CN107796801B - 一种液液界面电化学发光体系的构建方法 - Google Patents

一种液液界面电化学发光体系的构建方法 Download PDF

Info

Publication number
CN107796801B
CN107796801B CN201710801160.XA CN201710801160A CN107796801B CN 107796801 B CN107796801 B CN 107796801B CN 201710801160 A CN201710801160 A CN 201710801160A CN 107796801 B CN107796801 B CN 107796801B
Authority
CN
China
Prior art keywords
liquid
constructing
glassy carbon
liquid interface
carbon electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710801160.XA
Other languages
English (en)
Other versions
CN107796801A (zh
Inventor
卢小泉
蒲贵强
张东旭
王泽�
汪天胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwest Normal University
Original Assignee
Northwest Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwest Normal University filed Critical Northwest Normal University
Priority to CN201710801160.XA priority Critical patent/CN107796801B/zh
Publication of CN107796801A publication Critical patent/CN107796801A/zh
Application granted granted Critical
Publication of CN107796801B publication Critical patent/CN107796801B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/305Electrodes, e.g. test electrodes; Half-cells optically transparent or photoresponsive electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/36Glass electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种新型液液界面电化学发光体系的构建方法,将聚四氟乙烯管紧紧套在玻碳电极前端,将含有发光剂四苯基卟啉和共反应剂四丁基六氟磷酸铵的有机溶液滴加到聚四氟乙烯管内,最后将玻碳电极浸入含氯化钾的水相中。该液液界面电化学发光体系易构建,发光剂的用量极少,产生的ECL信号具有很好的稳定性与重现性;TPP在该体系中的ECL信号强度为纯有机相中的两倍左右,发光效率高;该体系可以利用液液界面将发光剂和待测物隔开,避免了他们之间的相互干扰;可实现全pH环境下物质的检测;根据待测物极性的差异,该体系可先将待测物进行萃取富集,再进行定量检测,因此该体系能够提高物质检测的灵敏度与检测限。

Description

一种液液界面电化学发光体系的构建方法
技术领域
本发明属于电化学发光体系构建技术领域,具体地,涉及一种液液界面电化学发光体系的构建方法,将液液界面应用到电化学发光体系中,构建了一种的液液界面电化学发光体系。
背景技术
在电化学发光体系中,常用的发光剂都是疏水性的。尽管这些发光剂在有机溶液中有很强且很稳定的电化学发光信号,但有机相不利于电化学发光体系的实际检测应用,且污染环境。如果将这些水溶性很差的发光剂用于水相电化学发光体系,它们的发光效率会特别的低,同样不利于实际检测应用。虽然通过一些化学修饰与化学改性可以提高发光剂的水溶性与发光效率,但是过程极其复杂,且稳定性与重现性很差。
发明内容
本发明的目的是为了解决上述问题,提供一种液液界面电化学发光体系的构建方法,该方法易于构建,发光剂用量少,重现性好,能够产生很强且很稳定的电化学发光信号。
本发明的目的通过以下技术方案来具体实现:
一种液液界面电化学发光体系的构建方法,将聚四氟乙烯管紧紧套在玻碳电极前端,将含有发光剂四苯基卟啉和共反应剂四丁基六氟磷酸铵的有机溶液滴加到聚四氟乙烯管内,最后将玻碳电极浸入含氯化钾的水相中。
进一步的,所述方法具体包括如下步骤:
(1)将玻碳电极处理后烘干,然后将聚四氟乙烯管紧紧套在玻碳电极的前端;
(2)将发光剂四苯基卟啉和共反应剂四丁基六氟磷酸铵溶解于 1,2-二氯甲烷中,得发光液;
(3)将步骤(2)得到的发光液滴加到步骤(1)的聚四氟乙烯管中,然后将玻碳电极浸入含氯化钾的水相中,铂丝和Ag/AgCl电极分别作为对电极和参比电极浸入水相中。
更进一步的,所述步骤(1)中,玻碳电极的处理方法为:依次用0.3μm和0.05μmAl2O3浆料打磨,然后用二次蒸馏水和乙醇依次冲洗;
所述烘干温度为80℃;
所述聚四氟乙烯管为透明管,体积为100uL,管的内径为3mm。
更进一步的,所述步骤(2)中,发光液中发光剂四苯基卟啉的浓度为10-4mol/L,共反应剂四丁基六氟磷酸铵的浓度为0.3mol/L。
更进一步的,所述步骤(3)中,所述含氯化钾的水相中氯化钾的浓度为0.1mol/L。
更进一步的,依所述方法构建的体系电位扫描速率为0.3V·S-1,电势窗为-2.2~+1.1V。
本发明具有以下有益效果:
(1)液液界面电化学发光体系易构建,发光剂的用量极少,产生的ECL信号具有很好的稳定性与重现性;
(2)TPP在该体系中的ECL信号强度为纯有机相中的两倍左右,发光效率高;
(3)该体系可以利用液液界面将发光剂和待测物隔开,避免了他们之间的相互干扰;
(4)可实现全pH环境下物质的检测;
(5)根据待测物极性的差异,该体系可先将待测物进行萃取富集,再进行定量检测,因此该体系能够提高物质检测的灵敏度与检测限。
附图说明
图1为液液界面电化学发光体系的机理图;
图2(a)为TPP(10-4mol/L)和TBAPF6(0.3mol/L)分别在单独的有机相(点线)与液液界面电化学发光体系(实线)中的CV图,图2(b)表示与图2(a)相对应的ECL信号强度-时间图;
图3(a)、图3(b)、图3(c)分别表示TBAPF6的浓度、扫速、电位窗条件的优化图;
图4为液液界面电化学发光体系在前300s的稳定性测试,相对标准偏差为1.44%;
图5(a)表示在液液界面电化学发光体系中,当水相分别为酸性、中性与碱性时的ECL强度-时间图,图5(b)表示与图5(a)相对应的有机相的紫外-可见吸收光谱图。
具体实施方式
为了更加突出本发明的目的、技术方案及优点,结合以下实施例,对本发明进行进一步说明,但并不因此将本发明限制在实施例范围之内。
实施例1
一种液液界面电化学发光体系的构建方法,具体方法如下:
(1)将玻碳电极依次用0.3μm和0.05μm Al2O3浆料打磨,然后用二次蒸馏水和乙醇依次冲洗。
(2)用热***(温度设定为80℃)将玻碳电极的表面彻底干燥,然后将体积为200uL、两端直径分别为5mm和3mm的透明聚四氟乙烯管紧紧套在玻碳电极的前端。
(3)将发光剂四苯基卟啉(TPP)与共反应剂四丁基六氟磷酸铵(TBAPF6)溶解于有机相1,2-二氯甲烷中,TPP的浓度为10-4mol/L, TBAPF6的浓度为0.3mol/L,将改造后的电极前端朝上,后用移液器将发光液滴加到透明聚四氟乙烯管内。
(4)将装有发光液的玻碳电极前端朝下,浸入到含有0.1mol/L 的氯化钾水相溶液中,水相溶液的体积为8mL。
(5)铂丝和Ag/AgCl电极分别作为对电极与参比电极浸入到水相中。体系构建好后用MPI-A型毛细管电泳-电化学发光分析仪(购买于西安瑞迈分析仪器有限责任公司)进行检测(光电倍增管偏压设置为700V)。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种液液界面电化学发光体系的构建方法,其特征在于,将聚四氟乙烯管紧紧套在玻碳电极前端,将含有发光剂四苯基卟啉和共反应剂四丁基六氟磷酸铵的有机溶液滴加到聚四氟乙烯管内,最后将玻碳电极浸入含氯化钾的水相中。
2.根据权利要求1所述的液液界面电化学发光体系的构建方法,其特征在于,所述方法具体包括如下步骤:
(1)将玻碳电极处理后烘干,然后将聚四氟乙烯管紧紧套在玻碳电极的前端;
(2)将发光剂四苯基卟啉和共反应剂四丁基六氟磷酸铵溶解于1 ,2-二氯甲烷中,得发光液;
(3)将步骤(2)得到的发光液滴加到步骤(1)的聚四氟乙烯管中,然后将玻碳电极浸入含氯化钾的水相中,铂丝和Ag/AgCl电极分别作为对电极和参比电极浸入水相中。
3.根据权利要求2所述的液液界面电化学发光体系的构建方法,其特征在于,所述步骤(1)中,玻碳电极的处理方法为:依次用0 .3μm和0 .05μm Al2O3浆料打磨,然后用二次蒸馏水和乙醇依次冲洗;
所述烘干温度为80℃;
所述聚四氟乙烯管为透明管,体积为100μL,管的内径为3mm。
4.根据权利要求2所述的液液界面电化学发光体系的构建方法,其特征在于,所述步骤(2)中,发光液中发光剂四苯基卟啉的浓度为10-4mol/L,共反应剂四丁基六氟磷酸铵的浓度为0 .3mol/L。
5.根据权利要求2所述的液液界面电化学发光体系的构建方法,其特征在于,所述步骤(3)中,所述含氯化钾的水相中氯化钾的浓度为0.1mol/L。
6.根据权利要求1或2所述的液液界面电化学发光体系的构建方法,其特征在于,依所述方法构建的体系电位扫描速率为0.3V·S-1,电势窗为-2.2~+1 .1V。
CN201710801160.XA 2017-09-07 2017-09-07 一种液液界面电化学发光体系的构建方法 Active CN107796801B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710801160.XA CN107796801B (zh) 2017-09-07 2017-09-07 一种液液界面电化学发光体系的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710801160.XA CN107796801B (zh) 2017-09-07 2017-09-07 一种液液界面电化学发光体系的构建方法

Publications (2)

Publication Number Publication Date
CN107796801A CN107796801A (zh) 2018-03-13
CN107796801B true CN107796801B (zh) 2020-10-16

Family

ID=61532272

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710801160.XA Active CN107796801B (zh) 2017-09-07 2017-09-07 一种液液界面电化学发光体系的构建方法

Country Status (1)

Country Link
CN (1) CN107796801B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109030433A (zh) * 2018-06-13 2018-12-18 西北师范大学 卟啉化合物荧光分子的制备及其在检测过氧化氢和葡萄糖中的应用
CN111239110B (zh) * 2020-02-10 2022-07-22 西北师范大学 一种具有聚集诱导发光性能的卟啉衍生物应用于电化学发光体系的构建方法
CN112179960B (zh) * 2020-08-20 2023-04-07 西北师范大学 一种基于五苯基吡咯的水相电化学发光体系的构建方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330553A (zh) * 2014-11-20 2015-02-04 扬州大学 一种无标记化学发光免疫传感器及其免疫分析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6623973B2 (en) * 2001-04-04 2003-09-23 Altair Center, Llc. Method for detection of organic vapors based on fluorescence enhancement in porphyrin aggregates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104330553A (zh) * 2014-11-20 2015-02-04 扬州大学 一种无标记化学发光免疫传感器及其免疫分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Investigation of Oxalate Oxidation and Electrogenerated Chemiluminescence across the Liquid-Liquid Interface;Bard 等;《The Journal of Physical Chemistry》;20010810;第105卷(第37期);第8951-8962页 *

Also Published As

Publication number Publication date
CN107796801A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
CN106501336B (zh) 一种光电化学传感器及其制备与应用
CN107796801B (zh) 一种液液界面电化学发光体系的构建方法
CN105403603B (zh) 一种光电化学适配体传感电极的制备方法及其应用
CN104020204B (zh) 一种用于检测铅的电化学传感器及其制备方法和应用
CN111239110B (zh) 一种具有聚集诱导发光性能的卟啉衍生物应用于电化学发光体系的构建方法
CN112098484B (zh) 基于电化学发光法检测啶虫脒的传感器以及制备方法和应用
CN102121903A (zh) 一种分子印迹-电致化学发光法检测毒品的传感器
CN112179960B (zh) 一种基于五苯基吡咯的水相电化学发光体系的构建方法
CN113075269A (zh) 一种用于特异性检测氯霉素的电化学发光适配体传感器及其制备方法和应用
CN109575912A (zh) 一种增强四羧基苯基卟啉电化学发光强度的方法
CN106680343A (zh) 一种快速测定槲皮素的电化学传感器、制备方法及在测定槲皮素中的应用
Hua et al. Electrochemical behavior of 5-fluorouracil on a glassy carbon electrode modified with bromothymol blue and multi-walled carbon nanotubes
Hosseini et al. A novel solid-state electrochemiluminescence sensor based on a Ru (bpy) 3 2+/nano Sm 2 O 3 modified carbon paste electrode for the determination of l-proline
CN108827948A (zh) 基于金纳米团簇探针的酸性磷酸酶电致化学发光测定方法
Salminen et al. Immunoassay of C-reactive protein by hot electron-induced electrochemiluminescence at polystyrene-carbon black composite electrodes
CN109100400B (zh) 用于检测刀豆蛋白a的传感器及其制备方法和应用
CN112630279B (zh) 用于检测双氯酚酸的基于金纳米粒子的等离子共振增强型电化学发光传感器及制备方法
CN109060778A (zh) 一种基于石墨烯量子点的电化学发光检测丁基羟基茴香醚的方法
Dong et al. Luminol electrochemiluminescence by combining cathodic reduction and anodic oxidation at regenerable cobalt phthalocyanine modified carbon paste electrode for dopamine detection
CN105510309B (zh) 一种水溶性电化学发光试剂及对其定量检测的方法
CN109490283B (zh) 四(对羟基苯基)卟啉-β-CD超分子在检测氟离子中的应用
Abdussalam et al. Amplified Anodic Electrogenerated Chemiluminescence of Tris (2, 2′‐bipyridyl) ruthenium (II) for the Sensitive Detection of Isatin
Cao et al. Generation of gold nanostructures at the surface of platinum electrode by electrodeposition for ECL detection for CE
CN103487573A (zh) 一种检测人白介素6的电致化学发光免疫传感器及其制备方法和检测方法
CN107037095B (zh) 一种电位选择比率光电化学生物传感器构建的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant