CN107887469A - 一种硒化钼/硅异质结太阳能电池及其制备方法 - Google Patents

一种硒化钼/硅异质结太阳能电池及其制备方法 Download PDF

Info

Publication number
CN107887469A
CN107887469A CN201710978966.6A CN201710978966A CN107887469A CN 107887469 A CN107887469 A CN 107887469A CN 201710978966 A CN201710978966 A CN 201710978966A CN 107887469 A CN107887469 A CN 107887469A
Authority
CN
China
Prior art keywords
selenizing molybdenum
solar cell
silicon
mose
selenizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710978966.6A
Other languages
English (en)
Inventor
施维林
张强
马锡英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201710978966.6A priority Critical patent/CN107887469A/zh
Publication of CN107887469A publication Critical patent/CN107887469A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种硒化钼/硅异质结太阳能电池及其制备方法。它以二维硒化钼薄膜和硅片为光敏单元,吸收可见光及近红外光,硒化钼/硅异质结为太阳能电池光生电子和空穴的核心收集单元。由于二维MoSe2具有1.55 eV的直接带隙,能有效吸收400~800 nm的可见光,具有较高的光电转换效率,能显著提高太阳能电池的内量子效率。同时,MoSe2与Si材料形成异质结,可充分吸收可见光与近红外太阳光,且异质结对光生电子、空穴有很强的收集作用,从而提高了太阳能电池的光伏效应和转换效率。本发明提供的MoSe2/Si异质结太阳能电池在350 mW白光照射下,光能转换效率达到2.26%。

Description

一种硒化钼/硅异质结太阳能电池及其制备方法
技术领域
本发明涉及一种太阳能电池,特别涉及一种(MoSe2)/硅(Si)异质结太阳能电池及其制备方法。
背景技术
体材料的硒化钼(MoSe2)是一种间接带隙半导体,呈典型的层状结构,类似于石墨剥离为石墨烯,体材料MoSe2很容易剥离为单层或数层的二维材料。当块体MoSe2成为单层或数层MoSe2时,其电子带隙由原来的间接带隙(1.71 eV)转变为直接带隙(1.55 eV)(参见文献:TONGAY S, JIAN Z, ATACA C, et al.Thermally Driven Crossover from Indirecttoward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2[J]. NanoLetters, 2012,12(11):5576-5580.)。直接带隙半导体材料一般具有较高的光电转换效率。单层硒化钼可用于制备高效率的光电子器件。另外,单层硒化钼呈立体多孔结构和良好的刚性结构,可显著提高器件的热学和力学等性能。因此,MoSe2二维晶体将在太阳能电池、光催化剂、光电晶体管、发光二极管(参见文献:SUNDARAM R S, ENGEL M, LOMBARDO A, etal. Electroluminescence In Single Layer MoS2[J]. Nano Letters,2013, 13(4):1416-1421.)和光调制器(参见文献:TONGAY S, ZHOU J, ATACA C, et al. Broad-rangemodulation of light emission in two-dimensional semiconductors by molecularphysisorption gating. Nano Letters, 2013, 13(6):2831-2836.)等领域都具有广大的应用前景。
单层硒化钼的制备方法可以分为两种类型:化学方法和物理方法。物理方法主要是对块体硒化钼材料进行逐层机械剥离得到单层硒化钼,这种方法只能得到少部分的硒化钼小片,不能大规模生产。化学方法是通过小分子合成或溶液分离方法制备,包括分子束外延法和离子插层法等。总之,这些制备硒化钼薄膜的方法都比较复杂,工艺过程很难控制。相对地,化学气相沉积法制备的硒化钼薄膜具有良好的电子特性,适合应用晶体管、太阳能电池等光电子器件。
发明内容
本发明针对现有技术制备二维MoSe2存在的不足,提供一种方法简单易行,重复度高,成本低,容易推广和产业化的MoSe2薄膜及高效率MoSe2/硅(Si)异质结太阳能电池及其制备方法。
实现本发明目的的技术方案是提供一种硒化钼/硅异质结太阳能电池,它以二维硒化钼薄膜和硅片为光敏单元,吸收可见光及近红外光,硒化钼/硅异质结为太阳能电池光生电子和空穴的核心收集单元。
本发明技术方案还包括一种硒化钼/硅异质结太阳能电池的制备方法,步骤如下:
1.衬底清洗:以n型(100)硅片为衬底,用稀HF酸浸泡去除Si表面的二氧化硅,再依次用丙酮、乙醇、去离子水超声波清洗,去除硅片上的有机物;用氮气吹干后再加热去除硅片表面的水汽;
2.硒化钼薄膜制备:将硒化钼块放入石英管中,石英管温度升高至650~1000℃,对石英管抽真空至10-1~10-2 Pa;以流量为5~10 sccm的氩气为输送气体,将硒化钼块表面受热蒸发的硒化钼分子输送到硅片表面,成核生长为硒化钼薄膜;成核生长反应结束后,在温度为800℃、氩气气氛中退火处理30~60分钟,得到硒化钼/硅异质结;
3.电极制作:以高纯镍为靶源,采用磁控溅射方法,在硒化钼薄膜表面溅射镍为接触电极,对硅片下表面蒸镀铝电极,形成太阳能电池的阴极,得到一种硒化钼/硅异质结太阳能电池。
上述步骤2的成核生长反应时间为5~10分钟;反应气压为40~100 Pa。
与现有技术相比,发明技术方案是将硒化钼粉为反应原材料、n型(100)硅片为衬底片,氩气(Ar)作为携载气体,携载MoSe2分子在硅衬底上形成二维MoSe2薄膜,其有益效果是:本发明采用的沉积方法可以较好控制MoSe2分子的生长速度,从而得到超薄的、大面积均匀、表面平整粗糙度很小的MoSe2薄膜,可有效减小MoSe2/Si异质结的界面特性,减小漏电流,提高太阳能电池的光电转换效率。该方法简单易行、重复度高,成本低,适于推广和产业化。
附图说明
图1是本发明实施例提供的MoSe2/Si异质结太阳能电池的结构示意图;
图中,1.Ni电极;2.硒化钼薄膜层;3.n型Si导电层;4.Al电极。
图2是本发明实施例提供的MoSe2/Si异质结太阳能电池的能带结构示意图;
图3是本发明实施例提供的MoSe2/Si异质结太阳能电池的工作原理示意图;
图4是本发明实施例提供的MoSe2薄膜采用化学气相沉积***装置的结构示意图;
图5是本发明实施例利用化学气相沉积方法制备的MoSe2薄膜的表面形貌图;
图6是本发明实施例利用化学气相沉积方法制备的MoSe2薄膜的X-射线衍射图;
图7是本发明实施例利用化学气相沉积方法制备的MoSe2薄膜的紫外可见光反射谱;
图8是本发明实施例提供的MoSe2/Si异质结太阳能电池的暗电流-电压特征曲线图;
图9是在350mW白光照射下本发明实施例提供的MoSe2/Si异质结太阳能电池的电压-电流特征曲线图。
具体实施方式
下面结合附图和实施例对本发明技术方案作进一步的阐述。
实施例1
参见附图1,它是本实施例提供的MoSe2/Si异质结太阳能电池的结构示意图,它包括Ni电极1,硒化钼薄膜层2, n型Si导电层3和Al电极5。
对n型硅片(100)的上表面利用化学气相沉积方法生长十几个原子层厚的硒化钼薄膜,该层硒化钼薄膜与n型硅形成异质结,构成太阳能电池结构。
参见附图2,它是本实施例提供的MoSe2/Si异质结太阳能电池的能带结构示意图;图2中,(a1)、(b1)分别为硒化钼和Si接触前的能带结构,其中,χ 1 为硒化钼的电子亲和势(4.35eV), E c1E v1 和EF1分别是硒化钼的导带、价带和费米能级,Eg1为硒化钼的带隙宽度(1.5eV)。χ 2 为Si的电子亲和势(4.05eV),E c2 E v2 和EF2分别为Si的导带、价带和费米能级,Eg2为Si的带隙宽度(1.14eV)。它为MoSe2/Si异质结太阳能电池的能带结构示意图。图2中,(a2)、(b2)分别是MoSe2和Si接触后达到平衡时的能带结构。虽然硒化钼的电子亲和势比硅的大,但n-Si的费米能级高于硒化钼的费米能级,二者之差为ΔEF,二者接触后,Si表面的电子向硒化钼一侧扩散,留下不可动的正电中心。结果使Si的导带、价带整体向下移动ΔEF高度,在二者接触边界处,形成高度为qVD的势垒,接触面上形成空间电荷区。空间电荷区形成内建电场,方向由Si指向MoSe2一侧,由于电子带负电荷,内建电场阻止Si一侧的电子继续向MoSe2一侧扩散,从而达到动态平衡。
本实施例提供的MoSe2/ Si异质结太阳能电池的光电转换原理参见附图3。硒化钼是直接带隙,硒化钼薄膜吸收光子能量后,当光子能量大于硒化钼禁带宽度,其价带电子跃迁到导带形成电子-空穴对,光照下很容易产生电子-空穴对,硒化钼表面产生的光生电子-空穴对从硒化钼表面向内部扩散,当硒化钼厚度足够薄时,电子很快就能迁移到硒化钼/Si形成的空间电荷区边界,扩散到MoSe2/Si异质结空间电荷区边界时,在空间电荷区内电场 作用下光生电子迅速被扫到n-Si区,n-Si表面形成电子累积层;而光生空穴扩散到空间电荷区边界时,受内建电场的阻止作用,不能继续移动而留在硒化钼一侧,使硒化钼表面形成空穴累积层。因此,光照产生的空穴和电子分别在硒化钼表面和n-Si表面累积,使硒化钼/硅异质结两侧形成电压差,该电压差是在无外界偏压作用下光照产生的电压差,因此称为光伏效应。
在太阳能电池光生伏特效应形成中,MoSe2/Si异质结中的内建电场 起到加速电子运动的作用。与传统硅pn结太阳能电池相比,硒化钼薄膜为直接带隙半导体材料,光电转换效率高,从而可极大地提高太阳能电池的转换效率。通过测量该器件的开路电压 oc 和短路电流密度J,就可以计算出该太阳能电池的能量转换效率。
参见附图4,它是本实施例采用化学气相沉积(CVD)法制备硒化钼薄膜的装置结构示意图。该装置由四部分构成:石英管构成的反应沉积室、真空抽气***、气体质量流量计和温度控制***。衬底材料采用电阻率为3~5 Ω•cm、晶向(100)的n型硅(Si)片,尺寸为12×12 mm2×500 μm。
制备方法包括如下步骤:
衬底清洗:首先用稀HF酸浸泡15分钟去除Si表面的二氧化硅,再依次用丙酮、乙醇、去离子水超声波清洗,去除硅片上的有机物,最后用氮气吹干,然后放入石英管。沉积之前,将石英管抽真空至10-2 Pa,加热到 300℃维持 10分钟,以去除硅片表面的水汽。
硒化钼薄膜制备:将硒化钼小块放入石英管中,石英管温度升高到650~1000℃,将石英管抽至10-2Pa的真空状态(可控制在10-1~10-2 Pa范围内),通入氩气(99.999%)和,流量为5~10 sccm。调节好通气阀门的通气流量,保持氩气均匀流入。高温下,硒化钼表面受热蒸发,在氩气输送下硒化钼分子到达硅片表面成核生长。
硒化钼薄膜的生长:硒化钼块体在750℃高温下分解为硒原子和钼原子,在氩气输运作用下硒化钼分子到达硅片表面并被吸附到表面,在衬底表面迁移后最后在在衬底表面成核,再吸引力吸引其它硒和钼原子,并与之成键形成六角网状结构的硒化钼薄膜。通常情况下,在反应剂充足的情况下,CVD淀积薄膜的速度是非常快的。在本实施例中,采用的氩气流量很小,单位时间内只有少量原子到达硅片表面,通过控制反应时间,就可以得到超薄的硒化钼薄膜。在本实施例中,成核生长反应时间:5~10分钟;反应气压40~100 Pa。反应结束后,在温度为800℃、氩气气氛中退火处理30~60分钟,得到硒化钼/硅异质结。等石英管温度降到室温,取出样品。
电极制作:在硒化钼薄膜表面溅射镍(Ni)做接触电极。对n-硅片下表面蒸镀铝电极,形成太阳能电池的阴极。完成MoSe2/ Si 异质结太阳能电池的制备。
将制备得到的MoSe2/Si 异质结太阳能电池进行表面形貌和光伏效应测量、电流/电压测试装置和霍尔效应分析该器件的表面形貌和光电流特性。表面形貌采用原子力显微镜(AFM)。应用X-射线分析结构,并用紫外-可见光( UV-vis)分光光度计 (Shimadzu UV-3600)分析样品的反射谱,最后应用Keithley 4200 SCS微电流计测量MoSe2/ Si 异质结结太阳能电池的光电流特性。
参见附图 5,为本实施例提供的Si片上制备的硒化钼薄膜的原子力显微镜照片。由图5的MoSe2薄膜的表面形貌可以看出,许多硒化钼纳米柱均匀地分布在Si片表面。该层硒化钼薄膜的厚度大约5~10 nm,相当于十几个原子层厚。
参见附图6,为本实施例提供的硒化钼薄膜的X射线衍射图。可以看出,MoSe2样品在30°和118°处出现了明显的衍射峰,分别对应于硒化钼的(021)与(2011)晶面。从衍射峰的强度看,(021)晶面的强度远大于(2011)晶面的强度,说明MoSe2在(021)晶面方向具有优先生长的取向。两个衍射峰都呈线状,具有很窄的半高宽,说明生长的硒化钼薄膜呈晶体状态,且具有均匀的颗粒尺寸。
参见附图7,为本实施例提供的硒化钼薄膜的反射谱。在400~700 nm的可见光区,硒化钼薄膜的反射率逐渐减小,吸收率逐渐增大,特别是在500~700 nm 波段,硒化钼薄膜对光的吸收率较高;高吸收率可以有效提高太阳能电池的转换效率。
参见附图8,为实施例提供的MoSe2/Si 异质结太阳能电池的暗电流特性(无光照特性)曲线图;结果显示,该器件具有很好的整流特性,随外加电压的升高,电流呈指数级增大。而反向偏压下,其反向饱和漏电流很小,几乎为零。并利用霍尔效应仪器测量了硒化钼表面的载流子浓度和电子迁移率。制备的硒化钼薄膜表面的载流子浓度为1010 cm-2,电子迁移率为2.5×103 cm2 V-1 s-1 ,说明本发明制备的硒化钼薄膜的导电性好。
参见附图9,它是在350 mW cm-2白光照射下本实施例提供的MoSe2/Si 异质结太阳能电池的光电流特性曲线图。可以看出,该太阳能电池的开路电压V oc 为 0.52 V, 短路电流密度J sc为 0.08 mA cm-2. 可以计算出,该MoSe2/Si异质结太阳电池的能量转换效率为2.26%。

Claims (3)

1.一种硒化钼/硅异质结太阳能电池,其特征在于:以二维硒化钼薄膜和硅片为光敏单元,吸收可见光及近红外光,硒化钼/硅异质结为太阳能电池光生电子和空穴的核心收集单元。
2.一种硒化钼/硅异质结太阳能电池的制备方法,其特征在于:包括如下步骤:
(1)衬底清洗:以n型(100) 硅片为衬底,用稀HF酸浸泡去除Si表面的二氧化硅,再依次用丙酮、乙醇、去离子水超声波清洗,去除硅片上的有机物;用氮气吹干后再加热去除硅片表面的水汽;
(2)硒化钼薄膜制备:将硒化钼块放入石英管中,石英管温度升高至650~1000℃,对石英管抽真空至10-1~10-2 Pa;以流量为5~10 sccm的氩气为输送气体,将硒化钼块表面受热蒸发的硒化钼分子输送到硅片表面,成核生长为硒化钼薄膜;成核生长反应结束后,在温度为800℃、氩气气氛中退火处理30~60分钟,得到硒化钼/硅异质结;
(3)电极制作:以高纯镍为靶源,采用磁控溅射方法,在硒化钼薄膜表面溅射镍为接触电极,对硅片下表面蒸镀铝电极,形成太阳能电池的阴极,得到一种硒化钼/硅异质结太阳能电池。
3.根据权利要求2所述的一种硒化钼/硅异质结太阳能电池的制备方法,其特征在于:步骤(2)的成核生长反应时间为5~10分钟;反应气压为40~100 Pa。
CN201710978966.6A 2017-10-19 2017-10-19 一种硒化钼/硅异质结太阳能电池及其制备方法 Pending CN107887469A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710978966.6A CN107887469A (zh) 2017-10-19 2017-10-19 一种硒化钼/硅异质结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710978966.6A CN107887469A (zh) 2017-10-19 2017-10-19 一种硒化钼/硅异质结太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN107887469A true CN107887469A (zh) 2018-04-06

Family

ID=61781988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710978966.6A Pending CN107887469A (zh) 2017-10-19 2017-10-19 一种硒化钼/硅异质结太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN107887469A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465844A (zh) * 2014-11-27 2015-03-25 中国石油大学(华东) 一种MoS2/Si p-n结太阳能电池器件及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465844A (zh) * 2014-11-27 2015-03-25 中国石油大学(华东) 一种MoS2/Si p-n结太阳能电池器件及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
何浩 等: "自组织InAs/GaAs与InGaAs/GaAs量子点生长", 《真空》 *
张强 等: "二维硒化钼薄膜的研究进展", 《微纳电子技术》 *

Similar Documents

Publication Publication Date Title
CN103579419B (zh) 一种石墨烯/MoS2/Si 异质结薄膜太阳能电池及其制备方法
Li et al. Carbon/silicon heterojunction solar cells: state of the art and prospects
Xiang et al. Surface Transfer Doping‐Induced, High‐Performance Graphene/Silicon Schottky Junction‐Based, Self‐Powered Photodetector
Lin et al. Stable 16.2% efficient surface plasmon‐enhanced graphene/GaAs heterostructure solar cell
KR20090123951A (ko) 그래파이트계 광전지
CN106449854B (zh) 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法
CN104011879A (zh) 形成用于太阳能电池的cigs光吸收层的方法及cigs太阳能电池
TW201907574A (zh) 二維電子元件與相關製造方法
Debbarma et al. WS 2-induced enhanced optical absorption and efficiency in graphene/silicon heterojunction photovoltaic cells
WO2009109445A2 (en) Photovoltaic devices with high-aspect-ratio nanostructures
CN103137770A (zh) 一种石墨烯/Si p-n 双结太阳能电池及其制备方法
Li et al. Nanoimprint-assisted shear exfoliation plus transfer printing for producing transition metal dichalcogenide heterostructures
Tian et al. Synthesis of the wheat-like CdSe/CdTe thin film heterojunction and their photovoltaic applications
KR20080005779A (ko) 광전 변환 소자 및 이의 제조 방법
CN107887469A (zh) 一种硒化钼/硅异质结太阳能电池及其制备方法
Singh et al. Two-Dimensional Materials for Advanced Solar Cells
Liu et al. Flexible broadband WS2/Si optical position-sensitive detector with high sensitivity and fast speed
KR100996162B1 (ko) 박막형 태양전지와 이의 제조방법, 및 박막형 태양전지의 광흡수층 제조방법
Kumar et al. Nanomaterials for advanced photovoltaic cells
Lee et al. Single-crystalline silicon-based heterojunction photodiode arrays on flexible plastic substrates
KR101628957B1 (ko) 패터닝된 그리드전극과 이를 적용한 박막 태양전지 및 이들의 제조방법
Pal et al. Chalcogenide-Based 2D Nanomaterials for Solar Cells
KR20190081368A (ko) 광전 소자 및 그 제조 방법
Ho et al. Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-Friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells
Song et al. Role of Interfacial Oxide Layer in MoOx/n-Si Heterojunction Solar Cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180406

RJ01 Rejection of invention patent application after publication