CN107705556A - 一种基于支持向量机和bp神经网络结合的交通流预测方法 - Google Patents

一种基于支持向量机和bp神经网络结合的交通流预测方法 Download PDF

Info

Publication number
CN107705556A
CN107705556A CN201710779559.2A CN201710779559A CN107705556A CN 107705556 A CN107705556 A CN 107705556A CN 201710779559 A CN201710779559 A CN 201710779559A CN 107705556 A CN107705556 A CN 107705556A
Authority
CN
China
Prior art keywords
data
traffic flow
mrow
neural network
svms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710779559.2A
Other languages
English (en)
Inventor
暴建民
余涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Post and Telecommunication University
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing Post and Telecommunication University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Post and Telecommunication University filed Critical Nanjing Post and Telecommunication University
Priority to CN201710779559.2A priority Critical patent/CN107705556A/zh
Publication of CN107705556A publication Critical patent/CN107705556A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种基于支持向量机和BP神经网络结合的短时交通流预测方法,首先历史交通流数据的采集,利用归一化方法对交通流数据进行预处理,得到归一化后的数据集,将归一化后的数据集划分为训练数据集和测试数据集;然后利用SVM模型对测试集进行预测分析,得到预测结果,使用BP神经网络模型对残差序列进行分析,得到修正后的残差序列;将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预测数据;将测试数据集和预测数据进行比较,分析误差。本发明采用支持向量机和BP神经网络相结合的交通流预测方法,通过支持向量机模型对样本数据进行分析,使用较少的数据集得到较高的预测精确度,减少了计算量和计算难度。

Description

一种基于支持向量机和BP神经网络结合的交通流预测方法
技术领域
本发明涉及机器学习方法和交通流预测等技术领域,具体涉及一种基于支持向量机和BP神经网络结合的交通流预测方法。
现有技术和背景技术
随着我国汽车产业的发展,城市及高速公路道路拥堵问题日益严峻,准确、及时的交通流信息对智能交通***(Intelligent Transportation System,ITS)的成功应用至关重要。它可以帮助道路使用者做出更好的出行决策,缓解交通拥堵,减少碳排放,并提高交通运行效率。而这些实现的前提和关键是能够对短时交通流量进行准确的预测,预测的准确度直接决定了交通运行的效率。
交通流预测模型主要分为时间序列模型,非参数回归模型和神经网络模型。早期的研究者们使用基于时间序列分析的参数化模型来预测交通。该模型不像其它时间序列方法一样需要固定的初始化模拟。它将某一时刻的交通流量看成是更为一般的非平稳随机序列,一般带有3个或6个模型参数。非参数回归是一种适合不确定的、非线性的动态***的非参数建模方法。它不需先验知识,只需足够的历史数据,寻找历史数据中与当前点相似的“近邻”,并用那些“近邻”预测下一时刻值。因此,特别是在有特殊事件发生时,预测结果要比参数建模精确。美国联邦运输局在有关发展智能交通***的报告中指出:先进的交通控制***不仅应当具备已有***的优点,更为重要的是要能充分利用不断积累的经验,有效地产生控制策略,使模型具有根据历史数据进行学习和经验积累的能力。Eleni等综述了近十年来的交通流预测方法的研究成果,总结了交通流预测领域的十个挑战方向,然后指出研究者需要将统计数据和人工智能方法组合互补并提供统一的公共数据集来解决交通预测领域这些挑战,从而提高交通流预测性能。现有的技术中,如名称为“一种基于深度学习神经网络结构的交通流预测方法”(申请号为201510478215.9)利用深度编码器模型对采集的交通流数据进行训练,在训练过程中对深度自动编码器模型进行调整,最后利用调整后的深度自动编码器模型对短期交通流进行预测,提高了短期交通流预测的性能和精确度。
在交通流预测领域,现在最流行的方法是基于机器学习的非参数模型来预测短时交通流,该方法在大量不间断数据的基础上,拥有较高的预测精度,但需要复杂的参数估计,而且计算出的参数不能移植。在实际情况中,经常由于各种各样的原因容易造成数据遗漏,导致模型精度降低。目前的交通流预测算法仍大量依赖历史数据,在大量历史数据的基础上建立模型造成计算量巨大,导致交通流预测效率低下。
发明内容
本发明要解决的技术问题是解决在短时交通流预测中,由于海量的交通流数据导致的支持向量机(SVM)训练时间长,对计算机资源消耗大,预测性能较差,而BP(Backpropagation)神经网络泛化能力差即对新鲜样本的适应能力差,预测结果容易产生过拟合等问题。
为解决上述问题,本发明提出通过将支持向量机和BP神经网络相结合的方法来预测短时交通流,减少对大量历史数据的依赖,提高预测性能及对新鲜样本的适应能力。具体的技术方案一种基于支持向量机和BP神经网络结合的短时交通流预测方法,包括如下步骤:
步骤1:采集历史交通流数据,利用归一化方法对交通流数据进行预处理,得到归一化后的数据集,将归一化后的数据集划分为训练数据集和测试数据集;
步骤2:利用SVM模型对测试数据集进行预测分析,得到预测结果,使用BP神经网络模型对残差序列进行分析,得到修正后的残差序列;
步骤3:将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预测数据;
步骤4:将测试数据集和最终的预测数据进行比较,并分析误差。
进一步,上述步骤1中的归一化具体过程如下:
分别计算历史交通流数据某一个样本中的最小值min和最大值max,使用min-max标准化方法对数据进行归一化,使得归一化之后的交通流数据结果映射到[0-1]之间,即根据交通流数据集合F={ft|t=1,2,...,T}求得集合中的最大值max和最小值min,对集合中的每个数据计算:
式中x*表示归一化处理后的交通流数据,min表示样本数据中的最小值,max表示样本数据最大值,x表示待归一化处理的历史交通流数据。
步骤1中,归一化处理之后将历史交通流数据中百分之80的数据作为训练集,百分之20的数据作为测试集。
进一步,步骤2的具体包括以下步骤:
2.1:建立基于支持向量机和BP神经网络的交通流预测模型,利用归一化后的训练集样本训练SVM模型用交叉验证找出优化后的参数C,γ,参数γ是Sigmoid核函数的参数,参数C是SVM惩罚函数的参数;
2.2:利用SVM模型对原始数据进行预测分析,得到预测结果,记为原始序列和预测结果序列的差为新的序列,记为ei序列,用BP神经网络模型对ei序列也就是残差序列进行分析,得到修正后的残差序列,记为ei′。
将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预数据,即,
步骤4包括:通过平均绝对百分比误差MAPE来对预测数据进行误差分析,计算公式如下:
式中表示测试数据集与预测数据的平均绝对百分比误差,表示测试数据集与预测数据的均方根误差,f表示交通流的观测值,表示交通流的预测值,N表示交通流预测值得数量,fi表示测试数据集中的第i个交通流参数,表示预测数据集中的第i个预测交通流参数,i的取值范围为1,2...N。
与现有技术相比,本发明的有益效果在于:
1、采用支持向量机和BP神经网络相结合的交通流预测方法,通过支持向量机模型对样本数据进行分析,使用较少的数据集得到较高的预测精确度,减少了计算量和计算难度。
2、解决了传统方法的泛化能力差即对新鲜样本的适应能力差,预测结果容易产生过拟合等问题。在很大程度上进一步提高了交通流预测的精确度,提高了预测的稳定性,不易出现明显错误。
附图说明
图1是支持向量机结构图。
图2是BP神经网络结构图。
图3是本发明的主要步骤流程图。
图4是支持向量机和BP神经网络组合模型结构图。
图5是本发明方法的预测结果与现有方法预测结果对比图。
具体实施方式
下面结合附图和实例对本发明做进一步的说明,应该指出的是,所描述的实施例仅旨在便于对本发明的理解,而对其不起任何限定作用。
基于支持向量机和BP神经网络相结合的交通流预测方法,主要流程及其结构图如图3和图4所示,包括如下步骤:
步骤1:历史交通流数据的采集,利用归一化方法对交通流数据进行预处理,得到
归一化后的数据集,将归一化后的数据集划分为训练数据集和测试数据集;
步骤2:利用SVM模型对测试集进行预测分析,得到预测结果,使用BP神经网络模
型对残差序列进行分析,得到修正后的残差序列。
步骤3:拿SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相
加,得到最终的预测数据。
步骤4:将测试数据集和预测数据进行比较,分析误差。
交通流数据的采集:
交通流数据采集的方法有很多,主要有超声波检测、红外检测、微波传感器等方法获得。
获取的历史交通流量数据为特定观测点或路段在一定时间间隔内经过的车辆数。所述制定的时间间隔可以根据预测需求进行指定(例如5分钟)。
历史观测数据集合表示为F={ft|t=1,2,...,T},其中ft表示路网特定观测点获得的第t个历史交通流参数。T时刻和T+1时刻之间的差值为预测时间间隔Δt(例如5分钟)。
分别计算历史交通流数据某一个样本中的最小值min和最大值max,使用min-max标准化(Min-Max Normalization)方法对数据进行归一化,使得归一化之后的交通流数据结果映射到[0-1]之间。
具体地,根据交通流数据集合F={ft|t=1,2,...,T}求得集合中的最大值max和最小值min,对集合中的每个数据计算:
从而得到归一化之后的历史交通流数据,其中x*表示归一化处理后的交通流数据,min表示样本数据中的最小值,max表示样本数据最大值,x表示待归一化处理的历史交通流数据。
并且将历史交通流数据中百分之80的数据作为训练集,百分之20的数据作为测试集。
上述步骤2建立基于支持向量机和BP神经网络的交通流预测模型的建立步骤如下:
组合预测模型实际上是一种残差修正型组合模型,利用归一化后的训练集样本训练SVM模型用交叉验证(cross validation)找出优化后的参数C,γ,参数γ是Sigmoid核函数的参数,参数C是SVM惩罚函数的参数即惩罚因子;
支持向量机的结构如图1所示。图1中,函数k为核函数,其种类主要有:
1线性核函数:k(x,xi)=xTxi
2多项式核函数:k(x,xi)=(γxTxi+r)p,γ>0;
3RBF径向基核函数:k(x,xi)=exp(-γ||x-xi||2),γ>0
4Sigmoid核函数:k(x,xi)=tanh(γxTxi+r)
本例中采用Sigmoid核函数作为支持向量机的核函数。
惩罚因子C决定了离群点带来的损失的程度大小,C越大,对目标函数的损失也越大。
利用LIBSVM MATLAB工具箱训练样本(本例采用LIBSVM工具箱完成参数寻优)
SVM基于结构风险最小化原则,将整个求解过程转化为一个凸二次规划问题,其解全局最优且唯一。
利用SVM模型对原始数据进行预测分析,得到预测结果,记为原始序列和预测结果序列的差为新的序列,记为ei序列,用BP神经网络模型对ei序列也就是残差序列进行分析,得到修正后的残差序列,记为ei′。
残差在是指实际观察值与估计值之间的差。
BP神经网络是当前应用最广泛的神经网络之一。它是一种多层前馈网络,它按误差逆传播算法进行训练。BP神经网络学***方和最小。BP神经网络模型的结构包括输入层,隐藏层和输出层。如图2所示。
BP神经网络中输入x到隐含层表示h的映射,表示为:h(x)=f(x)=σf(w+bn),σf为非线性激活函数,一般为Sigmoid函数,其表达式为:
σ(x)=1/1+e-x
将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预测数据。即,
对测试数据集和预测数据比较,进行误差分析。具体的,误差可通过两个指标来评估,即平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)和均方根误差(RootMean Square Error,RMSE),他们的定义式如下:
其中f为交通流的观测值,为交通流的预测值,n表示交通流预测值的数量。本发明方法的预测结果与现有方法预测结果对比图如图5所示。

Claims (6)

1.一种基于支持向量机和BP神经网络结合的短时交通流预测方法,其特征在于包括如下步骤:
步骤1:采集历史交通流数据,利用归一化方法对交通流数据进行预处理,得到归一化后的数据集,将归一化后的数据集划分为训练数据集和测试数据集;
步骤2:利用SVM模型对测试数据集进行预测分析,得到预测结果,使用BP神经网络模型对残差序列进行分析,得到修正后的残差序列;
步骤3:将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预测数据;
步骤4:将测试数据集和最终的预测数据进行比较,并分析误差。
2.根据权利要求1所述的基于支持向量机和BP神经网络结合的短时交通流预测方法,其特征在于步骤1中的归一化具体过程如下:
分别计算历史交通流数据某一个样本中的最小值min和最大值max,使用min-max标准化方法对数据进行归一化,使得归一化之后的交通流数据结果映射到[0-1]之间,即根据交通流数据集合F={ft|t=1,2,...,T}求得集合中的最大值max和最小值min,对集合中的每个数据计算:
<mrow> <mi>x</mi> <mo>*</mo> <mo>=</mo> <mfrac> <mrow> <mi>x</mi> <mo>-</mo> <mi>min</mi> </mrow> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>-</mo> <mi>min</mi> </mrow> </mfrac> </mrow>
式中x*表示归一化处理后的交通流数据,min表示样本数据中的最小值,max表示样本数据最大值,x表示待归一化处理的历史交通流数据。
3.根据权利要求1所述的基于支持向量机和BP神经网络结合的短时交通流预测方法,其特征在于步骤1中归一化处理之后将历史交通流数据中百分之80的数据作为训练集,百分之20的数据作为测试集。
4.根据权利要求1所述的基于支持向量机和BP神经网络结合的短时交通流预测方法,其特征在于步骤2具体包括以下步骤:
4.1:建立基于支持向量机和BP神经网络的交通流预测模型,利用归一化后的训练集样本训练SVM模型用交叉验证找出优化后的参数C,γ,参数γ是Sigmoid核函数的参数,参数C是SVM惩罚函数的参数;
4.2:利用SVM模型对原始数据进行预测分析,得到预测结果,记为原始序列和预测结果序列的差为新的序列,记为ei序列,用BP神经网络模型对ei序列也就是残差序列进行分析,得到修正后的残差序列,记为e′i
5.根据权利要求4所述的基于支持向量机和BP神经网络结合的短时交通流预测方法,其特征在于将SVM模型所得到的预测结果与BP神经网络模型所得到的修正残差序列相加,得到最终的预数据,即,
6.根据权利要求1所述的基于支持向量机和BP神经网络结合的短时交通流预测方法,其特征在于所述步骤4包括:通过平均绝对百分比误差MAPE来对预测数据进行误差分析,计算公式如下:
<mrow> <mi>M</mi> <mi>A</mi> <mi>P</mi> <mi>E</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mover> <mi>f</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>N</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <mo>|</mo> <mfrac> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>-</mo> <msubsup> <mi>f</mi> <mi>i</mi> <mo>&amp;prime;</mo> </msubsup> </mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> </mfrac> <mo>|</mo> </mrow>
<mrow> <mi>R</mi> <mi>M</mi> <mi>S</mi> <mi>E</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>,</mo> <mover> <mi>f</mi> <mo>^</mo> </mover> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </munderover> <mrow> <mo>(</mo> <msup> <mrow> <mo>|</mo> <mrow> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>i</mi> </msub> </mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </msup> </mrow>
式中表示测试数据集与预测数据的平均绝对百分比误差,表示测试数据集与预测数据的均方根误差,f表示交通流的观测值,表示交通流的预测值,N表示交通流预测值得数量,fi表示测试数据集中的第i个交通流参数,表示预测数据集中的第i个预测交通流参数,i的取值范围为1,2...N。
CN201710779559.2A 2017-09-01 2017-09-01 一种基于支持向量机和bp神经网络结合的交通流预测方法 Pending CN107705556A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710779559.2A CN107705556A (zh) 2017-09-01 2017-09-01 一种基于支持向量机和bp神经网络结合的交通流预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710779559.2A CN107705556A (zh) 2017-09-01 2017-09-01 一种基于支持向量机和bp神经网络结合的交通流预测方法

Publications (1)

Publication Number Publication Date
CN107705556A true CN107705556A (zh) 2018-02-16

Family

ID=61171569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710779559.2A Pending CN107705556A (zh) 2017-09-01 2017-09-01 一种基于支持向量机和bp神经网络结合的交通流预测方法

Country Status (1)

Country Link
CN (1) CN107705556A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109146156A (zh) * 2018-08-03 2019-01-04 大连理工大学 一种用于预测充电桩***充电量的方法
CN109377754A (zh) * 2018-10-29 2019-02-22 东南大学 一种车联网环境下的短时交通流速度预测方法
CN109460727A (zh) * 2018-10-31 2019-03-12 中国矿业大学 一种基于人体行为识别的考场监控***及方法
CN109635246A (zh) * 2018-12-06 2019-04-16 西南交通大学 一种基于深度学习的多属性数据建模方法
CN109840628A (zh) * 2019-01-17 2019-06-04 湖南大学 一种短时多区域车速预测方法及***
WO2020010717A1 (zh) * 2018-07-13 2020-01-16 南京理工大学 一种基于时空相关性的短时交通流预测方法
CN111435469A (zh) * 2019-01-11 2020-07-21 中国长江电力股份有限公司 一种梯级电站中下游电站入库流量的预测方法
CN112820120A (zh) * 2020-12-30 2021-05-18 杭州趣链科技有限公司 一种基于联盟链的多方交通流时空交叉验证方法
CN112862164A (zh) * 2021-01-22 2021-05-28 桂林电子科技大学 基于动态神经网络时间序列预测的干式离合器温度预测法
CN113553350A (zh) * 2021-05-27 2021-10-26 四川大学 一种相似演化模式聚类及动态时区划分的交通流分区模型
CN115358475A (zh) * 2022-08-29 2022-11-18 河南农业大学 基于支持向量机和灰色bp神经网络的灾害预测方法和***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105389980A (zh) * 2015-11-09 2016-03-09 上海交通大学 基于长短时记忆递归神经网络的短时交通流预测方法
KR101638368B1 (ko) * 2015-01-02 2016-07-11 경희대학교 산학협력단 다변수 패턴 인식모델을 이용한 도시 교통 예측 시스템 및 그 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101638368B1 (ko) * 2015-01-02 2016-07-11 경희대학교 산학협력단 다변수 패턴 인식모델을 이용한 도시 교통 예측 시스템 및 그 방법
CN105389980A (zh) * 2015-11-09 2016-03-09 上海交通大学 基于长短时记忆递归神经网络的短时交通流预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
傅贵等: "基于支持向量机回归的短时交通流预测模型", 《华南理工大学学报》 *
成云等: "基于ARIMA和小波神经网络组合模型的交通流预测", 《计算机技术与发展》 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020010717A1 (zh) * 2018-07-13 2020-01-16 南京理工大学 一种基于时空相关性的短时交通流预测方法
CN109146156A (zh) * 2018-08-03 2019-01-04 大连理工大学 一种用于预测充电桩***充电量的方法
CN109146156B (zh) * 2018-08-03 2021-12-03 大连理工大学 一种用于预测充电桩***充电量的方法
CN109377754A (zh) * 2018-10-29 2019-02-22 东南大学 一种车联网环境下的短时交通流速度预测方法
CN109377754B (zh) * 2018-10-29 2021-07-02 东南大学 一种车联网环境下的短时交通流速度预测方法
CN109460727A (zh) * 2018-10-31 2019-03-12 中国矿业大学 一种基于人体行为识别的考场监控***及方法
CN109635246B (zh) * 2018-12-06 2021-07-13 西南交通大学 一种基于深度学习的多属性数据建模方法
CN109635246A (zh) * 2018-12-06 2019-04-16 西南交通大学 一种基于深度学习的多属性数据建模方法
CN111435469A (zh) * 2019-01-11 2020-07-21 中国长江电力股份有限公司 一种梯级电站中下游电站入库流量的预测方法
CN111435469B (zh) * 2019-01-11 2022-04-19 中国长江电力股份有限公司 一种梯级电站中下游电站入库流量的预测方法
CN109840628A (zh) * 2019-01-17 2019-06-04 湖南大学 一种短时多区域车速预测方法及***
CN109840628B (zh) * 2019-01-17 2023-03-24 湖南大学 一种短时多区域车速预测方法及***
CN112820120A (zh) * 2020-12-30 2021-05-18 杭州趣链科技有限公司 一种基于联盟链的多方交通流时空交叉验证方法
CN112862164A (zh) * 2021-01-22 2021-05-28 桂林电子科技大学 基于动态神经网络时间序列预测的干式离合器温度预测法
CN112862164B (zh) * 2021-01-22 2022-07-12 桂林电子科技大学 基于动态神经网络时间序列预测的干式离合器温度预测法
CN113553350A (zh) * 2021-05-27 2021-10-26 四川大学 一种相似演化模式聚类及动态时区划分的交通流分区模型
CN113553350B (zh) * 2021-05-27 2023-07-18 四川大学 一种相似演化模式聚类及动态时区划分的交通流分区模型
CN115358475A (zh) * 2022-08-29 2022-11-18 河南农业大学 基于支持向量机和灰色bp神经网络的灾害预测方法和***

Similar Documents

Publication Publication Date Title
CN107705556A (zh) 一种基于支持向量机和bp神经网络结合的交通流预测方法
Zhang et al. Modeling and simulating of reservoir operation using the artificial neural network, support vector regression, deep learning algorithm
Yang et al. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction
Kisi et al. Forecasting daily lake levels using artificial intelligence approaches
CN101480143B (zh) 一种预测灌区作物单产量的方法
CN103226741B (zh) 城市供水管网爆管预测方法
Shiri et al. Estimation of daily suspended sediment load by using wavelet conjunction models
Li et al. Evaluation of urban green space landscape planning scheme based on PSO-BP neural network model
CN110751318A (zh) 一种基于ipso-lstm的超短期电力负荷预测方法
Yu et al. A neural network ensemble method for precision fertilization modeling
Li et al. A novel combined prediction model for monthly mean precipitation with error correction strategy
CN109871622A (zh) 一种基于深度学习的低压台区线损计算方法及***
CN106971237A (zh) 一种基于细菌觅食优化算法的中长期径流预报方法
Zhang et al. Study on water quality prediction of urban reservoir by coupled CEEMDAN decomposition and LSTM neural network model
CN104732091A (zh) 基于自然选择蚁群算法的元胞自动机河床演变预测方法
Wang et al. An approach of recursive timing deep belief network for algal bloom forecasting
CN110969312A (zh) 基于变分模态分解和极端学习机的短期径流预测耦合方法
CN113420868A (zh) 一种基于深度强化学习的旅行商问题求解方法及求解***
CN106570594A (zh) 一种基于tmbp的相似日光伏发电短期预测方法
Robati et al. Inflation rate modeling: adaptive neuro-fuzzy inference system approach and particle swarm optimization algorithm (ANFIS-PSO)
CN109408896B (zh) 一种污水厌氧处理产气量多元智能实时监控方法
Guo et al. A combined model based on sparrow search optimized BP neural network and Markov chain for precipitation prediction in Zhengzhou City, China
CN108764523A (zh) 基于无偏非齐次灰色模型和马氏模型的交通事故预测方法
CN103605493A (zh) 基于图形处理单元的并行排序学习方法及***
CN113762591A (zh) 一种基于gru和多核svm对抗学习的短期电量预测方法及***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180216

RJ01 Rejection of invention patent application after publication