CN107988645A - 超弹性导电纤维和超弹性纤维状超级电容器的制备方法 - Google Patents

超弹性导电纤维和超弹性纤维状超级电容器的制备方法 Download PDF

Info

Publication number
CN107988645A
CN107988645A CN201711034351.4A CN201711034351A CN107988645A CN 107988645 A CN107988645 A CN 107988645A CN 201711034351 A CN201711034351 A CN 201711034351A CN 107988645 A CN107988645 A CN 107988645A
Authority
CN
China
Prior art keywords
elasticity
super
preparation
chloride
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711034351.4A
Other languages
English (en)
Inventor
郑贤宏
郑圆圆
文琦
付文丽
许庆丽
毛宁
陈文翀
覃小红
邱夷平
陈霞
张坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua Mirror Month (suzhou) Textile Technology Research Co Ltd
Original Assignee
Donghua Mirror Month (suzhou) Textile Technology Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua Mirror Month (suzhou) Textile Technology Research Co Ltd filed Critical Donghua Mirror Month (suzhou) Textile Technology Research Co Ltd
Priority to CN201711034351.4A priority Critical patent/CN107988645A/zh
Publication of CN107988645A publication Critical patent/CN107988645A/zh
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/56Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of cyclic compounds with one carbon-to-carbon double bond in the side chain
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/09Addition of substances to the spinning solution or to the melt for making electroconductive or anti-static filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/327Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof
    • D06M15/333Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated alcohols or esters thereof of vinyl acetate; Polyvinylalcohol
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/61Polyamines polyimines
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/63Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing sulfur in the main chain, e.g. polysulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明涉及一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,所述的高弹性导电纤维是利用嵌段共聚物溶液与导电填料分散液混合后,通过湿法纺丝制备内部具有导电通路的高弹性导电纤维,然后通过在表面及内部沉积金属纳米粒子进一步提升复合纤维的导电性,然后使用胶体电解液制备全固态可牵伸柔性纤维状超级电容器,该制备方法过程简单,所制备的纤维弹性好,伸长率高,电导率高,更适合用于柔性可牵伸纤维状超级电容器的电极材料。

Description

超弹性导电纤维和超弹性纤维状超级电容器的制备方法
技术领域
本发明涉及一种超弹性导电纤维的制备方法,本发明还涉及由该方法得到的超弹性导电纤维制备的柔性可牵伸纤维状超级电容器。
背景技术
可牵伸的电子元件由于其在可穿戴领域如柔性显示、柔性能量存储以及智能皮肤等方面的潜在应用而备受关注,因此柔性可牵伸的导体材料的制备至关重要。金属纤维虽然其电导率高,但是其刚性的特点难以满足柔性可牵伸的要求,而高聚物纤维由于其柔性、易于改性、可纺织的特点,展现出了在可牵伸电子装置上的广泛的应用前景,然而由于大多数高聚物纤维除了导电高分子的电绝缘性,必须要对其进行改性,制备导电纤维,实现电子元件高弹性的同时保持高导电性将会是制备柔性导体的关键。已有的研究中主要是通过导电高分子如聚苯胺(PANI)、聚吡咯(PPY)和聚3,4-乙烯二氧噻吩(PEDOT)湿法纺丝制备导电纤维或者在橡胶纤维表面涂层的方法制备弹性导电纤维,或者用金属合金、银和碳纳米管改性嵌段共聚物,如公开专利号为CN101487148、CN105603603A、CN103390467A、CN104499272A公开的弹性导电纤维在弹性基体纤维表面涂层导电粒子,然而这些纤维制备方法难以满足在高度牵伸的状态下保持高导电性的要求,势必会造成纤维状超级电容器在拉伸过程中等效串联电阻的增加,恶化超级电容器的性能。对于柔性可牵伸的纤维状超级电容器的研究中,由于超弹性导电纤维在制备上的困难,因此极少采用,主要是通过对纤维状超级电容器的结构设计实现可牵伸的目的,如将纤维电极涂覆胶体电解液之后包缠在一定与应变的氨纶纱线上,由于预应变去除以后纤维的收缩实现可牵伸的目的,或者对氨纶纱线表面包缠碳纳米管薄膜,达到可牵伸的要求。然而这些可牵伸电容器中都利用了不导电的弹性基体材料,势必会增加超级电容器的重量,限制了其在可穿戴电子器件领域上的应用。
嵌段共聚物由于其独特的分子链结构,因此具有超高的伸长率和弹性,是超弹性纤维的理想材料。通过在纺丝液中加入导电的纳米粒子、纳米线和石墨烯等,在聚合物纤维内部建立导电网络,从而提高复合纤维的电导率,同时赋予纤维较好的弹性和导电性。只需将导电填料比设定在导电阀值之上,同时利用纳米线在导电填料中的网状结构特点,保证在拉伸的同时导电网络仍不被破坏,保持较好的弹性和导电性。
发明内容
针对上述问题,本发明的目的在于提供一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,该制备方法过程简单,所制备的纤维弹性好,伸长率高,电导率高,更适合用于柔性可牵伸纤维状超级电容器的电极材料。
本发明解决其技术问题所采用的技术方案是:一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,所述的高弹性导电纤维是利用嵌段共聚物溶液与导电填料分散液混合后,通过湿法纺丝制备内部具有导电通路的高弹性导电纤维,然后通过在表面及内部沉积金属纳米粒子进一步提升复合纤维的导电性,然后使用胶体电解液制备全固态可牵伸柔性纤维状超级电容器。
更进一步,所述弹性导电纤维和超弹性纤维状超级电容器的制备方法包括以下步骤:
步骤一,纺丝液制备:先将导电填料分散在极性溶剂中,然后将导电填料分散液加入到嵌段共聚物溶液,其中导电填料的质量分数为0.1~60%,嵌段共聚物的浓度为5~30wt%,然后室温搅拌1~24小时,形成均匀的纺丝液。
步骤二,湿法纺丝:将步骤一中制备的纺丝液通过直径为0.06~2mm的喷丝孔,进入到凝固浴中,收集卷绕导电填料改性的嵌段共聚物复合纤维。
步骤三,金属纳米粒子改性:将步骤二中的复合纤维浸入质量分数为0.1~50%的金属纳米粒子前驱体溶液中,水洗后25~80度烘干1小时,然后浸入到浓度为0.1~50%的还原剂溶液中,水洗后25~80度烘干1小时,重复上述过程1~20次。
步骤四,可牵伸纤维状超级电容器制备:将步骤三中制备的复合纤维浸渍聚合物胶体电解液,20~80度烘干后,加捻后再次浸渍聚合物胶体电解液,制成纤维状超级电容器。
作为本发明的一种改进,所述步骤一中导电填料为零维金属纳米粒子,一维纳米线,以及二维石墨烯、二硫化钼其中的一种或多种;所述步骤一中嵌段共聚物为聚苯乙烯-丁二烯-苯乙烯(SBS)、氢化聚苯乙烯-丁二烯-苯乙烯(SEBS)、聚氨酯(PU)、聚异戊二烯、聚异戊二烯-异丁烯其中的一种或多种;所述步骤一中导电填料和嵌段共聚物所用的溶剂为N-N二甲基甲酰胺(DMF)、N-N二甲基乙酰胺(DMAC)、二甲基亚砜(DMSO)、四氢呋喃、异丙醇、氯仿、乙醇、甲醇、丙酮和水其中的一种或多种。
作为本发明的一种改进,所述步骤二中凝固浴浓度为5~50wt%,凝固浴为聚乙烯醇、氯化钙、氯化钾、氯化钠、氯化镁、氯化锌、氯化铵、氯化铁、硫酸钾、硫酸钠、硫酸镁、硫酸锌、碳酸钠、碳酸钾中的一种或多种的水溶液,或者为N-N二甲基甲酰胺(DMF)、N-N二甲基乙酰胺(DMAC)、二甲基亚砜(DMSO)、四氢呋喃、异丙醇、氯仿、乙醇、甲醇、丙酮和水其中的一种或多种。
作为本发明的一种改进,所述步骤三中纳米粒子前驱体溶液为氯化钯、三氟乙酸银、氯金酸、氯化铜、氯化铁、氯化铝、硝酸镍、氯化钴中的一种或多种;还原剂为抗坏血酸、水合肼、硼氢化钠、硼氢化钾、盐酸羟胺、柠檬酸钠中的一种或多种。
作为本发明的一种改进,所述步骤四中聚合物胶体电解液为氢氧化钾、氯化钠、氯化钾、氯化铵、硫酸铵、硫酸钠、硫酸钾、硝酸铵、硝酸钠、硝酸钾、硫酸、磷酸、盐酸、氯酸锂中的一种或多种组成的聚乙烯醇(PVA)水溶液。
另一种优化方案,所述的金属粒子沉积可以通过电化学沉积的方法实现;所述的纤维制备方法可以通过干法纺丝的方法实现;所述的纺丝液的嵌段共聚物的质量分数为15~20%,导电填料质量分数为3~10%,凝固浴的浓度为8~15wt%,喷丝孔直径为500微米。
采用上述技术方案,本发明的有益效果是:
利用嵌段共聚物溶液与导电填料分散液混合后,通过湿法纺丝制备内部具有导电通路的高弹性导电纤维,然后通过在表面及内部沉积金属纳米粒子进一步提升复合纤维的导电性,纤维弹性好,伸长率高,在高倍拉伸下复合纤维仍具有较好的导电性,进一步可以获得性能优异的纤维状超级电容器,该制备方法快速简单,易于推广。
具体实施方式
下面结合具体实施例,进一步阐述本发明:
实施例1
一种超弹性导电纤维和全固态可牵伸纤维状超级电容器的制备方法,包括以下步骤:
步骤一:聚苯乙烯-丁二烯-苯乙烯(SBS)溶解在四氢呋喃(THF)中,其中聚苯乙烯-丁二烯-苯乙烯浓度为20wt%,将分散均匀的铜纳米线和石墨烯分散液加入到聚苯乙烯-丁二烯-苯乙烯溶液中,其中铜纳米线和石墨烯的质量分数为5%,两者的质量比为1/1,剪切均质后制得纺丝液。
步骤二:聚苯乙烯-丁二烯-苯乙烯/铜纳米线/石墨烯纺丝液,通过直径为500微米的喷丝孔,进入到8wt%聚乙烯醇凝固浴中,卷绕收集后制得导电粒子改性的弹性纤维。
步骤三:将上述制备的纤维浸渍在0.5摩尔/升的氯化铜溶液中30分钟,60度干燥后10分钟后用0.5摩尔/升的硼氢化钠还原,经去离子水洗后60度干燥10分钟,重复上述过程3~5个循环。
步骤四:将上述制备的超弹性导电纤维经原位聚合沉积聚苯胺,其中苯胺的浓度为0.05摩尔/升,苯胺和过硫酸铵的摩尔比为4/1,冰浴反应24小时。
步骤五:复合纤维表面涂覆胶体电解质溶液,20~80度烘干后,加捻后再次浸渍胶体电解质溶液,烘干后制备全固态可牵伸纤维状超级电容器。
实施例2
一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,包括以下步骤:
步骤一:聚氨酯(PU)溶解在N-N-二甲基甲酰胺(DMF),其中聚氨酯浓度为15wt%,将分散均匀的银纳米线分散液加入到聚氨酯溶液中,其中银纳米线对聚氨酯的质量分数为1%,搅拌均匀后制得纺丝液。
步骤二:聚氨酯/银纳米线纺丝液通过直径为500微米的喷丝孔,进入到水和N-N-二甲基甲酰胺组成凝固浴中,其中N-N-二甲基甲酰胺的浓度为20wt%,纤维经水洗后卷绕成型。
步骤三:聚氨酯/银纳米线复合纤维浸入银纳米粒子前驱体(三氟乙酸银)溶液中,其中三氟乙酸银的浓度为15wt%,60度干燥5分钟后用50wt%的水合肼还原,水洗干燥后重复此过程3~5个循环。
步骤四:将上述的纤维60度气相聚合1h,在纤维表面沉积PEDOT
步骤五:复合纤维表面涂覆1M硫酸/聚乙烯醇胶体电解质溶液,60度烘干后,加捻后再次浸渍胶体电解质溶液,烘干后制备全固态可牵伸纤维状超级电容器。
实施例3
一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,包括以下步骤:
步骤一:聚苯乙烯-丁二烯-苯乙烯(SBS)溶解在四氢呋喃(THF)中,其中聚苯乙烯-丁二烯-苯乙烯浓度为20wt%,将分散均匀的碳纳米管分散液加入到聚苯乙烯-丁二烯-苯乙烯溶液中,其中碳纳米管的质量分数为2%,剪切均质后制得纺丝液。
步骤二:聚苯乙烯-丁二烯-苯乙烯/碳纳米管纺丝液,通过直径为500微米的喷丝孔,进入到8wt%聚乙烯醇凝固浴中,卷绕收集后制得导电粒子改性的弹性纤维。
步骤三:聚苯乙烯-丁二烯-苯乙烯/碳纳米管复合纤维浸入浓度为15wt%的三氟乙酸银溶液中, 60度干燥5分钟后用50wt%的水合肼还原,水洗干燥后重复此过程3~5个循环。
步骤四:将上述制备的超弹性导电纤维经原位聚合沉积聚苯胺,其中苯胺的浓度为0.05摩尔/升,苯胺和过硫酸铵的摩尔比为4/1,冰浴反应24小时。
步骤五:复合纤维表面涂覆1M磷酸/聚乙烯醇胶体电解质溶液,60度烘干后,加捻后再次浸渍胶体电解质溶液,烘干后制备全固态可牵伸纤维状超级电容器。
实施例4
一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,包括以下步骤:
步骤一:聚氨酯(PU)溶解在N-N-二甲基甲酰胺(DMF),其中聚氨酯浓度为15wt%,将分散均匀的银纳米线和石墨烯DMF分散液加入到聚氨酯溶液中,其中银纳米线和石墨烯的质量分数为5%,银纳米线和石墨烯的质量比为1/1,搅拌均匀后制得纺丝液。
步骤二:聚氨酯/银纳米线/石墨烯纺丝液通过500微米的的喷丝孔,进入到水和N-N-二甲基甲酰胺组成凝固浴中,其中N-N-二甲基甲酰胺的浓度为20wt%,纤维经水洗后卷绕成型。
步骤三:将上述制备的纤维浸渍在0.5摩尔/升的氯化铜溶液中30分钟,60度干燥后10分钟后用0.5摩尔/升的硼氢化钠还原,经去离子水洗后60度干燥10分钟,重复上述过程3~5个循环。
步骤四:将上述的纤维60度气相聚合1h,在纤维表面沉积PEDOT
步骤五:复合纤维表面涂覆1M磷酸/聚乙烯醇胶体电解质溶液,60度烘干后,加捻后再次浸渍胶体电解质溶液,烘干后制备全固态可牵伸纤维状超级电容器。
应理解,以上实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (9)

1.一种超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述的高弹性导电纤维是利用嵌段共聚物溶液与导电填料分散液混合后,通过湿法纺丝制备内部具有导电通路的高弹性导电纤维,然后通过在表面及内部沉积金属纳米粒子进一步提升复合纤维的导电性,使用胶体电解液制备全固态可牵伸柔性纤维状超级电容器。
2.根据权利要求1所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于,所述制备方法包括以下步骤:
步骤一,纺丝液制备:先将导电填料分散在极性溶剂中,然后将导电填料分散液加入到嵌段共聚物溶液,其中导电填料的质量分数为0.1~60%,嵌段共聚物的浓度为5~30wt%,然后室温搅拌1~24小时,形成均匀的纺丝液;
步骤二,湿法纺丝:将步骤一中制备的纺丝液通过直径为0.06~2mm的喷丝孔,进入到凝固浴中,收集卷绕导电填料改性的嵌段共聚物复合纤维;
步骤三,金属纳米粒子改性:将步骤二中的复合纤维浸入质量分数为0.1~50%的金属纳米粒子前驱体溶液中,水洗后25~80度烘干1小时,然后浸入到浓度为0.1~50%的还原剂溶液中,水洗后25~80度烘干1小时,重复上述过程1~20次;
步骤四,可牵伸纤维状超级电容器制备:将步骤三中制备的复合纤维浸渍聚合物胶体电解液,20~80度烘干后,加捻后再次浸渍聚合物胶体电解液,制成纤维状超级电容器。
3.如权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤一中导电填料为零维金属纳米粒子,一维纳米线,以及二维石墨烯、二硫化钼其中的一种以上。
4.根据权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤一中嵌段共聚物为聚苯乙烯-丁二烯-苯乙烯、氢化聚苯乙烯-丁二烯-苯乙烯、聚氨酯、聚异戊二烯、聚异戊二烯-异丁烯其中的一种以上。
5.根据权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤一中导电填料和嵌段共聚物所用的溶剂为N-N二甲基甲酰胺、N-N二甲基乙酰胺、二甲基亚砜、四氢呋喃、异丙醇、氯仿、乙醇、甲醇、丙酮一种以上的水溶液。
6.根据权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤二中凝固浴浓度为5~50wt%,凝固浴为聚乙烯醇、氯化钙、氯化钾、氯化钠、氯化镁、氯化锌、氯化铵、氯化铁、硫酸钾、硫酸钠、硫酸镁、硫酸锌、碳酸钠、碳酸钾中的一种以上的水溶液。
7.根据权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤二中凝固浴浓度为5~50wt%,凝固浴为N-N二甲基甲酰胺、N-N二甲基乙酰胺、二甲基亚砜、四氢呋喃、异丙醇、氯仿、乙醇、甲醇、丙酮一种以上的水溶液。
8.根据权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤三中纳米粒子前驱体溶液包括氯化钯、三氟乙酸银、氯金酸、氯化铜、氯化铁、氯化铝、硝酸镍、氯化钴中的一种或多种;还原剂为抗坏血酸、水合肼、硼氢化钠、硼氢化钾、盐酸羟胺、柠檬酸钠中的一种以上。
9.根据权利要求2所述超弹性导电纤维和超弹性纤维状超级电容器的制备方法,其特征在于:所述步骤四中聚合物胶体电解液为氢氧化钾、氯化钠、氯化钾、氯化铵、硫酸铵、硫酸钠、硫酸钾、硝酸铵、硝酸钠、硝酸钾、硫酸、磷酸、盐酸、氯酸锂中的一种或两种以上组成的聚乙烯醇水溶液。
CN201711034351.4A 2017-10-30 2017-10-30 超弹性导电纤维和超弹性纤维状超级电容器的制备方法 Pending CN107988645A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711034351.4A CN107988645A (zh) 2017-10-30 2017-10-30 超弹性导电纤维和超弹性纤维状超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711034351.4A CN107988645A (zh) 2017-10-30 2017-10-30 超弹性导电纤维和超弹性纤维状超级电容器的制备方法

Publications (1)

Publication Number Publication Date
CN107988645A true CN107988645A (zh) 2018-05-04

Family

ID=62030103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711034351.4A Pending CN107988645A (zh) 2017-10-30 2017-10-30 超弹性导电纤维和超弹性纤维状超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN107988645A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962945A (zh) * 2018-06-22 2018-12-07 武汉华星光电半导体显示技术有限公司 显示面板及电子设备
CN109338717A (zh) * 2018-09-28 2019-02-15 西安理工大学 基于银纳米线的柔性导电纤维及其制备方法
CN110230113A (zh) * 2019-06-14 2019-09-13 武汉纺织大学 一种银纳米线/丝素蛋白复合纤维及其制备方法
CN110725024A (zh) * 2019-10-24 2020-01-24 中山大学 一种纤维状光热转换材料的制备方法
WO2020062223A1 (zh) * 2018-09-30 2020-04-02 哈尔滨工业大学(深圳) 一站式超级电容器及其制备方法
CN113062116A (zh) * 2021-03-01 2021-07-02 东华大学 一种仿生结构应变不敏感导电纤维及其制备方法
CN113265721A (zh) * 2021-04-19 2021-08-17 浙江大学 一种纤维状介电弹性体驱动器及其制备方法
CN113668088A (zh) * 2021-08-09 2021-11-19 江南大学 一种SEBS/CNT/MXene复合导电橡胶纤维及其制备和应用
KR20220091005A (ko) * 2020-12-23 2022-06-30 재단법인대구경북과학기술원 아스코르브산과 산소 플라즈마 처리를 이용한 전도성 섬유의 제조방법
CN114836845A (zh) * 2022-05-20 2022-08-02 武汉纺织大学 柔性导电聚氨酯纤维及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143974A (ja) * 1999-11-17 2001-05-25 Meidensha Corp 電気二重層キャパシタ
CN101487148A (zh) * 2009-02-24 2009-07-22 东华大学 具有高导电率高弹性及应力传感性能的复合纤维及其制备
US20100177461A1 (en) * 2009-01-09 2010-07-15 Ut-Battelle, Llc Well defined structures for capacitor applications
CN103714972A (zh) * 2013-11-25 2014-04-09 浙江大学 一种线形的安全的高能量密度的超级电容器及其制备方法
EP3142470A1 (en) * 2015-09-10 2017-03-15 Joinset Co., Ltd Elastic composite filter
CN106592009A (zh) * 2016-12-16 2017-04-26 中国工程物理研究院化工材料研究所 超高电导率聚合物纤维、线状超级电容器组及其制备方法
CN107287684A (zh) * 2017-05-31 2017-10-24 华南理工大学 一种高拉伸高灵敏柔性力敏传感纤维及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143974A (ja) * 1999-11-17 2001-05-25 Meidensha Corp 電気二重層キャパシタ
US20100177461A1 (en) * 2009-01-09 2010-07-15 Ut-Battelle, Llc Well defined structures for capacitor applications
CN101487148A (zh) * 2009-02-24 2009-07-22 东华大学 具有高导电率高弹性及应力传感性能的复合纤维及其制备
CN103714972A (zh) * 2013-11-25 2014-04-09 浙江大学 一种线形的安全的高能量密度的超级电容器及其制备方法
EP3142470A1 (en) * 2015-09-10 2017-03-15 Joinset Co., Ltd Elastic composite filter
CN106592009A (zh) * 2016-12-16 2017-04-26 中国工程物理研究院化工材料研究所 超高电导率聚合物纤维、线状超级电容器组及其制备方法
CN107287684A (zh) * 2017-05-31 2017-10-24 华南理工大学 一种高拉伸高灵敏柔性力敏传感纤维及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEULAH LEE ET AL.: "Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics", 《ADVANCED FUNCTIONAL MATERIALS》 *
蒋耀兴: "《纺织概论》", 28 February 2005 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962945A (zh) * 2018-06-22 2018-12-07 武汉华星光电半导体显示技术有限公司 显示面板及电子设备
CN109338717A (zh) * 2018-09-28 2019-02-15 西安理工大学 基于银纳米线的柔性导电纤维及其制备方法
CN109338717B (zh) * 2018-09-28 2021-04-06 西安理工大学 基于银纳米线的柔性导电纤维及其制备方法
WO2020062223A1 (zh) * 2018-09-30 2020-04-02 哈尔滨工业大学(深圳) 一站式超级电容器及其制备方法
CN110230113B (zh) * 2019-06-14 2021-12-03 武汉纺织大学 一种银纳米线/丝素蛋白复合纤维及其制备方法
CN110230113A (zh) * 2019-06-14 2019-09-13 武汉纺织大学 一种银纳米线/丝素蛋白复合纤维及其制备方法
CN110725024A (zh) * 2019-10-24 2020-01-24 中山大学 一种纤维状光热转换材料的制备方法
KR20220091005A (ko) * 2020-12-23 2022-06-30 재단법인대구경북과학기술원 아스코르브산과 산소 플라즈마 처리를 이용한 전도성 섬유의 제조방법
KR102474402B1 (ko) * 2020-12-23 2022-12-06 재단법인대구경북과학기술원 아스코르브산과 산소 플라즈마 처리를 이용한 전도성 섬유의 제조방법
CN113062116A (zh) * 2021-03-01 2021-07-02 东华大学 一种仿生结构应变不敏感导电纤维及其制备方法
CN113062116B (zh) * 2021-03-01 2021-12-21 东华大学 一种仿生结构应变不敏感导电纤维及其制备方法
CN113265721A (zh) * 2021-04-19 2021-08-17 浙江大学 一种纤维状介电弹性体驱动器及其制备方法
CN113668088A (zh) * 2021-08-09 2021-11-19 江南大学 一种SEBS/CNT/MXene复合导电橡胶纤维及其制备和应用
CN114836845A (zh) * 2022-05-20 2022-08-02 武汉纺织大学 柔性导电聚氨酯纤维及其制备方法
CN114836845B (zh) * 2022-05-20 2023-08-25 武汉纺织大学 柔性导电聚氨酯纤维及其制备方法

Similar Documents

Publication Publication Date Title
CN107988645A (zh) 超弹性导电纤维和超弹性纤维状超级电容器的制备方法
Wei et al. An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes
Kim et al. Conductive polymers for next-generation energy storage systems: recent progress and new functions
Islam et al. Smart electronic textile‐based wearable supercapacitors
Mirabedini et al. Developments in conducting polymer fibres: from established spinning methods toward advanced applications
Kou et al. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics
Song et al. Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor
EP2557207B1 (en) Stretchable conductive nanofibers, stretchable electrode using the same and method of producing the stretchable conductive nanofibers
Yu et al. Scalable preparation of high performance fibrous electrodes with bio-inspired compact core-fluffy sheath structure for wearable supercapacitors
Liang et al. Continuous and integrated PEDOT@ Bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor
CN105133293B (zh) 一种导电纳米复合材料的制备方法
KR101894899B1 (ko) 결정성 전도성 고분자 쉘을 가지는 탄소소재 복합섬유 및 이의 제조방법
WO2017214741A1 (zh) 壳聚糖/聚乙烯醇复合纳米导电纤维的制备工艺
Dorraji et al. Chitosan/polyaniline/MWCNT nanocomposite fibers as an electrode material for electrical double layer capacitors
Zhang et al. A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns
Ren et al. Progress in electrode modification of fibrous supercapacitors
Rastegardoost et al. Recent advances on porous materials and structures for high-performance triboelectric nanogenerators
Olad et al. Surfactant-assisted synthesis of polyaniline nanofibres without shaking and stirring: effect of conditions on morphology and conductivity
CN108109855A (zh) 一种基于金属丝/棉线/聚合物复合纱线的柔性超级电容器的制备方法
Ye et al. Highly conductive, hydrophobic, and acid/alkali-resistant MXene@ PVDF hollow core-shell fibers for efficient electromagnetic interference shielding and Joule heating
Abu-Thabit et al. Smart textile supercapacitors coated with conducting polymers for energy storage applications
CN113089126A (zh) 基于sbs导电纤维的导电网络重塑方法及利用该方法制备的导电复合纤维及其制备方法
Gao et al. Polyaniline/silver nanowire cotton fiber: A flexible electrode material for supercapacitor
Wen et al. Nanofiber Composite Reinforced Organohydrogels for Multifunctional and Wearable Electronics
CN111276335A (zh) 芳纶纳米纤维/石墨烯/导电聚合物柔性复合电极及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Zhang Kun

Inventor after: Zheng Xianhong

Inventor after: Qiu Yiping

Inventor before: Zheng Xianhong

Inventor before: Chen Xia

Inventor before: Zhang Kun

Inventor before: Zheng Yuanyuan

Inventor before: Wen Qi

Inventor before: Fu Wenli

Inventor before: Xu Qingli

Inventor before: Mao Ning

Inventor before: Chen Wenli

Inventor before: Qin Xiaohong

Inventor before: Qiu Yiping

CB03 Change of inventor or designer information
RJ01 Rejection of invention patent application after publication

Application publication date: 20180504

RJ01 Rejection of invention patent application after publication