CN107992681B - 一种电动汽车主动前轮转向***的复合控制方法 - Google Patents

一种电动汽车主动前轮转向***的复合控制方法 Download PDF

Info

Publication number
CN107992681B
CN107992681B CN201711260555.XA CN201711260555A CN107992681B CN 107992681 B CN107992681 B CN 107992681B CN 201711260555 A CN201711260555 A CN 201711260555A CN 107992681 B CN107992681 B CN 107992681B
Authority
CN
China
Prior art keywords
vehicle
disturbance
observer
control
front wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711260555.XA
Other languages
English (en)
Other versions
CN107992681A (zh
Inventor
丁世宏
金杨
李鸿一
马莉
刘陆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201711260555.XA priority Critical patent/CN107992681B/zh
Publication of CN107992681A publication Critical patent/CN107992681A/zh
Application granted granted Critical
Publication of CN107992681B publication Critical patent/CN107992681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Automation & Control Theory (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明提出了一种电动汽车主动前轮转向***的复合控制策略,所述被控对象、二自由度车辆模块、滑模观测器模块、扰动观测模块、控制器模块依次相连接。基于所述二自由度车辆模块,设计了滑模观测器对质心侧偏角进行估计;所述扰动观测器模块用以对外部扰动进行观测,并将观测值作为前馈补偿,与常用控制算法形成状态反馈加前馈补偿的复合控制方案。本发明所提出的方法无需改变原有状态反馈控制器,利用扰动观测的补偿性能,能进一步提高电动汽车主动前轮转向的精度,显著提高了控制效果。同时,所述控制方法具有结构简单,运算量小,便于实现等优点。

Description

一种电动汽车主动前轮转向***的复合控制方法
技术领域
本发明涉及电动汽车主动安全控制领域,特别涉及电动汽车主动前轮转向控制器设计,具体是利用扰动观测器技术设计了基于扰动观测的终端滑模复合控制方案,有效提高了在极端工况下汽车行驶的平稳性。
背景技术
近年来,汽车主动安全控制逐渐成为研究热点,其中主动转向***是主动安全控制的一个重要分支。主动转向***主要来控制汽车的侧向运动,它主要分为主动前轮转向***(AFS)和主动后轮转向***(ARS),本专利涉及的是主动前轮转向***的控制。主动前轮***是根据车辆行驶工况,向前轮提供一个独立于方向盘输入的附加转角,能够为驾驶员提供更好的操纵性能。
主动前轮转向***可以采用线性控制方法来实现,也可以采用非线性方法来实现。PI控制算法是典型的线性控制方法,由于结构简单,操纵方便而被广泛运用在各种控制***中。但是,在实际的动态车辆模型中会存在不确定***和外部扰动,单纯的PI控制策略将无法保证车辆的稳定性。为了改善控制性能,各种先进的非线性控制算法在主动前轮转向控制***中得以研究和应用,例如自适应控制、模糊逻辑控制、滑模控制等。
滑模控制具有响应迅速,对参数变化不灵敏等优点而得到广泛应用。因传统滑模具有线性切换面,当利用边界层方法消除抖振时,导致***状态到达平衡点后***状态只能收敛到原点的一个小领域内,导致稳态误差较大。针对该问题,本发明提出了终端滑模控制技术,较传统的滑模控制器,具有更好的抗干扰性能。
此外,由于实际动态车辆模型中存在不确定***和外部扰动,为了进一步提高控制性能,将扰动观测器技术应用于主动前轮转向控制***中。扰动观测器是估计扰动最有效的技术之一,近年来基于扰动观测器的复合控制技术在控制领域和控制工程方面获得了极大的关注。
发明内容
本发明提出了一种电动汽车主动前轮转向***的复合控制方法,以解决传统PI控制方法中存在的鲁棒性差等缺点。本发明采用二阶滑模观测算法,基于二自由度模型,设计了滑模观测器对质心侧偏角进行观测估计,同时本发明在终端滑模控制器的基础上提出了基于扰动观测的终端滑模复合控制算法,相较于单一控制器,其进一步提高了***的稳定性和抗干扰能力。主动前轮转向复合控制***整体方案,包括以下步骤:
步骤一、建立二自由度车辆模型,以其作为汽车运行过程中的参考模型,并且根据参考模型计算出理想的横摆角速度γd
步骤二、基于二阶滑模观测算法观测车辆的实际质心侧偏角
Figure GDA0002229501270000021
步骤三、将由二自由度车辆模型得到的理想值与EPS***模块得到的实际值发送给反馈控制器模块;反馈控制器模块是基于终端滑模控制算法设计的前轮转角控制器,其功能是为车辆提供一个附加转角;
步骤四、扰动观测器模块的输入端为实际横摆角速度γ和控制信号δf,其输出端为扰动补偿量
Figure GDA0002229501270000024
对控制进行补偿。
进一步,步骤一中所述二自由度车辆模型为:
侧向动力学方程为
Figure GDA0002229501270000022
横摆动力学方程为
Figure GDA0002229501270000023
其中β是质心侧偏角,γ是横摆角速度,m是车的质量,Cf和Cr分别为前后轮胎的侧偏刚度,a,b分为车辆前轴和后轴到质心的距离,δf是车辆的前轮转角,Iz为整车绕Z轴的转动惯量,Vx为纵向速度,d(t)为包含***不确定和外界干扰的集总扰动。
进一步,所述步骤二中,为了准确反映车辆在轮胎线性区的运行状态,并且最大程度地消除模型误差所带来的不利影响,从而将车辆横摆角速度γ和车辆侧向加速度ay作为观测器的反馈变量,分别引入X=[γ,β]T,Y=[γ,ay]T,u=[δf],则二自由度车辆模型的状态空间表达式可以写成
Figure GDA0002229501270000031
其中
Figure GDA0002229501270000032
Figure GDA0002229501270000033
设计出如下的滑模观测器
Figure GDA0002229501270000034
其中
Figure GDA0002229501270000035
分别为γ和β的观测值,c1和c2是两个正常数,ay为侧向加速度,δ为方向盘转角。注意到在车辆动力学模型中,假设前、后轮胎侧偏刚度Cf和Cr为常数,而在实际情况下,它们的值会根据路面状况和轮胎的垂直载荷不断变化,即实际的轮胎侧偏刚度与假设值存在偏差,此外,简化的二自由度车辆模型与实际车辆存在着模型误差,在观测器(3)设计中将侧向加速度偏差
Figure GDA0002229501270000036
作为反馈量,对模型误差进行补偿控制。
进一步,所述步骤三、四中基于扰动观测技术的终端滑模控制算法的控制器模块设计过程如下:
考虑到控制目标是使横摆角速度的实际值趋近其理想值,从而设计如下的滑模面:
Figure GDA0002229501270000037
式中e=γ-γd
对式(4)进行求导,并结合车辆的横摆动力学方程(2),可得:
Figure GDA0002229501270000038
其中
Figure GDA0002229501270000039
基于非线性扰动观测器理论,令x=s,
Figure GDA0002229501270000041
G1(x)=B1,G2(x)=1设计出如下的扰动观测器
Figure GDA0002229501270000042
其中
Figure GDA0002229501270000043
和P分别为有界扰动的估计值和非线性观测器的内部变量,
Figure GDA0002229501270000044
L为观测器的增益并且满足
Figure GDA0002229501270000045
基于扰动观测技术的终端滑模复合控制器δf设计为:
Figure GDA0002229501270000046
式中K1>0,K2>0,
Figure GDA0002229501270000047
则滑动变量s将在有限时间内稳定。
本发明具有的有益效果是:
1.本发明设计的滑模观测器观测质心侧偏角,不仅具有较强的鲁棒性,而且计算量小,满足实时性的要求。
2.本发明设计的基于扰动观测器的终端滑模复合控制器能够有效解决在大扰动下终端滑模控制器存在的控制参数较大,控制性能不好等问题。
附图说明
图1为本发明的电动汽车主动前轮转向***的控制框图。
图2为本发明的电动汽车主动前轮转向各模块结构框图。
图3为输入的方向盘转角示意图。
图4为无侧向风扰动下,四种控制算法作用下电动汽车行驶路径的仿真对比图。
图5为无侧向风干扰下,四种控制算法作用下横摆角速度的仿真对比图。
图6为***添加的侧向风扰动示意图。
图7为侧向风干扰下,四种控制算法作用下电动汽车行驶路径的仿真对比图。
图8为侧向风干扰下,四种控制算法作用下横摆角速度的仿真对比图。
具体实施方式
下面结合图对本发明做进一步的解释。
如图1,电动汽车主动前轮转向***的控制框图,它主要分为实际车辆模型、二自由度车辆模型、质心侧偏角观测器模块、扰动观测器模块以及控制器模块这五个部分所组成。采用Carsim软件和Simulink联合仿真,具体车辆参数如表1所示
表1车辆参数
车辆质量 m(kg) 1429
绕z轴转动惯量 I<sub>Z</sub>(kg/m<sup>2</sup>) 1765
质心到前轴距离 a(mm) 1005
质心到后轴距离 b(mm) 1569
前轮的侧偏刚度 C<sub>f</sub>(N/rad) 79240
后轮的侧偏刚度 C<sub>r</sub>(N/rad) 87002
轮胎-路面摩擦系数 μ 0.3
齿轮传动比 n 20
一种电动汽车主动前轮转向***的复合控制方法,其特征在于所述方法的实现过程为:
步骤一:二自由度车辆模型的建立
侧向动力学方程为
Figure GDA0002229501270000051
横摆动力学方程为
Figure GDA0002229501270000052
其中β是质心侧偏角,γ是横摆角速度,m是车的质量,Cf和Cr分别为前后轮胎的侧偏刚度,a,b分为车辆前轴和后轴到质心的距离,δf是车辆的前轮转角,Iz为整车绕Z轴的转动惯量,Vx为纵向速度,d(t)为包含***不确定和外界干扰的集总扰动。
根据式(1)和(2)以及满足实际情况下的环境因素,理想的横摆角速度γd的计算公式如下:
Figure GDA0002229501270000061
式中μ为路面摩擦系数,g为重力加速度,δ为方向盘转角。
步骤二:质心侧偏角的二阶滑模观测器构建方法如下:
为了准确反映车辆在轮胎线性区的运行状态,并且最大程度地消除模型误差所带来的不利影响,从而将车辆横摆角速度γ和车辆侧向加速度ay作为观测器的反馈变量,分别引入X=[γ,β]T,Y=[γ,ay]T,u=[δf],则二自由度车辆模型的状态空间表达式可以写成
Figure GDA0002229501270000062
其中
Figure GDA0002229501270000063
Figure GDA0002229501270000064
设计出如下的滑模观测器
Figure GDA0002229501270000065
其中
Figure GDA0002229501270000066
分别为γ和β的观测值,c1和c2是两个正常数,ay为侧向加速度,δ为方向盘转角。注意到在车辆动力学模型中,假设前、后轮胎侧偏刚度Cf和Cr为常数,而在实际情况下,它们的值会根据路面状况和轮胎的垂直载荷不断变化,即实际的轮胎侧偏刚度与假设值存在偏差,此外,简化的二自由度车辆模型与实际车辆存在着模型误差,在观测器(3)设计中将侧向加速度偏差
Figure GDA0002229501270000071
作为反馈量,对模型误差进行补偿控制。
步骤三:基于扰动观测技术的终端滑模复合控制方案设计
考虑到控制目标是使横摆角速度的实际值趋近其理想值,从而设计如下的滑模面:
Figure GDA0002229501270000072
式中e=γ-γd
对式(4)进行求导,并结合车辆的横摆动力学方程(2),可得:
Figure GDA0002229501270000073
其中
Figure GDA0002229501270000074
基于非线性扰动观测器理论,令x=s,则方程可以改写为
Figure GDA0002229501270000075
其中
Figure GDA0002229501270000076
G1(x)=B1,G2(x)=1。D(t)是未知的扰动我们认为其满足
Figure GDA0002229501270000077
Figure GDA0002229501270000078
为一正常数。设计出如下的扰动观测器
Figure GDA0002229501270000079
其中
Figure GDA00022295012700000710
和P分别为有界扰动的估计值和非线性观测器的内部变量,
Figure GDA00022295012700000711
L为观测器的增益并且满足
Figure GDA00022295012700000712
基于扰动观测技术的终端滑模复合控制器δf设计为:
Figure GDA00022295012700000713
式中K1>0,K2>0,
Figure GDA00022295012700000714
则滑动变量s将在有限时间内稳定。
如图4、5,通过Carsim软件和Simulink的联合仿真在无侧向风干扰下,分别从行驶路径和横摆角速度来看,基于扰动观测技术的PI控制器与基于扰动观技术的终端滑模复合控制器,它们的控制效果明显优于传统控制器的控制效果。
如图7、8,通过Carsim软件和Simulink的联合仿真在侧向风干扰下,PI控制器已经无法保证实际横摆角速度跟踪上理想值;终端滑模控制虽然能够保证***在有限时间达到稳定,但是控制器所需的控制参数很大,控制性能不好;基于扰动观测技术的PI控制器能够解决PI控制下存在的鲁棒性差问题,同时可以看出扰动观测器有效抑制了所添加的外部侧向风扰动,使实际横摆角速度有效跟踪理想值;基于扰动观测技术的终端滑模复合控制器能够改善终端滑模控制下存在控制参数过大,控制性能不好等缺点,相较于其他三种控制器该控制器有效提高***控制性能和稳定性。

Claims (3)

1.一种电动汽车主动前轮转向***的复合控制方法,其特征在于:基于二自由度车辆模型,设计滑模观测器对质心侧偏角进行估计,采用扰动观测器对外部扰动进行观测,并将观测值作为前馈补偿,结合状态反馈控制算法,设计基于扰动观测的终端滑模控复合控制算法;主动前轮转向控制***的复合控制方案,包括以下步骤:
步骤一、建立二自由度车辆模型:
侧向动力学方程为
Figure FDA0002257586190000011
横摆动力学方程为
Figure FDA0002257586190000012
其中β是质心侧偏角,γ是横摆角速度,m是车的质量,Cf和Cr分别为前后轮胎的侧偏刚度,a,b分为车辆前轴和后轴到质心的距离,δf是车辆的前轮转角,Iz为整车绕Z轴的转动惯量,Vx为纵向速度,d(t)为包含***不确定和外界干扰的集总扰动;
方程(1)-(2)作为汽车运行过程中的参考模型,并且根据参考模型计算出理想的横摆角速度γd,计算方法如下:
Figure FDA0002257586190000013
式中μ为路面摩擦系数,g为重力加速度,δ为方向盘转角;
步骤二、基于二阶滑模观测算法设计状态观测器估计车辆的实际质心侧偏角
Figure FDA0002257586190000015
步骤三、将由二自由度车辆模型得到的理想横摆角速度、EPS***模块得到的实际横摆角速度以及步骤二中得到的实际质心侧偏角估计值发送给反馈控制器模块;反馈控制器模块是基于终端滑模控制算法设计的前轮转角控制器,其功能是为车辆提供一个附加转角;
步骤四、最后,设计扰动观测器模块,其输入端为实际横摆角速度γ和控制输入δf,其输出端为扰动补偿量
Figure FDA0002257586190000014
将扰动观测器的输出反馈给步骤三中的反馈控制器模块,从而设计基于扰动观测技术的终端滑模复合控制器;
所述步骤二中,二阶滑模观测器构建方法如下:
Figure FDA0002257586190000021
其中
Figure FDA0002257586190000022
分别为γ和β的观测值,c1和c2是两个正常数,ay为侧向加速度,δ为方向盘转角,A11,A12,A21,A22,B1,B2常数,Vx为纵向速度;
所述步骤四中观测器可以构造为如下形式
Figure FDA0002257586190000023
其中x=s,
Figure FDA0002257586190000024
G1(x)=B1,G2(x)=1,
Figure FDA0002257586190000025
和P分别为有界扰动的估计值和非线性观测器的内部变量,
Figure FDA0002257586190000026
L为观测器的增益并且满足
Figure FDA0002257586190000027
所述步骤四中基于扰动观测技术的终端滑模复合控制器δf可以设计为:
Figure FDA0002257586190000028
式中K1>0,K2>0,
Figure FDA0002257586190000029
则滑动变量s将在有限时间内稳定。
2.根据权利要求1所述的一种电动汽车主动前轮转向***的复合控制方法,其特征在于,为了准确反映车辆在轮胎线性区域的运行状态,并且最大程度地消除模型误差所带来的不利影响,从而将车辆横摆角速度γ和车辆侧向加速度ay同时作为观测器的反馈变量。
3.根据权利要求1所述的一种电动汽车主动前轮转向***的复合控制方法,其特征在于,在实际情况下前、后轮胎侧偏刚度Cf和Cr的值会根据路面状况和轮胎的垂直载荷不断变化,即实际的轮胎侧偏刚度与假设值存在偏差,且简化的二自由度车辆模型与实际车辆存在着模型误差,所述二阶滑模观测器设计时将侧向加速度偏差
Figure FDA00022575861900000210
作为反馈量,对模型误差进行补偿控制。
CN201711260555.XA 2017-12-04 2017-12-04 一种电动汽车主动前轮转向***的复合控制方法 Active CN107992681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711260555.XA CN107992681B (zh) 2017-12-04 2017-12-04 一种电动汽车主动前轮转向***的复合控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711260555.XA CN107992681B (zh) 2017-12-04 2017-12-04 一种电动汽车主动前轮转向***的复合控制方法

Publications (2)

Publication Number Publication Date
CN107992681A CN107992681A (zh) 2018-05-04
CN107992681B true CN107992681B (zh) 2020-06-05

Family

ID=62035526

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711260555.XA Active CN107992681B (zh) 2017-12-04 2017-12-04 一种电动汽车主动前轮转向***的复合控制方法

Country Status (1)

Country Link
CN (1) CN107992681B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108749915A (zh) * 2018-06-08 2018-11-06 扬州大学 一种基于滑模观测器的电动助力转向装置设计方法
CN108681257B (zh) * 2018-06-22 2020-12-29 合肥工业大学 一种主动防侧倾***的控制器的设计方法
CN108919837B (zh) * 2018-07-12 2020-04-17 北京航空航天大学 一种基于视觉动力学的自动驾驶车辆二阶滑模控制方法
CN109204458B (zh) * 2018-09-25 2020-06-30 清华大学 一种eps特性未知的自动驾驶汽车方向盘转向角跟踪方法
CN111098849B (zh) * 2018-10-29 2021-04-27 香港城市大学深圳研究院 一种新能源汽车稳定性控制方法及***
CN109850015B (zh) * 2019-02-21 2021-08-03 江苏大学 一种控制参数可自动调节的电动车主动前轮转向控制方法
CN110341714B (zh) * 2019-06-26 2021-02-12 江苏大学 一种同时估计车辆质心侧偏角和扰动的方法
CN111055920B (zh) * 2019-12-24 2021-07-20 江苏大学 一种汽车eps转向***多模型转角控制器的构造方法
CN111688715B (zh) * 2020-06-24 2021-05-18 长春工业大学 四轮驱动电动汽车基于融合技术的质心侧偏角观测方法
CN112346337A (zh) * 2020-09-15 2021-02-09 吉林大学 极限工况下基于后轮主动转向的车辆稳定性控制方法
CN113044047B (zh) * 2021-03-31 2022-06-21 江苏大学 一种基于类pid-stsm的afs/dyc集成控制方法
CN113183950B (zh) * 2021-05-11 2024-03-19 江苏大学 一种电动汽车主动前轮转向的自适应控制方法
CN113232672B (zh) * 2021-07-12 2021-10-19 天津所托瑞安汽车科技有限公司 车辆质心侧偏角的估计方法、装置、电子设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811515A (zh) * 2009-12-18 2010-08-25 江苏长江环境科技工程有限公司 用于汽车主动转向***的控制装置
JP2016132312A (ja) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 車体構造
CN107139775A (zh) * 2017-04-26 2017-09-08 江苏大学 一种基于非光滑技术的电动车直接横摆力矩控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811515A (zh) * 2009-12-18 2010-08-25 江苏长江环境科技工程有限公司 用于汽车主动转向***的控制装置
JP2016132312A (ja) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 車体構造
CN107139775A (zh) * 2017-04-26 2017-09-08 江苏大学 一种基于非光滑技术的电动车直接横摆力矩控制方法

Also Published As

Publication number Publication date
CN107992681A (zh) 2018-05-04

Similar Documents

Publication Publication Date Title
CN107992681B (zh) 一种电动汽车主动前轮转向***的复合控制方法
CN108482363B (zh) 车辆横摆稳定性预测模型控制方法
CN107415939B (zh) 一种分布式驱动电动汽车转向稳定性控制方法
CN107831761B (zh) 一种智能车的路径跟踪控制方法
CN107791773B (zh) 一种基于规定性能函数的整车主动悬架***振动控制方法
CN108107731B (zh) 一种基于轮胎非线性特性的汽车稳定性控制方法
CN111391822B (zh) 一种极限工况下汽车横纵向稳定性协同控制方法
CN113183950B (zh) 一种电动汽车主动前轮转向的自适应控制方法
CN105467996B (zh) 基于微分平坦和自抗扰的四轮转向汽车轨迹跟踪控制方法
CN111679575B (zh) 一种基于鲁棒模型预测控制的智能汽车轨迹跟踪控制器及其构造方法
Pang et al. Adaptive backstepping robust tracking control for stabilizing lateral dynamics of electric vehicles with uncertain parameters and external disturbances
CN113126623B (zh) 一种考虑输入饱和的自适应动态滑模自动驾驶车辆路径跟踪控制方法
Saikia et al. Vehicle stability enhancement using sliding mode based active front steering and direct yaw moment control
Wu et al. Vehicle active steering control research based on two-DOF robust internal model control
CN109850015B (zh) 一种控制参数可自动调节的电动车主动前轮转向控制方法
CN112882389A (zh) 一种基于分段t-s模糊模型的车辆稳定性控制器设计方法
CN114030526B (zh) 一种车辆主动转向控制方法及***
Zhang et al. A nonlinear dynamic control design with conditional integrators applied to unmanned skid-steering vehicle
CN110968911A (zh) 一种基于新型趋近律的汽车abs滑模控制器设计方法
CN114802202A (zh) 一种基于Lyapunov稳定性理论的车辆稳定性控制方法
CN116165943A (zh) 一种漂移极限工况下的车辆主动安全控制方法
CN103034124B (zh) 汽车底盘集成***广义逆内模控制器及构造方法
CN113044047B (zh) 一种基于类pid-stsm的afs/dyc集成控制方法
Shi et al. A novel integral terminal sliding mode control of yaw stability for steer-by-wire vehicles
CN111736598B (zh) 基于自适应神经网络的收获机路径跟踪控制方法和***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant