CN107810603A - 测量电容值的方法 - Google Patents

测量电容值的方法 Download PDF

Info

Publication number
CN107810603A
CN107810603A CN201680036320.XA CN201680036320A CN107810603A CN 107810603 A CN107810603 A CN 107810603A CN 201680036320 A CN201680036320 A CN 201680036320A CN 107810603 A CN107810603 A CN 107810603A
Authority
CN
China
Prior art keywords
integration period
value
voltage
integrating condenser
integration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201680036320.XA
Other languages
English (en)
Other versions
CN107810603B (zh
Inventor
克里斯蒂安·莱科索 卡尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leopold Kostal GmbH and Co KG
Original Assignee
Leopold Kostal GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leopold Kostal GmbH and Co KG filed Critical Leopold Kostal GmbH and Co KG
Publication of CN107810603A publication Critical patent/CN107810603A/zh
Application granted granted Critical
Publication of CN107810603B publication Critical patent/CN107810603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2605Measuring capacitance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/2403Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by moving plates, not forming part of the capacitor itself, e.g. shields
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0441Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for receiving changes in electrical potential transmitted by the digitiser, e.g. tablet driving signals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0442Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using active external devices, e.g. active pens, for transmitting changes in electrical potential to be received by the digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0444Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single conductive element covering the whole sensing surface, e.g. by sensing the electrical current flowing at the corners
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/96071Capacitive touch switches characterised by the detection principle
    • H03K2217/960725Charge-transfer

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Measurement Of Resistance Or Impedance (AREA)
  • Electronic Switches (AREA)

Abstract

本发明涉及一种借助于积分法来测量电容式传感元件的电容值CM的方法,其中传感元件的接头与积分电容器的第一接头在共同的电路节点处电连接,所述积分电容器具有大于传感元件的电容值CM的已知的电容值CI,并且根据已执行的积分周期的次数IZ,借助于模数转换器来测量施加在积分电容器上的电压UCI。根据本发明的方法包括如下方法步骤:a)将要执行的积分周期的数量N规定在一个初值NStart,并且为该要执行的积分周期的数量N确定结束值NEnd;b)将电压总值UGes初始化成数值零;c)将已执行的积分周期的次数IZ初始化成数值零;d)将共同的电路节点(3)和积分电容器(2)的第二接头(2”)与接地电势GND连接;e)执行积分法,直至已执行的积分周期的次数IZ达到要执行的积分周期的数量N;f)将借助于模数转换器当前确定的电压值UCI(N)叠加至电压总值UGes上;g)将数量N提高一数值n,其中n大于或等于1并且小于NDiff=NEnd‑NStart;h)重复从步骤e)开始的方法步骤,直至数量N超过确定的结束值NEnd;i)将电压总值UGes作为测量结果进行评价。

Description

测量电容值的方法
技术领域
本发明涉及一种用于借助于积分法来测量电容式传感元件的电容值CM的方法,其中传感元件的接头与积分电容器的第一接头在共同的电路节点处电连接,所述积分电容器具有大于传感元件的电容值CM的已知的电容值CI,并且其中根据已执行的积分周期的次数IZ,借助于模数转换器来测量施加在积分电容器上的电压UCI
背景技术
在此提到的类型的方法用于评价电容式接触传感器或接近传感器。这种传感器能够在灵敏区域中探测物体的存在并且在适当构成的情况下也探测由物体接触或接近的地点,所述物体例如是用户的手指或针笔。接触灵敏的区域在此例如能够与显示屏幕重叠。在显示应用中,接触或接近传感器能够为用户实现,直接与在屏幕上示出的内容相互作用,而不是仅间接地借助于鼠标或类似的输入仪器。
存在大量不同类型的接触传感器,例如电阻式接触传感器、具有表面声波的接触传感器和电容式接触传感器,其中后者目前应用最广泛,借助所述电容式接触传感器尤其也已经能够检测单纯的接近。
当物体接触或靠近电容式接触传感器的表面时,传感器的电容值发生变化。相关联的传感器控制仪器或由所述传感器控制仪器使用的测量方法的目的是,处理电容变化,以便检测触发所述电容变化的接触或接近。在此,特殊的困难在于,传感器的电容值和尤其要检测的变化是非常小的。出于所述原因,人们为了进行测量而愿意使用所谓的积分方法,其中在多个依次的周期中将少量的电荷量从传感元件传递到积分电容器上,所述积分电容器具有已知的固定的且明显较大的电容值,所述传感元件的电容值是相对小和可变的。
通过德国公开文献DE 10 2010 041 464 A1已知一种根据权利要求1的前序部分的用于测量电容式传感元件的电容值的方法。此处描述的用于测量电容值的方法为上述类型的积分法,其中传感元件的接头与积分电容器的第一接头在共同的电路节点处电连接。
为了执行测量而使用不同的方法。因此,例如可以在执行所谓的积分周期的固定预设的数量之后,借助于模数转换器测量从在此进行的电荷迁移的总量中得到的、施加在积分电容器上的电压并且数字化。将测量的电压本身、或其数字化的数值、或从所述数值和积分电容器的电容的已知的恒定的参量、电源电压和积分周期的数量中计算出的测量电容的值作为测量的结果使用。但是,对此备选地,也能够在每个单独的积分周期中测量施加在积分电容器上的电压,并且在达到预设的阈值时结束测量。于是,在这种情况下,测量参量是在达到阈值电压之前执行的积分周期的数量。
所述测量方法的分辨率进而两个状态或电容值的可区分性的极限通过使用的模数转换器的分辨率决定性地确定。通过模数转换器,能够仅以特定的离散级来检测电压。所述级也称作为量化区间。因此,将要测量的区域量化,即分成离散的区域,因此在该情况下分成电压级。那么在测量时将随后较高的或较低的级的数值作为数字测量值分配给真实的、且模拟测量的电压,这根据哪个级与该电压更接近来判断。真实的电压与通过模数转换器输出的电压级的偏差是量化误差。因此,如果下面提到通过模数转换器测量的电压值,则意味着总是表示通过模数转换器输出的电压级的相应的数字化的值。
发明内容
根据本发明的方法相对于之前描述的方法具有的优点是,在模数转换器的分辨率相同的情况下,实现测量结果的更高的分辨率。
根据本发明,这通过如下方法步骤实现:
a)将要执行的积分周期的数量N规定在一个初值NStart,并且为该要执行的积分周期的数量N确定结束值NEnd
b)将电压总值UGes初始化成数值零;
c)将已执行的积分周期的次数IZ初始化成数值零;
d)将共同的电路节点(3)和积分电容器(2)的第二接头(2”)与接地电势GND连接;
e)执行积分法,直至已执行的积分周期的次数IZ达到要执行的积分周期的数量N;
f)将借助于模数转换器当前确定的电压值UCI(N)叠加到电压总值UGes上;
g)将数量N提高数值n,其中n大于或等于1并且小于NDiff=NEnd-NStart
h)重复从步骤e)开始的方法步骤,直至数量N超过确定的结束值NEnd
i)将电压总值UGes作为测量结果进行评价。
在根据本发明的方法的一个有利的设计方案中提出,积分法包括如下方法步骤:
e1)将共同的电路节点(3)保持为无电势,其中同时将已知的电源电压UV施加到积分电容器(2)的第二接头(2”)上;
e2)将电源电压UV与积分电容器(2)的第二接头(2”)分离,其中同时将共同的电路节点(3)与接地电势GND连接;
e3)将已执行的积分周期的次数IZ提高数值一,并且重复从步骤e1)开始的方法步骤,直至已执行的积分周期的次数IZ达到要执行的积分周期的当前预设的数量N;
e4)借助于模数转换器(4)来测量施加在积分电容器(2)上的电压UCI(N)。
附图说明
下面参考附图阐述本发明。在此:
图1:a)示出用于执行按照本发明的方法的测量装置的示意图,
b)作为a)中的开关的时序图示出具有N个积分周期的积分的时序图。
图2作为积分周期的数量N的函数示出施加在积分电容器上的电压UCI(N)的变化曲线。
具体实施方式
在图1a)中,附图作为电路图以示意性的视图示出测量装置,所述测量装置用于执行按照本发明的方法以用于测量电容式传感元件1的电容值CM。传感元件1在此例如构成接触传感器、例如呈电极的形式的接触传感器,所述电极关于相对的接地电势或地电势具有固有电容,所述固有电容具有电容值CM。在例如由用户的手指接触或接近电极时,所述电容值CM由于接触电容改变,所述手指关于接地电势或地电势具有所述接触电容。
传感元件1的接头在共同的电路节点3处与积分电容器2的第一接头2’电连接。在此,积分电容器2的已知的电容值CI大于传感元件1的要确定的电容值CM。共同的电路节点3还与第一开关S1连接并且经由所述第一开关根据开关位置能可选地与接地电势或地电势GND连接或与固定的电源电压UV连接或者是无电势的,即保持断开(NC)。积分电容器2的第二接头2”与第二开关S2电连接并且经由所述第二开关根据开关位置能可选地与接地电势或地电势GND、与固定的电源电压UV或与模数转换器4的输入端连接。
为了测量电容值CM,使用原则上已知的积分法,其中在多个依次的周期中将少量的电荷量从传感器元件1传递到积分电容器2上。在这种被称为积分周期的电荷迁移进行N次之后,借助于模数转换器4测量随后施加在积分电容器2上的电压UCI(N)。电压UCI(N)与电容值CM成正比并且因此是所述电容值的量度。这种积分法的示例性的流程借助于图1a)中的开关S1和S2的在图1b)中描绘的时序图描述,其中以下步骤描绘积分周期的流程:
将与积分电容器2的第一接头2’连接的、共同的电路节点3借助于开关S1断开进而保持无电势,其中同时借助于开关S2将电源电压UV施加到积分电容器2的第二接头2”上。随后,借助于开关S2将电源电压UV与积分电容器2的第二接头2”分离并且使所述第二接头保持无电势,其中同时将共同的电路节点3借助于开关S2与接地电势GND连接。
在测量进行时,重复地执行所述积分周期的步骤,亦即这样多次执行,直至已执行的积分周期的次数IZ达到预设的数量N(积分阶段)。
随后,借助于模数转换器4测量在所述N个积分周期之后施加在积分电容器2上的电压UCI(N),这通过如下方式进行:将积分电容器2的第二接头2”借助于开关S2与模数转换器4的输入端连接(探测阶段)。
将测量的(数字的)电压值UCI(N)传输给控制和评价装置5以用于进一步处理和评价。控制和评价装置5控制整个所描述的方法的进程,并且对此作为中央元件例如包括微控制器。
根据本发明,刚刚描述的利用N个积分周期的测量是上级流程的组成部分,所述上级流程包括多次这种测量,这些测量中要执行的积分周期的数量N分别具有不同数值,亦即以下述方式进行,所述方式也由施加在积分电容器2上的电压UCI(N)的曲线的在图2中描绘的视图表明,所述曲线作为积分周期的数量N的函数:
首先,将要执行的积分周期的数量N规定在一个用于在上级进程的范围中第一次测量的初值NStart。同时,在上级进程的范围中为最后的测量确定用于积分周期的最大执行的数量N的目标值或结束值NEnd。将电压总值UGes初始化成数值零。
开始时,将已执行的积分周期的次数IZ初始化成数值零。此外,为了初始化测量过程,将与积分电容器2的第一接头2’连接的、共同的电路节点3和积分电容器2的第二接头2”与接地电势GND连接,进而将在积分电容器2上的电压UCI置于零(重置阶段)。
紧接着,执行在上文中描述的积分法,亦即这样长时间执行,直至已执行的积分周期的次数IZ达到要执行的积分周期的当前有效的数量N,所述已执行的积分周期的次数在每次执行时提高数值一。于是,借助于模数转换器确定施加在积分电容器2上的电压值UCI(N),并且将所述电压值叠加至当前有效的电压总值UGes上。
之后,将要执行的积分周期的数量N提高数值n,并且将在上一段中描述的步骤以新的数量N重复。在此,既不将已执行的积分周期的次数IZ复位,也不将当前施加在积分电容器2上的电压消除,从而实际仅执行另外n个积分周期,并且在此施加在积分电容器2上的电压相应地进一步提高。提高值n在此至少等于1并且小于初值NStart和目标值或结束值NEnd之间的差NDiff=NEnd-NStart。为了作为上级进程的组成部分不过少地进行分别具有N个积分周期的测量,将提高值n通常选择成明显小于NDiff。所述提高值在此要么逐步变化,要么采用例如为n=1、n=2、n=3的常数或其他数值。以新的数量N这样多次重复在上一段中描述的步骤,直至数量N超过开始时确定的结束值NEnd
在图1b)中这示例性地针对n=2借助于前两个积分和探测阶段示出。第一积分阶段在此包括NStart个积分周期。之后,进行第一探测阶段,在所述第一探测阶段中,测量当前施加在积分电容器2上的电压UCI(NStart)。在随后进行的第二积分阶段中,执行另外的n=2个积分周期,从而施加在积分电容器2上的电压UCI(NStart+2)现在从总共NStart+2个积分周期中得出。以所述方式继续测量,直至最终作为最后的数值测量电压UCI(NEnd)。
直至所述时刻从分别测量的电压UCI(N)相加而成的电压总值UGes随后作为测量结果被评价。
因此,如所描述的那样,各个测量的电压值UCI(N)作为相加数成为电压总值UGes。所述电压值UCI(N)中的每个电压值在此通过模数转换器4确定并且因此如已经在上文中阐述的那样包含量化误差。在此,量化在测量范围内线性地进行,即通过模数转换器4输出的电压级的级高分别是相等的。因为相反地,施加在积分电容器2上的电压UCI(N)作为积分周期的数量N的函数的变化曲线如在图2中可见的那样是非线性的,所以得到量化误差的统计学的分布,所述量化误差在总和中引起其至少部分的抵消。

Claims (4)

1.借助于积分法来测量电容式传感元件(1)的电容值CM的方法,其中所述传感元件(1)的接头与积分电容器(2)的第一接头(2’)在共同的电路节点(3)处电连接,所述积分电容器具有大于所述传感器元件的电容值CM的已知的电容值CI,并且根据已执行的积分周期的次数IZ,借助于模数转换器来测量施加在所述积分电容器(2)上的电压UCI
其特征在于设有如下方法步骤:
a)将要执行的积分周期的数量N规定在一个初值NStart,并且为该要执行的积分周期的数量N确定结束值NEnd
b)将电压总值UGes初始化成数值零;
c)将已执行的积分周期的次数IZ初始化成数值零;
d)将所述共同的电路节点(3)和所述积分电容器(2)的第二接头(2”)与接地电势GND连接;
e)执行积分法,直至已执行的积分周期的次数IZ达到要执行的积分周期的数量N;
f)将借助于所述模数转换器当前确定的电压值UCI(N)叠加至电压总值UGes上;
g)将数量N提高数值n,其中n大于或等于1并且小于NDiff=NEnd-NStart
h)重复从步骤e)开始的方法步骤,直至数量N超过确定的所述结束值NEnd
i)将电压总值UGes作为测量结果进行评价。
2.根据权利要求1所述的方法,
其特征在于,
提高的数值n是常数。
3.根据权利要求1所述的方法,
其特征在于,
提高的数值n逐步变化。
4.根据权利要求1至3中任一项所述的方法,
其特征在于,
所述积分法包括如下方法步骤:
e1)将所述共同的电路节点(3)保持为无电势,其中同时将已知的电源电压UV施加到所述积分电容器(2)的所述第二接头(2”)上;
e2)将所述电源电压UV与所述积分电容器(2)的所述第二接头(2”)分离,同时将所述共同的电路节点(3)与所述接地电势GND连接;
e3)将已执行的积分周期的次数IZ提高数值一,并且重复从步骤e1)开始的方法步骤,直至已执行的积分周期的次数IZ达到要执行的积分周期的当前预设的数量N;
e4)借助于所述模数转换器(4)来测量施加在所述积分电容器(2)上的电压UCI(N)。
CN201680036320.XA 2015-07-01 2016-06-29 测量电容值的方法 Active CN107810603B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015008485.2 2015-07-01
DE102015008485.2A DE102015008485A1 (de) 2015-07-01 2015-07-01 Verfahren zum Messen eines Kapazitätswertes
PCT/EP2016/065190 WO2017001510A1 (de) 2015-07-01 2016-06-29 Verfahren zum messen eines kapazitätswertes

Publications (2)

Publication Number Publication Date
CN107810603A true CN107810603A (zh) 2018-03-16
CN107810603B CN107810603B (zh) 2021-06-18

Family

ID=56418492

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680036320.XA Active CN107810603B (zh) 2015-07-01 2016-06-29 测量电容值的方法

Country Status (7)

Country Link
US (1) US11079880B2 (zh)
EP (1) EP3317968B1 (zh)
JP (1) JP6607972B2 (zh)
CN (1) CN107810603B (zh)
DE (1) DE102015008485A1 (zh)
ES (1) ES2970384T3 (zh)
WO (1) WO2017001510A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017006980A1 (de) * 2017-07-22 2019-01-24 Leopold Kostal Gmbh & Co. Kg Verfahren zum Erkennen einer Annäherung an ein Sensorelement
DE102017009705A1 (de) * 2017-10-18 2019-04-18 Leopold Kostal Gmbh & Co. Kg Verfahren zum Erkennen einer Annäherung an ein Sensorelement
DE102018113267A1 (de) * 2018-06-04 2019-12-05 Huf Hülsbeck & Fürst Gmbh & Co. Kg Verfahren zum Auswerten von Kapazitätswerten einer kapazitiven Sensorelektrode und kapazitive Annäherungssensoranordnung
DE102020001919A1 (de) 2020-03-25 2021-09-30 Kostal Automobil Elektrik Gmbh & Co. Kg Verfahren zum Wechseln eines Status eines ein- oder zweidimensionalen, berührungsempfindlichen Arrays kapazitiver Sensorelemente
DE102020215511B4 (de) * 2020-12-09 2022-10-20 Robert Bosch Gesellschaft mit beschränkter Haftung Analoge Frontendarchitektur für kapazitiven Drucksensor

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6466036B1 (en) * 1998-11-25 2002-10-15 Harald Philipp Charge transfer capacitance measurement circuit
DE29924441U1 (de) * 1998-11-20 2003-10-16 Philipp Harald Kapazitätsmessung mittels Ladungstransfer
US20090243631A1 (en) * 2008-03-25 2009-10-01 Raydium Semiconductor Corporation Circuit for capacitance measurement and method therefor
CN101578526A (zh) * 2007-01-12 2009-11-11 密克罗奇普技术公司 积分时间和/或电容测量***、方法及设备
US20100013502A1 (en) * 2008-07-18 2010-01-21 Raydium Semiconductor Corporation Evaluation circuit for capacitance and method thereof
CN101655524A (zh) * 2008-08-20 2010-02-24 瑞鼎科技股份有限公司 电容值测量电路及其方法
CN101796422A (zh) * 2007-07-11 2010-08-04 马里米斯有限公司 用于电容性地检测物体的方法和装置
CN102289332A (zh) * 2010-06-21 2011-12-21 安华高科技Ecbuip(新加坡)私人有限公司 减少电容性触摸屏***中的电磁干扰
EP2717136A1 (en) * 2012-10-02 2014-04-09 Nxp B.V. Capacitive position sensor system
CN103837163A (zh) * 2012-11-26 2014-06-04 矽创电子股份有限公司 电容感测电路
US20150035794A1 (en) * 2012-02-10 2015-02-05 Alterix Limited Digitiser

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193063A (en) * 1978-05-15 1980-03-11 Leeds & Northrup Company Differential capacitance measuring circuit
DK0445267T3 (da) * 1989-09-28 1994-05-02 Endress Hauser Gmbh Co Anordning til behandling af sensorsignaler
US5461321A (en) * 1993-09-17 1995-10-24 Penberthy, Inc. Apparatus and method for measuring capacitance from the duration of a charge-discharge charge cycle
GB9825435D0 (en) * 1998-11-20 1999-01-13 Philipp Harald Charge transfer capacitance measurement circuit
DE10035192C1 (de) * 2000-07-20 2001-10-11 Carl Mahr Holding Gmbh Kapazitiver Wegaufnehmer für stromsparende Messgeräte
US6828802B2 (en) * 2002-08-16 2004-12-07 Rosemount Inc. Pressure measurement device including a capacitive sensor in an amplifier feedback path
JP4455201B2 (ja) * 2004-07-20 2010-04-21 富士通マイクロエレクトロニクス株式会社 検出回路
US7902842B2 (en) * 2005-06-03 2011-03-08 Synaptics Incorporated Methods and systems for switched charge transfer capacitance measuring using shared components
US7777501B2 (en) * 2005-06-03 2010-08-17 Synaptics Incorporated Methods and systems for sigma delta capacitance measuring using shared component
US7454967B2 (en) * 2006-07-10 2008-11-25 Lv Sensors, Inc. Signal conditioning methods and circuits for a capacitive sensing integrated tire pressure sensor
US8207944B2 (en) * 2006-12-19 2012-06-26 3M Innovative Properties Company Capacitance measuring circuit and method
DE102007009070A1 (de) * 2007-02-23 2008-08-28 OCé PRINTING SYSTEMS GMBH Verfahren und Vorrichtung zum Erfassen eines elektrischen Potentials sowie von elektrischen Ladungen ein einem Drucker oder Kopierer
US8436263B2 (en) * 2007-06-29 2013-05-07 Cypress Semiconductor Corporation Noise resistant capacitive sensor
US8570053B1 (en) * 2007-07-03 2013-10-29 Cypress Semiconductor Corporation Capacitive field sensor with sigma-delta modulator
US8169238B1 (en) * 2007-07-03 2012-05-01 Cypress Semiconductor Corporation Capacitance to frequency converter
US8319505B1 (en) * 2008-10-24 2012-11-27 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US8836350B2 (en) * 2009-01-16 2014-09-16 Microchip Technology Incorporated Capacitive touch sensing using an internal capacitor of an analog-to-digital converter (ADC) and a voltage reference
US8552994B2 (en) 2009-09-25 2013-10-08 Atmel Corporation Method and apparatus to measure self-capacitance using a single pin
US8624870B2 (en) * 2010-04-22 2014-01-07 Maxim Integrated Products, Inc. System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
EP2428774B1 (en) * 2010-09-14 2013-05-29 Stichting IMEC Nederland Readout system for MEMs-based capacitive accelerometers and strain sensors, and method for reading
US8344928B2 (en) * 2010-11-10 2013-01-01 Stmicroelectronics Asia Pacific Pte Ltd. Method and apparatus for capacitance sensing
FR2968485A1 (fr) * 2010-12-01 2012-06-08 St Microelectronics Rousset Procede de detection de proximite a partir d'un ensemble de touches tactiles formees sur un blindage
FR2968486A1 (fr) * 2010-12-01 2012-06-08 St Microelectronics Rousset Procede de detection de proximite a partir d'un ensemble de touches tactiles
DE102011010620B4 (de) 2011-02-08 2014-07-17 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Hallstadt Verfahren zum Messen einer Kapazität
US11320946B2 (en) * 2011-04-19 2022-05-03 Cypress Semiconductor Corporation Capacitive panel scanning with reduced number of sensing circuits
US8729911B2 (en) * 2011-04-19 2014-05-20 Cypress Semiconductor Corporation Usage of weighting matrices in multi-phase scanning modes
CH705869A1 (fr) * 2011-12-02 2013-06-14 Advanced Silicon S A Interface et procédé de lecture de capteur capacitif.
EP2618164B1 (fr) * 2012-01-20 2014-07-16 EM Microelectronic-Marin SA Procédé de mesure d'un paramètre physique et circuit électronique d'interface d'un capteur capacitif pour sa mise en oeuvre
JP5922494B2 (ja) * 2012-05-24 2016-05-24 横河電機株式会社 物理量測定装置、物理量測定方法
EP2667156B1 (en) * 2012-05-25 2015-10-21 Nxp B.V. Capacitive position sensor system
US8823396B2 (en) * 2013-01-11 2014-09-02 Nokia Corporation Apparatus and associated methods
US9383395B1 (en) * 2013-04-26 2016-07-05 Parade Technologies, Ltd. Charge balancing converter using a passive integrator circuit
KR102271637B1 (ko) * 2013-09-27 2021-07-02 센셀, 인크. 저항성 터치 센서 시스템 및 방법
EP2933711B1 (en) * 2014-04-16 2020-03-25 Nxp B.V. Smart card and manufacturing method
DE102014007236A1 (de) * 2014-05-16 2015-11-19 Leopold Kostal Gmbh & Co. Kg Verfahren zum Messen eines Kapazitätswertes
US9606670B2 (en) * 2014-09-30 2017-03-28 Synaptics Incorporated Real-time spectral noise monitoring for proximity sensing device
EP3035173B1 (en) * 2014-12-15 2018-02-07 Nxp B.V. User interface unit, electronic device and manufactoring method
EP3059553B1 (en) * 2015-02-23 2018-05-02 EM Microelectronic-Marin SA Electronic measurement circuit
US9703436B2 (en) * 2015-05-29 2017-07-11 Synaptics Incorporated Hybrid large dynamic range capacitance sensing
US20170090609A1 (en) * 2015-09-25 2017-03-30 Synaptics Incorporated Oversampled step and wait system for capacitive sensing
US9817537B1 (en) * 2016-10-12 2017-11-14 Uico, Inc. Capacitive touch sensing system using switched capacitor analog signal processing
DE102017110976B8 (de) * 2017-05-19 2018-12-06 Infineon Technologies Austria Ag Selbstoszillierender Mehrrampen-Umsetzer und Verfahren zum Umsetzen einer Kapazität in ein digitales Signal

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29924441U1 (de) * 1998-11-20 2003-10-16 Philipp Harald Kapazitätsmessung mittels Ladungstransfer
US6466036B1 (en) * 1998-11-25 2002-10-15 Harald Philipp Charge transfer capacitance measurement circuit
CN101578526A (zh) * 2007-01-12 2009-11-11 密克罗奇普技术公司 积分时间和/或电容测量***、方法及设备
CN101796422A (zh) * 2007-07-11 2010-08-04 马里米斯有限公司 用于电容性地检测物体的方法和装置
US20090243631A1 (en) * 2008-03-25 2009-10-01 Raydium Semiconductor Corporation Circuit for capacitance measurement and method therefor
US20100013502A1 (en) * 2008-07-18 2010-01-21 Raydium Semiconductor Corporation Evaluation circuit for capacitance and method thereof
CN101655524A (zh) * 2008-08-20 2010-02-24 瑞鼎科技股份有限公司 电容值测量电路及其方法
CN102289332A (zh) * 2010-06-21 2011-12-21 安华高科技Ecbuip(新加坡)私人有限公司 减少电容性触摸屏***中的电磁干扰
US20150035794A1 (en) * 2012-02-10 2015-02-05 Alterix Limited Digitiser
EP2717136A1 (en) * 2012-10-02 2014-04-09 Nxp B.V. Capacitive position sensor system
CN103837163A (zh) * 2012-11-26 2014-06-04 矽创电子股份有限公司 电容感测电路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K. KONDO等: ""A switched-capacitor interface for capacitive sensors with wide dynamic range"", 《IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT》 *
郭建宁: ""基于汽车应用的电容式触摸开关"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Also Published As

Publication number Publication date
US20180106843A1 (en) 2018-04-19
EP3317968B1 (de) 2023-11-22
EP3317968A1 (de) 2018-05-09
JP2018523400A (ja) 2018-08-16
WO2017001510A1 (de) 2017-01-05
ES2970384T3 (es) 2024-05-28
JP6607972B2 (ja) 2019-11-20
US11079880B2 (en) 2021-08-03
CN107810603B (zh) 2021-06-18
DE102015008485A1 (de) 2017-01-05

Similar Documents

Publication Publication Date Title
CN107810603A (zh) 测量电容值的方法
CN106255868B (zh) 用于测量电容值的方法
US8830207B1 (en) Method and apparatus for improving dynamic range of a touchscreen controller
EP3210305B1 (en) Analog elimination of ungrounded conductive objects in capacitive sensing
US7472028B2 (en) Sensor or capacitance measuring with a microprocessor
EP2279470B1 (en) Capacitive voltage divider touch sensor
JP2015518218A5 (zh)
KR101239844B1 (ko) 터치 감지 장치
KR101912417B1 (ko) 지문 검출 회로, 방법 및 전자 디바이스
CN102193033A (zh) 一种具有快速响应的自电容变化测量电路
TW201339931A (zh) 改善電容式觸控裝置之可信度的感測裝置及方法
US11199434B2 (en) Dual polarity mutual capacitive liquid sensing
US11493394B2 (en) Capacitance detection device
RU2698492C1 (ru) Микроконтроллерное измерительное устройство емкости для встраиваемых вычислительных систем контроля и управления
US9513738B2 (en) Input device and position determining method
KR101987307B1 (ko) 전기전도도 측정 장치 및 방법
CN105115535B (zh) 电容传感器的模拟装置
RU2392629C1 (ru) Устройство микроконтроллерное для измерения емкости и сопротивления
RU2697715C1 (ru) Микроконтроллерное измерительное устройство емкости для встраиваемых вычислительных систем
Arshad et al. Capacitance-to-voltage converter design to measure small change in capacitance produced by human body movement
CN111630779B (zh) 用于机动车辆的在多个检测区域处检测存在的方法和装置
CN106918354A (zh) 传感***及所适用的感应信息确定方法
US11906559B2 (en) Enhanced impedance measurement using CTMU
JP2017021635A (ja) 静電検出装置
JP2010191824A (ja) 感圧導電センサー

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant