电容积分型微弱电流测量电路的输入端;所述电压跟随器能够复制所述待测微弱电流的电压作为所述复位电流电路的关断电压,所述D/A转换器能够为所述复位电流电路提供极性和大小能够调节的导通电压;当所述多路复用器输出所述关断电压时,所述复位电流电路关断,当所述多路复用器输出所述导通电压时,所述复位电流电路导通,并向所述电容积分型微弱电流测量电路输出复位电流;还包括用于控制所述多路复用器选择输出所述关断电压或所述导通电压、以及控制所述D/A转换器输出的所述导通电压的极性和大小的逻辑控制单元。
进一步,所述低漏电流复位器的电路板使用高绝缘性能板材,所述板材至少包括陶瓷板。
进一步,在所述复位电流电路的输出端上用于输出所述复位电流的走线周围设置保护环,所述保护环采用所述电压跟随器输出的所述关断电压作为箝位电压,所述保护环做开窗沉金工艺处理,输出所述复位电流的所述走线与所述保护环的走线之间的间隙为15mil。
进一步,所述电压跟随器提供的所述关断电压与所述待测微弱电流的电压之间的电位差小于10μV。
进一步,当所述逻辑控制单元选择由所述D/A转换器输出所述导通电压时,所述复位电流电路输出的所述复位电流为μA级复位电流,所述复位电流的极性和大小由所述D/A转换器输出的所述导通电压的极性和大小决定。
进一步,
所述复位电流电路包括并联在所述复位电流电路的输入端和输出端之间的电阻R1和电阻R2;所述电阻R1串联一个二极管D2,所述二极管D2 位于所述电阻R1和所述输入端之间,所述电阻R1位于所述二极管D2的正极一侧;所述电阻R2串联一个二极管D1,所述二极管D1位于所述电阻R2 和所述输入端之间,所述电阻R2位于所述二极管D1的负极一侧,所述电阻R1、电阻R2作为所述复位电流电路导通时的限流电阻防止所述复位电流过大,也作为所述复位电流电路关断时的分压电阻降低所述二极管端电压;
所述电阻R1、电阻R2为金属膜电阻,阻值为1MΩ;
所述二极管D1、二极管D2均为低反向偏置泄漏电流二极管PAD1;
由所述电阻R1、二极管D2组成的线路和由所述电阻R2、二极管D1 组成的线路分别用于所述D/A转换器输出的不同极性的所述复位电流;
所述复位电流电路输出的复位电流大小IReset由公式(VDAC-VDiode)/R得到,其中VDAC为所述D/A转换器输出的所述导通电压,VDiode为所述二极管 D1、二极管D2导通时电压,R为所述限流电阻的阻值。
进一步,所述D/A转换器输出的所述导通电压的绝对值不小于1V。
进一步,所述电压跟随器采用JFET级超低偏置电流Ib、低失调电压 Vos的放大器,所述放大器配制成正相跟随器。
进一步,所述复位电流电路、电压跟随器所组成的复位电流电路设置在金属屏蔽盒内,并靠近所述电容积分型微弱电流测量电路。
本发明的有益效果在于:
1.本发明通过采用低偏置电流Ib和低失调电压的电压Vos的电压跟随器6,将微弱电流输出端的电压即电压跟随器6的输入端的电压作为用于电容积分型微弱电流测量电路的低漏电流复位器的关断电压,将复位电流电路3的关断电压和电容积分型微弱电流测量电路2的输入端的电压差由mV量级(10-3V)降低至μV量级(10-6V),大幅度降低了复位电流电路 3的漏电流水平。
2.本发明的复位电流电路3采用低反向偏置漏电流二极管与高值电阻串联的连接方式,使用于电容积分型微弱电流测量电路的低漏电流复位器在关断状态下的等效电阻大幅度增加。
3.本发明采用电压跟随器6输出的关断电压作为保护环的箝位电压,并配合陶瓷高性能绝缘材料作为电路板的基板材料,大幅降低了复位电流电路3因绝缘材料引入的漏电流。
4.本发明所提供的用于电容积分型微弱电流测量电路的低漏电流复位器在关断状态下的漏电流不超过1fA,可以通过D/A转换器5对输出电位极性和大小的调节,实现复位电流电路3输出双极性和大小可调μA 级复位电流。
5.本发明能够将电容积分型微弱电流测量电路的测量下限和最小分辨力由pA级(10-12A)提升至fA级(10-15A),大幅提升电容积分型微弱电流测量电路的测量性能。
附图说明
图1为本发明背景技术中所述的电容积分型微弱电流测量电路的示意图;
图2为本发明具体实施方式中所述的用于电容积分型微弱电流测量电路的低漏电流复位器的结构图;图2中:1-待测微弱电流,2-电容积分型微弱电流测量电路,3-复位电流电路,4-多路复用器,5-D/A转换器,6- 电压跟随器,7-逻辑控制单元;
图3为本发明具体实施方式中所述的电压跟随器的电路图;
图4为本发明具体实施方式中所述的复位电流电路的电路图;
图5为本发明具体实施方式中所述的D/A转换器中的输出缓冲器和同比例电压反相器的电路图;
图6为本发明具体实施方式中所述的多路复用器MAX4518的示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步描述。
本发明提供的一种用于电容积分型微弱电流测量电路的低漏电流复位器(如图2所示),连接在对待测微弱电流1进行测量的电容积分型微弱电流测量电路2上,包括复位电流电路3、多路复用器4、D/A转换器5、电压跟随器6、逻辑控制单元7等。
复位电流电路3的输出端连接在电容积分型微弱电流测量电路2的输入端,复位电流电路3的输入端连接多路复用器4的输出端,用于根据多路复用器4的输出的关断电压或导通电压对电容积分型微弱电流测量电路 2进行关闭或导通;
多路复用器4的输出端连接在复位电流电路3的输入端,多路复用器 4的输入端为多个,分别连接电压跟随器6的输出端和D/A转换器5的输出端,多路复用器4的还与逻辑控制单元7连接并接受逻辑控制单元7的控制,用于根据逻辑控制单元7的控制向复位电流电路3输出关断电压或导通电压(关断电压由电压跟随器6产生,导通电压由D/A转换器5产生);
电压跟随器6的输入端连接在电容积分型微弱电流测量电路2的输入端,电压跟随器6的输出端连接多路复用器4的一个输入端,电压跟随器 6能够复制待测微弱电流1的电压作为复位电流电路3的关断电压(通过多路复用器4将关断电压输送至复位电流电路3);
D/A转换器5的输出端连接多路复用器4的另一个输入端,D/A转换器 5能够为复位电流电路3提供极性和大小能够调节的导通电压(通过多路复用器4将导通电压输送至复位电流电路3),D/A转换器5还与逻辑控制单元7连接并接受逻辑控制单元7的控制,用于根据逻辑控制单元7的控制,提供导通电压,并调整导通电压的极性和大小;
当多路复用器4输出关断电压时,复位电流电路3关断时电容积分型微弱电流测量电路2对待测微弱电流1进行测量;当多路复用器4输出导通电压时,复位电流电路3导通,并向电容积分型微弱电流测量电路2输出复位电流。
低漏电流复位器的电路板使用高绝缘性能板材,板材至少包括陶瓷板。
在复位电流电路3的输出端上用于输出复位电流的走线周围设置保护环,保护环采用电压跟随器6输出的关断电压作为箝位电压,保护环做开窗沉金工艺处理,输出复位电流的走线与保护环的走线之间的间隙为 15mil。
电压跟随器6提供的关断电压与待测微弱电流1的电压之间的电位差小于10μV。
当逻辑控制单元7选择由D/A转换器5输出导通电压时,复位电流电路3输出的复位电流为μA级复位电流,复位电流的极性和大小由D/A转换器5输出的导通电压的极性和大小决定。
复位电流电路3、电压跟随器6所组成的复位电流电路设置在金属屏蔽盒内,并靠近电容积分型微弱电流测量电路2。
复位电流电路3(见图4)包括并联在复位电流电路3的输入端和输出端之间的电阻R1和电阻R2;电阻R1串联一个二极管D2,二极管D2位于电阻R1和复位电流电路3的输入端之间,电阻R1位于二极管D2的正极一侧;电阻R2串联一个二极管D1,二极管D1位于电阻R2和复位电流电路3 的输入端之间,电阻R2位于二极管D1的负极一侧;当复位电流电路3导通时,电阻R1、电阻R2作为复位电流电路3的限流电阻防止复位电流过大;当复位电流电路3关断时,电阻R1、电阻R2作为复位电流电路3的分压电阻降低二极管端电压(二极管包括二极管D1和二极管D2);
电阻R1、电阻R2为金属膜电阻,阻值为1MΩ;
二极管D1、二极管D2均为低反向偏置泄漏电流二极管PAD1(二极管 D1、二极管D2还能够以相同类型的JFET型和MOS型场效应管代替,如 PN4117A);
由电阻R1、二极管D2组成的线路和由电阻R2、二极管D1组成的线路分别用于D/A转换器5输出的不同极性的复位电流;
复位电流电路3输出的复位电流大小IReset由公式VDAC-VDiode/R得到,其中VDAC为D/A转换器5输出的导通电压,VDiode为二极管(即二极管D1、二极管D2)导通时电压(约0.7V),R为限流电阻的阻值(就是电阻R1和电阻R2作为限流电阻时的阻值)。
电压跟随器6(见图3中的U1)采用JFET级超低偏置电流Ib、低失调电压Vos的放大器(本发明具体实施方式中电压跟随器6的放大器采用 LMC6001AIN,也可采用lmp7721、LMC6042AIN等其他指标相近型号替代),放大器配制成正相跟随器,超低偏置电流使电压跟随器6对电容积分型微弱电流测量电路2的影响可以忽略。放大器LMC6001AIN的引脚4和引脚7 分别接电源,引脚3为正相输入端,与图2中的电容积分型微弱电流测量电路2的输入端连接(即连接图2中的待测微弱电流1),引脚2为反向输入端与引脚6连接作为输出端并连接至多路复用器4(本发明具体实施方式中多路复用器4的型号是MAX4518,放大器LMC6001AIN的输出端具体是连接MAX4518的引脚11,见图6)。
D/A转换器5由逻辑控制单元7控制,D/A转换器5输出的导通电压的绝对值不小于1V,以使复位电流电路3中的二极管导通,在发明具体实施方式中D/A转换器5采用微控制器stm32f103rct芯片,D/A转换器5 的输出端(即微控制器stm32f103rct的引脚PB4)分别连接至由放大器U2A 组成的输出缓冲器和由放大器U2B配置成的同比例反向放大器(见图5),从而输出极性相反大小相同的电压信号,输出缓冲器的输出连接至 MAX4518(即多路复用器)的引脚4,反向放大器的输出连接至MAX4518的引脚5(见图6)。D/A转换器5无特殊要求,采用微控制器stm32f103rct 芯片的片载DAC模块,也可选用其他通用型号代替。放大器U2A和放大器 U2B的型号均为OPA2277U;电阻R3、电阻R4采用金属膜电阻,阻值均为 10k。
多路复用器4(即图6中的U3)使用型号为MAX4518ESD的多路复用器,其模拟电源引脚3和引脚12接±5V低噪声电源,引脚2接+3.3V高电平,引脚4接D/A转换器5的正极性电压,引脚5接D/A转换器5的负极性电压,引脚11接电压跟随器6输出作为关断电压,引脚10接零电位,见图 6。
逻辑控制单元7采用型号为stm32f103rct的32bit微控制器(MCU),采用+3.3V供电,通过SPI2总线与D/A转换器5完成通信并设置输出电位,其PC1和PC2引脚分别连接多路复用器4(图6中的U3)的引脚1和引脚 14,逻辑控制单元7选择引脚PC1和PC2的输出逻辑状态以实现多路复用器的不同输出;
逻辑控制单元7采用rs232通信接口,可以由上位机发送指令配置复位电流大小及复位器状态;
逻辑控制器7根据具体需求配置多路复用器4选择不同电压信号作为输出至复位电流电路3,实现复位电流电路3的关断或导通,以满足电容积分型微弱电流测量电路2的不同需求。
逻辑控制单元7的PC1和PC2输出低电平时,多路复用器4输出为正极性电压,此时复位电流电路3的二极管D1导通,复位电流电路3输出正极性复位电流;逻辑控制单元7的PC1输出低电平、PC2输出高电平时,多路复用器4输出为负极性电压,此时复位电流电路3的二极管D2导通,复位电流电路3输出负极性复位电流;当逻辑控制单元7的PC1输出为高电平、PC2输出为低电平时,多路复用器4输出为微弱电流输入端电位(即电压跟随器6输出的关断电压),复位电流电路3的二极管D1和二极管 D2均截止,无电流输出,电容积分型微弱电流测量电路2能够对待测微弱电流1进行电流测量。
当用于电容积分型微弱电流测量电路的低漏电流复位器为关断状态时,即多路复用器4输出为电压跟随器6的电位,复位电流电路3的二极管两端的电压差远远小于二极管导通的门槛电压,二极管截止。串联电路(即由电阻R1、二极管D2串联的线路和由电阻R2、二极管D1串联的线路)两端的电位差主要由电压跟随器6的失调电压决定,一般为μV(10-6V)级别,高值电阻(电阻R1、电阻R2)在串联电路中作为分压器。在此状态下,二极管PN节中的电流为空穴电子对的热运动而形成,其节电阻与兆欧级电阻串联形成的等效电阻阻值极高。由上述压差和等效高值电阻形成的电流不超过1fA,从而实现了本发明所提供的用于电容积分型微弱电流测量电路的低漏电流复位器的极低的漏电流。当用于电容积分型微弱电流测量电路的低漏电流复位器为导通状态时,即多路复用器4输出为D/A转换器5的输出电位,输出电位绝对值大于1V并使复位电流电路3的二极管导通,复位电流大小等于多路复用器4输出电压与复位电流电路3的二极管电压之差与限流电阻值相除的商,故复位电流为μA(10-6A)级,并可根据需求调节D/A转换器5的输出电压实现复位电流大小的调节。
本发明所述的装置并不限于具体实施方式中所述的实施例,本领域技术人员根据本发明的技术方案得出其他的实施方式,同样属于本发明的技术创新范围。

Claims (9)

1.一种用于电容积分型微弱电流测量电路的低漏电流复位器,连接在对待测微弱电流(1)进行测量的电容积分型微弱电流测量电路(2)上,其特征是:包括输出端连接复位电流电路(3)的输入端、输入端连接电压跟随器(6)、D/A转换器(5)的输出端的多路复用器(4),所述复位电流电路(3)的输出端和所述电压跟随器(6)的输入端连接在所述电容积分型微弱电流测量电路(2)的输入端;所述电压跟随器(6)能够复制所述待测微弱电流(1)的电压作为所述复位电流电路(3)的关断电压,所述D/A转换器(5)能够为所述复位电流电路(3)提供极性和大小能够调节的导通电压;当所述多路复用器(4)输出所述关断电压时,所述复位电流电路(3)关断,当所述多路复用器(4)输出所述导通电压时,所述复位电流电路(3)导通,并向所述电容积分型微弱电流测量电路(2)输出复位电流;还包括用于控制所述多路复用器(4)选择输出所述关断电压或所述导通电压、以及控制所述D/A转换器(5)输出的所述导通电压的极性和大小的逻辑控制单元(7)。
2.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:所述低漏电流复位器的电路板使用高绝缘性能板材,所述板材至少包括陶瓷板。
3.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:在所述复位电流电路(3)的输出端上用于输出所述复位电流的走线周围设置保护环,所述保护环采用所述电压跟随器(6)输出的所述关断电压作为箝位电压,所述保护环做开窗沉金工艺处理,输出所述复位电流的所述走线与所述保护环的走线之间的间隙为15mi l。
4.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:所述电压跟随器(6)提供的所述关断电压与所述待测微弱电流(1)的电压之间的电位差小于10μV。
5.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:当所述逻辑控制单元(7)选择由所述D/A转换器(5)输出所述导通电压时,所述复位电流电路(3)输出的所述复位电流为μA级复位电流,所述复位电流的极性和大小由所述D/A转换器(5)输出的所述导通电压的极性和大小决定。
6.如权利要求5所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:
所述复位电流电路(3)包括并联在所述复位电流电路(3)的输入端和输出端之间的电阻R1和电阻R2;所述电阻R1串联一个二极管D2,所述二极管D2位于所述电阻R1和所述输入端之间,所述电阻R1位于所述二极管D2的正极一侧;所述电阻R2串联一个二极管D1,所述二极管D1位于所述电阻R2和所述输入端之间,所述电阻R2位于所述二极管D1的负极一侧,所述电阻R1、电阻R2作为所述复位电流电路(3)导通时的限流电阻防止所述复位电流过大,也作为所述复位电流电路(3)关断时的分压电阻降低所述二极管端电压;
所述电阻R1、电阻R2为金属膜电阻,阻值为1MΩ;
所述二极管D1、二极管D2均为低反向偏置泄漏电流二极管PAD1;
由所述电阻R1、二极管D2组成的线路和由所述电阻R2、二极管D1组成的线路分别用于所述D/A转换器(5)输出的不同极性的所述复位电流;
所述复位电流电路(3)输出的复位电流大小IReset由公式(VDAC-VDiode)/R得到,其中VDAC为所述D/A转换器(5)输出的所述导通电压,VDiode为所述二极管D1、二极管D2导通时电压,R为所述限流电阻的阻值。
7.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:所述D/A转换器(5)输出的所述导通电压的绝对值不小于1V。
8.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:所述电压跟随器(6)采用JFET级超低偏置电流Ib、低失调电压Vos的放大器,所述放大器配制成正相跟随器。
9.如权利要求1所述的用于电容积分型微弱电流测量电路的低漏电流复位器,其特征是:所述复位电流电路(3)、电压跟随器(6)所组成的复位电流电路设置在金属屏蔽盒内,并靠近所述电容积分型微弱电流测量电路(2)。
CN201711391101.6A 2017-12-21 2017-12-21 一种用于电容积分型微弱电流测量电路的低漏电流复位器 Active CN108037341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711391101.6A CN108037341B (zh) 2017-12-21 2017-12-21 一种用于电容积分型微弱电流测量电路的低漏电流复位器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711391101.6A CN108037341B (zh) 2017-12-21 2017-12-21 一种用于电容积分型微弱电流测量电路的低漏电流复位器

Publications (2)

Publication Number Publication Date
CN108037341A true CN108037341A (zh) 2018-05-15
CN108037341B CN108037341B (zh) 2024-05-10

Family

ID=62100495

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711391101.6A Active CN108037341B (zh) 2017-12-21 2017-12-21 一种用于电容积分型微弱电流测量电路的低漏电流复位器

Country Status (1)

Country Link
CN (1) CN108037341B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112213554A (zh) * 2020-09-04 2021-01-12 中国原子能科学研究院 一种基于电流频率变换法的微弱电流测量电路及方法
CN113238088A (zh) * 2021-05-08 2021-08-10 中国测试技术研究院辐射研究所 基于电荷平衡的高精度微弱电流测量电路及方法
CN113711064A (zh) * 2019-04-10 2021-11-26 Iee国际电子工程股份公司 多通道电容感测测量电路
CN116699463A (zh) * 2023-07-28 2023-09-05 珠海禅光科技有限公司 Mlcc电容器漏电流测量方法、装置、控制装置和介质

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318712A (ja) * 2002-04-24 2003-11-07 Nec Corp 半導体装置
US20050162173A1 (en) * 2004-01-27 2005-07-28 Aadu Mirme Integrating electrometer amplifying circuit
WO2007075617A2 (en) * 2005-12-19 2007-07-05 Silicon Laboratories Inc. Current sensor
JP2009111069A (ja) * 2007-10-29 2009-05-21 National Institute Of Information & Communication Technology 極微弱光検出器
CN101896814A (zh) * 2007-10-12 2010-11-24 Nxp股份有限公司 传感器、传感器阵列以及操作传感器的方法
CN102508196A (zh) * 2011-12-19 2012-06-20 邯郸供电公司 单相电能表现场彩屏查窃仪
JP2013205325A (ja) * 2012-03-29 2013-10-07 Asahi Kasei Electronics Co Ltd 電流測定装置
CN104122575A (zh) * 2014-07-14 2014-10-29 中国原子能科学研究院 一种外推电离室自动测量***及方法
CN104614568A (zh) * 2014-12-04 2015-05-13 深圳市德赛微电子技术有限公司 一种带驱动功能的电流电压转换器
FR3025606A1 (fr) * 2014-09-10 2016-03-11 Commissariat Energie Atomique Dispositif pour la mesure de courant
CN105554965A (zh) * 2016-02-24 2016-05-04 西南交通大学 一种母线电流互补式分时复用多路恒流输出led驱动器拓扑及其控制方法
CN106686328A (zh) * 2016-11-30 2017-05-17 上海集成电路研发中心有限公司 硅工艺量子点像素单元电路、传感器及信号采集方法
CN107064592A (zh) * 2016-11-29 2017-08-18 尤宣来 交流电动态检测装置及方法、保险装置、电流显示装置
CN107449810A (zh) * 2016-04-14 2017-12-08 罗姆股份有限公司 电容测定电路、使用了它的输入装置、电子设备
CN207689555U (zh) * 2017-12-21 2018-08-03 中国原子能科学研究院 一种用于电容积分型微弱电流测量电路的低漏电流复位器

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318712A (ja) * 2002-04-24 2003-11-07 Nec Corp 半導体装置
US20050162173A1 (en) * 2004-01-27 2005-07-28 Aadu Mirme Integrating electrometer amplifying circuit
WO2007075617A2 (en) * 2005-12-19 2007-07-05 Silicon Laboratories Inc. Current sensor
CN101896814A (zh) * 2007-10-12 2010-11-24 Nxp股份有限公司 传感器、传感器阵列以及操作传感器的方法
JP2009111069A (ja) * 2007-10-29 2009-05-21 National Institute Of Information & Communication Technology 極微弱光検出器
CN102508196A (zh) * 2011-12-19 2012-06-20 邯郸供电公司 单相电能表现场彩屏查窃仪
JP2013205325A (ja) * 2012-03-29 2013-10-07 Asahi Kasei Electronics Co Ltd 電流測定装置
CN104122575A (zh) * 2014-07-14 2014-10-29 中国原子能科学研究院 一种外推电离室自动测量***及方法
FR3025606A1 (fr) * 2014-09-10 2016-03-11 Commissariat Energie Atomique Dispositif pour la mesure de courant
CN104614568A (zh) * 2014-12-04 2015-05-13 深圳市德赛微电子技术有限公司 一种带驱动功能的电流电压转换器
CN105554965A (zh) * 2016-02-24 2016-05-04 西南交通大学 一种母线电流互补式分时复用多路恒流输出led驱动器拓扑及其控制方法
CN107449810A (zh) * 2016-04-14 2017-12-08 罗姆股份有限公司 电容测定电路、使用了它的输入装置、电子设备
CN107064592A (zh) * 2016-11-29 2017-08-18 尤宣来 交流电动态检测装置及方法、保险装置、电流显示装置
CN106686328A (zh) * 2016-11-30 2017-05-17 上海集成电路研发中心有限公司 硅工艺量子点像素单元电路、传感器及信号采集方法
CN207689555U (zh) * 2017-12-21 2018-08-03 中国原子能科学研究院 一种用于电容积分型微弱电流测量电路的低漏电流复位器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM;S.-H.等: "Control and Analysis of Magnetic Switch Reset Current in Pulsed Power Systems", 《IEEE TRANSACTIONS ON POWER ELECTRONICS》, pages 529 - 533 *
张军涛: "基于单片机的简易数字R-V-I测试仪的设计", 《电子技术》, vol. 39, no. 5, pages 63 - 65 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113711064A (zh) * 2019-04-10 2021-11-26 Iee国际电子工程股份公司 多通道电容感测测量电路
CN113711064B (zh) * 2019-04-10 2024-03-08 Iee国际电子工程股份公司 多通道电容感测测量电路
CN112213554A (zh) * 2020-09-04 2021-01-12 中国原子能科学研究院 一种基于电流频率变换法的微弱电流测量电路及方法
CN113238088A (zh) * 2021-05-08 2021-08-10 中国测试技术研究院辐射研究所 基于电荷平衡的高精度微弱电流测量电路及方法
CN116699463A (zh) * 2023-07-28 2023-09-05 珠海禅光科技有限公司 Mlcc电容器漏电流测量方法、装置、控制装置和介质
CN116699463B (zh) * 2023-07-28 2024-02-06 珠海禅光科技有限公司 Mlcc电容器漏电流测量方法、装置、控制装置和介质

Also Published As

Publication number Publication date
CN108037341B (zh) 2024-05-10

Similar Documents

Publication Publication Date Title
CN108037341A (zh) 一种用于电容积分型微弱电流测量电路的低漏电流复位器
CN203798886U (zh) 一种电流采样电路
CN207689555U (zh) 一种用于电容积分型微弱电流测量电路的低漏电流复位器
CN105099181B (zh) 一种用于buck变换器的导通时间产生电路
CN103576000A (zh) 电感测试电路
CN102253256A (zh) 一种大功率电源负载仪
CN105573391A (zh) 太阳阵模拟器的开路电压控制电路及其开路电压控制方法
CN108845175A (zh) 一种工作在亚阈区的高精度电流检测电路
CN207896948U (zh) 一种消除单片机电流检测电路运放温漂的电子开关电路
CN105675960B (zh) 一种测量压电器件开路电压的装置和方法
CN105973482A (zh) 一种基于干扰消除电路的温度检测***
CN201936215U (zh) 新型高精密恒流源电路
CN106374834B (zh) 一种太阳电池伏安特性测量电路和方法
KR102628843B1 (ko) 정전 검출 회로
CN106406407A (zh) 多量程高精密恒流源
CN101769954B (zh) 多节串联电池的电压检测电路
CN104034934A (zh) 一种电流采样电路
CN207752370U (zh) 复位电路及包括该复位电路的计量仪表
CN208421049U (zh) 一种电流指示电路
CN203798892U (zh) 电流传感器
CN104122480B (zh) 一种测试电容屏线阻是否短路的方法
CN206193579U (zh) 多量程高精密恒流源
CN203233395U (zh) 一种用于电容式传感器的端口复用接口电路
CN207866381U (zh) 一种基于电容数字转换器的温度传感器
CN206164917U (zh) 一种电流检测与反馈电路、开关电源、led驱动电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant