CN107670681A - 一种氮掺杂TiO2粉的制备方法 - Google Patents

一种氮掺杂TiO2粉的制备方法 Download PDF

Info

Publication number
CN107670681A
CN107670681A CN201710941718.4A CN201710941718A CN107670681A CN 107670681 A CN107670681 A CN 107670681A CN 201710941718 A CN201710941718 A CN 201710941718A CN 107670681 A CN107670681 A CN 107670681A
Authority
CN
China
Prior art keywords
copper coin
powder
colloid
doping tio
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710941718.4A
Other languages
English (en)
Other versions
CN107670681B (zh
Inventor
庄伟彬
刘悦
李赫亮
吴博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liaoning Technical University
Original Assignee
Liaoning Technical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning Technical University filed Critical Liaoning Technical University
Priority to CN201710941718.4A priority Critical patent/CN107670681B/zh
Publication of CN107670681A publication Critical patent/CN107670681A/zh
Application granted granted Critical
Publication of CN107670681B publication Critical patent/CN107670681B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0211Impregnation using a colloidal suspension
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/342Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electric, magnetic or electromagnetic fields, e.g. for magnetic separation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

一种氮掺杂TiO2粉的制备方法,属于材料技术领域,包括如下步骤:(1)将四甲基氢氧化铵滴加到无水乙醇中,搅拌获得混合液;(2)将钛酸异丙酯滴加到混合液中,得到溶胶;(3)将铜板浸没于溶胶底部,陈化后在60~80℃干燥,取出;(4)向铜板通入直流电,利用铜板发热将表面的胶体烧结;(5)烧结完成后将铜板表面的烧结物料刮掉,被刮掉的物料为氮掺杂TiO2粉。本发明的合成工艺简单,反应条件温和,样品烧结时间大大缩短,烧结后样品形态更好,结构更稳定,制备的氮掺杂TiO2对亚甲基蓝的降解率显著提高。

Description

一种氮掺杂TiO2粉的制备方法
技术领域
本发明属于材料技术领域,特别涉及一种氮掺杂TiO2粉的制备方法。
背景技术
TiO2光催化剂因化学性能稳定、制备成本可控、无毒,以及可利用太阳光,无二次污染等在污染废水的处理方面应用前景广阔,但纯TiO2被用作光催化剂时,因带隙较宽,只能吸收长小于387nm的光子,而且光生电子-空穴复合率高导致量子产率低、光催化效率低,极大限制了其实际应用范围,故须常采用金属离子掺杂、阴离子掺杂、不同半导体复合、贵金属修饰等方法提高TiO2的光催化活性。通过掺杂,可以有效抑制光生电子-空穴复合,在TiO2晶格中引入缺陷位,改变并扩展其光谱响应范围,提高光催化效率。氮掺杂TiO2后在分子内有N-Ti配位健生成,可以使可见光吸收带发生红移,显著提高在可见光区的吸收性能,增强TiO2的光催化活性,在甲醛、甲基橙、罗丹明B等降解方面有较好的应用前景。
目前制备氮掺杂TiO2采用电阻炉烧结法,该方法需要梯度升温,烧结时间长,样品形态较差。
发明内容
针对现有烧结法制备氮掺杂TiO2存在的技术问题,本发明提供一种氮掺杂TiO2粉的制备方法,通过在铜表面沉积胶体,然后进行电热烧结,简化工艺的同时,制备性能优良的氮掺杂TiO2粉。
本发明的方法包括如下步骤:
1、将10~20mL四甲基氢氧化铵(TMAH)在搅拌条件下滴加到30~40mL无水乙醇中,然后继续搅拌至少10min,获得无色透明的混合液;
2、将70~80mL钛酸异丙酯(IOPT)在搅拌条件下滴加到混合液中,得到无色半透明的溶胶;
3、将铜板浸没于溶胶底部,陈化10~12h,再在60~80℃干燥20~22h,然后取出表面覆盖有胶体的铜板;
4、向表面覆盖有胶体的铜板通入直流电,控制通电电流为500~600A,通电时间15~25min,利用铜板发热将表面的胶体烧结;
5、烧结完成后将铜板表面的烧结物料刮掉,被刮掉的物料为氮掺杂TiO2粉。
上述的铜板材质为纯度≥99.9%的铜。
上述的步骤3中,表面覆盖有胶体的铜板上胶体的厚度为2~3mm。
上述的步骤1和2中,搅拌速度为5~15rpm。
上述的步骤1和2中,进行滴加时,控制全部滴加时间为10~15min。
本发明的有益效果是:合成工艺简单,反应条件温和,样品烧结时间大大缩短,烧结后样品形态更好,结构更稳定,同时极大减低生产成本,可重复性好,制备的氮掺杂TiO2光催化剂对亚甲基蓝的降解率显著提高;钛酸异丙酯与四甲基氢氧化铵的反应,使分子内生成N-Ti配位键,改变了TiO2晶格并引起晶格位置缺陷,可以使可见光吸收带发生红移,显著提高在可见光区的吸收性能,增强TiO2的光催化活性。
附图说明
图1为本发明实施例1制得的氮掺杂TiO2粉的SEM照片图。
具体实施方式
本发明实施例中SEM观测采用的设备为JSM-7500F冷场发射扫描电子显微镜。
本发明实施例中采用的四甲基氢氧化铵、无水乙醇和钛酸异丙酯为市购分析纯试剂。
本发明实施例中铜板材质为纯度≥99.9%的铜。
本发明实施例中的铜板在使用前经过打磨去除表面氧化层。
本发明实施例中干燥后的铜板表面胶体的厚度为2~3mm。
本发明实施例中搅拌速度为5~15rpm。
本发明实施例中进行滴加时,控制全部滴加时间为10~15min。
本发明实施例中将被刮掉的物料用研钵研磨10~20min,使全部物料形成粉末。
本发明的氮掺杂TiO2粉粒度50~200nm;平均粒度100~130nm。
本发明实施例中通入直流电时电压为5~10V。
本发明实施例中进行光催化降解测试方法采用GB/T23762-2009《光催化材料水溶液体系净化性能测试方法》。
以下结合实例进一步说明本发明的内容,由技术常识可知,本发明也可通过其它的不脱离本发明技术特征的方案来描述,因此所有在本发明范围内或等同本发明范围内的改变均被本发明包含。
实施例1
将10mL四甲基氢氧化铵在搅拌条件下滴加到30mL无水乙醇中,然后继续搅拌25min,获得无色透明的混合液;
将70mL钛酸异丙酯在搅拌条件下滴加到混合液中,得到无色半透明的溶胶;控制全部滴加时间为10min;
将铜板浸没于溶胶底部,陈化10h,再在60℃干燥22h,然后取出表面覆盖有胶体的铜板;铜板表面胶体的厚度为2mm;
向表面覆盖有胶体的铜板通入直流电,控制通电电流为500A,通电时间25min,利用铜板发热将表面的胶体烧结;
烧结完成后将铜板表面的烧结物料刮掉,被刮掉的物料为氮掺杂TiO2粉,研磨至粉末状;电子显微镜显微镜观测结果如图1所示;平均粒度120nm;
通过光催化降解测试验,掺杂氮后的产品光催化效果明显比纯二氧化钛效果好,未掺杂时,光催化降解率为25%左右,掺杂氮元素后,光催化降解率达95%,提高了在可见光区的吸收性能,增强了TiO2的光催化活性。
实施例2
方法同实施例,不同点在于:
(1)将15mL四甲基氢氧化铵在搅拌条件下滴加到40mL无水乙醇中,然后继续搅拌10min;
(2)将75mL钛酸异丙酯滴加到混合液中,全部滴加时间为12min;
(3)陈化11h,再在70℃干燥21h,铜板表面胶体的厚度为2.4mm;
(4)通电电流为550A,通电时间20min;
(5)氮掺杂TiO2粉平均粒度130nm;
(6)通过光催化降解测试验,光催化降解率达80%。
实施例3
方法同实施例,不同点在于:
(1)将20mL四甲基氢氧化铵在搅拌条件下滴加到35mL无水乙醇中,然后继续搅拌15min;
(2)将78mL钛酸异丙酯滴加到混合液中,全部滴加时间为14min;
(3)陈化12h,再在75℃干燥20h,铜板表面胶体的厚度为2.8mm;
(4)通电电流为560A,通电时间18min;
(5)氮掺杂TiO2粉平均粒度100nm;
(6)通过光催化降解测试验,光催化降解率达85%。
实施例4
方法同实施例,不同点在于:
(1)将20mL四甲基氢氧化铵在搅拌条件下滴加到30mL无水乙醇中,然后继续搅拌20min;
(2)将80mL钛酸异丙酯滴加到混合液中,全部滴加时间为15min;
(3)陈化12h,再在80℃干燥20h,铜板表面胶体的厚度为3mm;
(4)通电电流为600A,通电时间15min;
(5)氮掺杂TiO2粉平均粒度105nm;
(6)通过光催化降解测试验,光催化降解率达90%。

Claims (3)

1.一种氮掺杂TiO2粉的制备方法,其特征在于包括如下步骤:
(1)将10~20mL四甲基氢氧化铵在搅拌条件下滴加到30~40mL无水乙醇中,然后继续搅拌至少10min,获得无色透明的混合液;
(2)将70~80mL钛酸异丙酯在搅拌条件下滴加到混合液中,得到无色半透明的溶胶;
(3)将铜板浸没于溶胶底部,陈化10~12h,在60~80℃干燥20~22h,然后取出表面覆盖有胶体的铜板;
(4)向表面覆盖有胶体的铜板通入直流电,控制通电电流为500~600A,通电时间15~25min,利用铜板发热将表面的胶体烧结;
(5)烧结完成后将铜板表面的烧结物料刮掉,被刮掉的物料为氮掺杂TiO2粉。
2.根据权利要求1所述的一种氮掺杂TiO2粉的制备方法,其特征在于所述的铜板材质为纯度≥99.9%的铜。
3.根据权利要求1所述的一种氮掺杂TiO2粉的制备方法,其特征在于所述的表面覆盖有胶体的铜板上胶体的厚度为2~3mm。
CN201710941718.4A 2017-10-11 2017-10-11 一种氮掺杂TiO2粉的制备方法 Active CN107670681B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710941718.4A CN107670681B (zh) 2017-10-11 2017-10-11 一种氮掺杂TiO2粉的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710941718.4A CN107670681B (zh) 2017-10-11 2017-10-11 一种氮掺杂TiO2粉的制备方法

Publications (2)

Publication Number Publication Date
CN107670681A true CN107670681A (zh) 2018-02-09
CN107670681B CN107670681B (zh) 2020-01-14

Family

ID=61138932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710941718.4A Active CN107670681B (zh) 2017-10-11 2017-10-11 一种氮掺杂TiO2粉的制备方法

Country Status (1)

Country Link
CN (1) CN107670681B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734260A (zh) * 2004-08-03 2006-02-15 上海奉泰电子电器元件有限公司 用于煤矿瓦斯探测的载体催化元件的制作方法
CN101059467A (zh) * 2007-06-07 2007-10-24 上海交通大学 催化燃烧式传感器敏感体自组装成型制造方法
CN103342402A (zh) * 2013-07-04 2013-10-09 浙江科技学院 氮掺杂的氧缺位型TiO2催化剂降解亚甲基蓝的方法
CN103977830A (zh) * 2014-05-21 2014-08-13 江苏科技大学 可见光活性掺杂纳米二氧化钛的制法及可见光光催化光触媒上光乳液的制法
CN104028292A (zh) * 2014-06-16 2014-09-10 浙江大学 N-TiO2/C和N-TiO2及其制备方法
CN105148969A (zh) * 2015-08-17 2015-12-16 华南理工大学 一种氮掺杂二氧化钛自清洁薄膜及其制备方法及应用
CN106391083A (zh) * 2016-09-06 2017-02-15 南京林业大学 用于隧道涂层的氮掺杂二氧化钛光催化剂制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734260A (zh) * 2004-08-03 2006-02-15 上海奉泰电子电器元件有限公司 用于煤矿瓦斯探测的载体催化元件的制作方法
CN101059467A (zh) * 2007-06-07 2007-10-24 上海交通大学 催化燃烧式传感器敏感体自组装成型制造方法
CN103342402A (zh) * 2013-07-04 2013-10-09 浙江科技学院 氮掺杂的氧缺位型TiO2催化剂降解亚甲基蓝的方法
CN103977830A (zh) * 2014-05-21 2014-08-13 江苏科技大学 可见光活性掺杂纳米二氧化钛的制法及可见光光催化光触媒上光乳液的制法
CN104028292A (zh) * 2014-06-16 2014-09-10 浙江大学 N-TiO2/C和N-TiO2及其制备方法
CN105148969A (zh) * 2015-08-17 2015-12-16 华南理工大学 一种氮掺杂二氧化钛自清洁薄膜及其制备方法及应用
CN106391083A (zh) * 2016-09-06 2017-02-15 南京林业大学 用于隧道涂层的氮掺杂二氧化钛光催化剂制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. SPADAVECCHIA ET AL.: "Time effects on the stability of the induced defects in TiO2 nanoparticles doped by different nitrogen sources", 《J NANOPART RES》 *

Also Published As

Publication number Publication date
CN107670681B (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
Ghiyasiyan-Arani et al. Enhanced photodegradation of dye in waste water using iron vanadate nanocomposite; ultrasound-assisted preparation and characterization
CN109368702B (zh) 一种钨青铜结构的钨酸铯的制备方法
CN101850980B (zh) 二氧化硅包覆掺银氧化锌纳米晶体的制备方法
CN103480400B (zh) 一种磷酸银/氧化锌复合光催化材料及其制备方法
CN106390986B (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
Yang et al. Lacunary Keggin-type polyoxometalates-based macroporous composite films: preparation and photocatalytic activity
Liu et al. Mesoporous cobalt-intercalated layered tetratitanate for efficient visible-light photocatalysis
CN106732617A (zh) 一种ZnO/Cu2O异质结新型光催化材料及其制备方法
CN105879871A (zh) 蝶翅构型等离子体金纳米棒复合光催化材料的制备方法
CN110250169A (zh) 一种载银纳米二氧化钛溶胶及其制备方法和应用
CN104907060A (zh) 一种CeO2/TiO2异质结纳米花的制备方法
CN110252341B (zh) 一种Bi2O2SiO3/Bi2O3/BiOBr异质复合光材料的制备方法
CN107686345B (zh) 一种Ce掺杂YAG发光陶瓷的制备方法
CN107511145A (zh) 一种纳米粒子堆积的玉米棒状等级结构钒酸铋材料及其制备方法
CN107792888A (zh) 一种高比表面积ZnCo2O4的制备方法
Li et al. Electrospinning synthesis and photocatalytic property of CaFe2O4/MgFe2O4 heterostructure for degradation of tetracycline
CN103542564A (zh) 一种太阳能的纳米陶瓷选择性吸收涂层
CN107670681A (zh) 一种氮掺杂TiO2粉的制备方法
CN104610965A (zh) 一种球形荧光粉的制备方法
CN109517217B (zh) 一种钨掺杂二氧化钒/石墨烯复合物及其制备方法与应用
CN101306834A (zh) 高隔热性纳米复合材料及其隔热制品的制备方法
CN108246335A (zh) 一种氮-银掺杂纳米TiO2粉的制备方法
CN101618850B (zh) 一种抗紫外光锌锆氧化物复合纳米材料的制备方法
CN102060529B (zh) 纳米Ag颗粒-Pb(Zr0.52Ti0.48)O3渗流型复合陶瓷薄膜及其制备方法
CN109850938B (zh) 钛酸锶球状纳米晶体的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant