CN107522882A - 一种聚砜绝缘薄膜及其制备方法 - Google Patents

一种聚砜绝缘薄膜及其制备方法 Download PDF

Info

Publication number
CN107522882A
CN107522882A CN201710975609.4A CN201710975609A CN107522882A CN 107522882 A CN107522882 A CN 107522882A CN 201710975609 A CN201710975609 A CN 201710975609A CN 107522882 A CN107522882 A CN 107522882A
Authority
CN
China
Prior art keywords
polysulfones
film
preparation
insulation film
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710975609.4A
Other languages
English (en)
Other versions
CN107522882B (zh
Inventor
王孝军
杨杰
张刚
张美林
龙盛如
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unicorn Rhinoceros Material Technology (Chengdu) Co.,Ltd.
Original Assignee
Sichuan Lawrence Pie Well New Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Lawrence Pie Well New Material Co Ltd filed Critical Sichuan Lawrence Pie Well New Material Co Ltd
Priority to CN201710975609.4A priority Critical patent/CN107522882B/zh
Publication of CN107522882A publication Critical patent/CN107522882A/zh
Application granted granted Critical
Publication of CN107522882B publication Critical patent/CN107522882B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本发明涉及高分子材料技术领域,尤其涉及一种耐高温聚砜绝缘薄膜及其制备方法。本发明提供一种聚砜绝缘薄膜的制备方法,所述制备方法为:先采用溶液流涎法制备聚砜溶液膜,然后在聚砜溶液膜上构建微孔结构;再采用阶梯式升温的方式加热除去溶剂并使微孔闭合,制得聚砜绝缘膜。本发明所得绝缘膜材料与传统方法所得绝缘膜相比具有高的机械性能、热稳定性及突出的绝缘击穿强度及耐久性,可将绝缘膜的耐热等级由F级或H级提升到N级至R级;所得聚砜绝缘薄膜的耐热温度为200~260℃,室温拉伸强度为100~200MPa,介电强度为200~400kV/mm。

Description

一种聚砜绝缘薄膜及其制备方法
技术领域
本发明涉及高分子材料技术领域,尤其涉及一种耐高温聚砜绝缘薄膜及其制备方法。
背景技术
绝缘薄膜是电子电器领域具有广泛应用价值的薄膜材料,其性能主要取决于薄膜材料本身的性质。一般需要这种薄膜具有较高的电阻率和击穿场强。另外,一般根据绝缘材料的耐热等级,将绝缘薄膜分为A级、E级、B级、F级、H级、C级、N级、R级等。目前市场上耐热等级最高的有机绝缘薄膜(H级)主要为聚酰亚胺薄膜,但由于聚酰亚胺材料本身在制造过程中会有少量缺陷,其使击穿场强一般相对较低。
本发明所采用的砜类聚合物材料具有耐高温、击穿场强高等特点,但由于其分子链间相互作用较强,因此无法通过普通的熔融流涎法制备绝缘薄膜。而通过普通的溶液浇筑法,难于将浇筑液中的溶剂完全除去,残余溶剂将明显降低材料的耐热性和绝缘击穿强度,因此无法得到高性能的聚砜绝缘膜。
发明内容
针对上述缺陷,本发明提供一种聚砜绝缘薄膜,其具有优异的耐热性和击穿强度。
本发明的技术方案:
本发明要解决的第一个技术问题是提供一种聚砜绝缘薄膜的制备方法,具体为:先采用溶液流涎法制备聚砜溶液膜,然后在聚砜溶液膜上构建微孔结构;再采用阶梯式升温的方式加热除去溶剂并使微孔闭合,即得聚砜绝缘膜。
所述聚砜选自下述聚合物中的至少一种:聚醚砜(PES)、聚芳硫醚砜(PASS)、双酚A型聚砜(PSF)、聚亚苯基砜(PPSU)、间位芳砜纶(m-PSA)或对位芳砜纶(p-PSA)。
进一步,上述聚砜绝缘薄膜的制备方法中,聚砜溶液膜上构建微孔结构的方法为:将聚砜溶液膜暴露在相对湿度为90~95%的空气气氛中,使聚砜溶液膜表面通过液-液相分离形成直径在2~50nm的均匀的非贯通微孔。本发明在成膜初期构建微孔结构以利于凝固过程中膜内部的溶剂分子快速有效地迁出;另外,微孔要求分布均匀,否则将会降低薄膜的力学强度和介电强度。
进一步,上述方法中,阶梯式升温的方法为:采用至少三段阶梯式升温,其中,第一段温度控制在80~140℃,第二段温度控制在160~220℃,第三段温度控制在220~300℃。
本发明中,采用阶梯式升温的方法,可以让聚砜溶液膜内部的残留溶剂逐渐迁移出聚砜溶液膜,如果采用恒温加热,温度过低时表面先硬化,内部溶剂分子无法迁出,如果温度过高,会导致溶剂快速蒸发从而引发缺陷。
进一步,所述阶梯式升温的方式中,采用微波加热法或红外加热法进行升温。
进一步,上述方法中,所述使微孔闭合的方法为:通过将聚砜膜温度升至聚砜的玻璃化温度以上,聚砜膜上的微孔会由于表面张力和分子热运动的作用重新闭合。
本发明要解决的第二个技术问题是提供一种聚砜绝缘薄膜,其采用上述制备方法制备得到。
进一步,所述聚砜绝缘薄膜的耐热温度为200~260℃,室温拉伸强度为100~200MPa,介电强度为200~400kV/mm。
本发明的有益效果:
本发明的聚砜绝缘膜制备方法通过成膜初期构建微孔结构及配合梯度升温程序,有效解决了溶液流涎法成膜后材料内部残存溶剂难于除去的问题。所发明的绝缘膜材料与传统方法所得绝缘膜相比具有高的机械性能、热稳定性及突出的绝缘击穿强度及耐久性,可将绝缘膜的耐热等级由F级或H级提升到N级至R级。
具体实施方式
本发明将聚砜类材料溶解形成铸膜液,并涂膜,在进行溶液涂膜后,让液膜暴露在相对湿度为90~95%的空气气氛中,使液膜表面通过液-液相分离形成微孔洞以利于凝固过程中膜内部的溶剂分子有效迁出;通过微波加热与红外加热配合,阶梯式升温将膜片温度升温,使铸膜液中的溶剂逐步挥发完全,并使微孔闭合,形成最终的高性能聚砜绝缘膜。
实施例1
将PASS溶解于N甲基吡络烷酮中配制成浓度为20%的铸膜液,将铸膜液流涎涂膜后暴露于室温95%相对湿度的空气气氛中保持2min,此时液膜表面通过相分离形成微孔结构而变得不透明;再采用微波加热将液膜温度升温至80℃,120℃,160℃,200℃,240℃,280℃,在每个温度下分别保持5min使铸膜液中的溶剂逐步挥发完全,并使微孔闭合。将所形成的薄膜缓冷至室温,并收卷。所制备的PASS绝缘膜耐温可达210℃,室温拉伸强度130MPa,介电强度300kV/mm。
实施例2
将PPSU溶解于二甲基乙酰胺中配制成浓度为25%的铸膜液,将铸膜液流涎涂膜后暴露于室温90%相对湿度的空气气氛中保持4min,此时液膜表面通过相分离形成微孔结构而变得不透明;然后采用微波加热将液膜温度升温至80℃,120℃,160℃,200℃,240℃,280℃,在每个温度下分别保持5min使铸膜液中的溶剂逐步挥发完全,并使微孔闭合。将所形成的薄膜缓冷至室温,并收卷。所制备的PPSU绝缘膜耐温可达220℃,室温拉伸强度180MPa,介电强度320kV/mm。
实施例3
将m-PSA溶解于二甲基亚砜中配制成浓度为24%的铸膜液,将铸膜液流涎涂膜后暴露于室温93%相对湿度的空气气氛中保持5min,此时液膜表面通过相分离形成微孔结构而变得不透明;再采用微波加热将液膜温度升温至100℃,140℃,180℃,220℃,260℃,300℃,在每个温度下分别保持5min使铸膜液中的溶剂逐步挥发完全,并使微孔闭合。将所形成的薄膜缓冷至室温,并收卷。所制备的PPSU绝缘膜耐温可达260℃,室温拉伸强度200MPa,介电强度400kV/mm。
对比例1
原料同实施例1,采用传统溶液流涎法制得的PASS膜耐温为180℃,室温拉伸强度80MPa,介电强度100kV/mm。
尽管上面结合实施例描述了本发明,但是本领域技术人员应该清楚,在不脱离权利要求的精神和范围的情况下,可以对上述实施例进行各种修改。

Claims (8)

1.聚砜绝缘薄膜的制备方法,其特征在于,所述制备方法为:先采用溶液流涎法制备聚砜溶液膜,然后在聚砜溶液膜上构建微孔结构;再采用阶梯式升温的方式加热除去溶剂并使微孔闭合,制得聚砜绝缘膜。
2.根据权利要求1所述聚砜绝缘薄膜的制备方法,其特征在于,所述聚砜选自下述聚合物中的至少一种:聚醚砜、聚芳硫醚砜、双酚A型聚砜、聚亚苯基砜、间位芳砜纶或对位芳砜纶。
3.根据权利要求1或2所述聚砜绝缘薄膜的制备方法,其特征在于,所述在聚砜溶液膜上构建微孔结构的方法为:将聚砜溶液膜暴露在相对湿度为90~95%的空气气氛中,使聚砜溶液膜表面通过液-液相分离形成直径在2~50nm的均匀的非贯通微孔。
4.根据权利要求1~3任一项所述聚砜绝缘薄膜的制备方法,其特征在于,所述阶梯式升温的方法为:采用至少三段阶梯式升温,其中,第一段温度控制在80~140℃,第二段温度控制在160~220℃,第三段温度控制在220~300℃。
5.根据权利要求1~4任一项所述聚砜绝缘薄膜的制备方法,其特征在于,采用微波加热法或红外加热法的至少一种进行阶梯式升温。
6.根据权利要求1~5任一项所述聚砜绝缘薄膜的制备方法,其特征在于,所述使微孔闭合的方法为:通过将聚砜膜温度升至聚砜的玻璃化温度以上,聚砜膜上的微孔由于表面张力和分子热运动的作用会重新闭合。
7.一种聚砜绝缘薄膜,其特征在于,所述聚砜绝缘薄膜采用权利要求1~6任一项所述的制备方法制得。
8.根据权利要求7所述的聚砜绝缘薄膜,其特征在于,所述聚砜绝缘薄膜的耐热温度为200~260℃,室温拉伸强度为100~200MPa,介电强度为200~400kV/mm。
CN201710975609.4A 2017-10-19 2017-10-19 一种聚砜绝缘薄膜及其制备方法 Active CN107522882B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710975609.4A CN107522882B (zh) 2017-10-19 2017-10-19 一种聚砜绝缘薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710975609.4A CN107522882B (zh) 2017-10-19 2017-10-19 一种聚砜绝缘薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN107522882A true CN107522882A (zh) 2017-12-29
CN107522882B CN107522882B (zh) 2020-02-18

Family

ID=60684800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710975609.4A Active CN107522882B (zh) 2017-10-19 2017-10-19 一种聚砜绝缘薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN107522882B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341558A (zh) * 2020-03-20 2020-06-26 清华大学 一种电介质薄膜及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289542A (zh) * 2007-04-17 2008-10-22 中国科学院化学研究所 球型二氧化硅/聚酰亚胺复合薄膜及其制备方法与应用
US20110081527A1 (en) * 2008-06-10 2011-04-07 Yo Yamato Layered product having porous layer and functional layered product made with the same
CN106422799A (zh) * 2016-09-28 2017-02-22 中国科学院化学研究所 双溶剂法制备具有分级孔结构的薄膜

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289542A (zh) * 2007-04-17 2008-10-22 中国科学院化学研究所 球型二氧化硅/聚酰亚胺复合薄膜及其制备方法与应用
US20110081527A1 (en) * 2008-06-10 2011-04-07 Yo Yamato Layered product having porous layer and functional layered product made with the same
CN106422799A (zh) * 2016-09-28 2017-02-22 中国科学院化学研究所 双溶剂法制备具有分级孔结构的薄膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRAJESH KUMAR TRIPATHI, ET AL.: ""Breath figuretemplatingforfabricationofpolysulfonemicroporous"", 《JOURNAL OFMEMBRANESCIENCE》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111341558A (zh) * 2020-03-20 2020-06-26 清华大学 一种电介质薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN107522882B (zh) 2020-02-18

Similar Documents

Publication Publication Date Title
CN103613927B (zh) 一种聚酰亚胺/氟化石墨烯复合薄膜及其制备方法
US11603443B2 (en) Composite porous membrane and preparation method therefor and use thereof
CN103965638A (zh) 一种连续纤维增强杂萘联苯共聚芳醚砜共混树脂基复合材料及其制备方法
CN104031376A (zh) 连续碳纤维增强杂萘联苯结构聚芳醚腈树脂基复合材料及其制备方法
CN107522882A (zh) 一种聚砜绝缘薄膜及其制备方法
JP6508194B2 (ja) 複合分離膜
CN108047470A (zh) 一种连续碳纤维增强聚醚醚酮复合材料的制备方法及产品
CN103881095A (zh) 乙烯基硅油的制备方法
US7416761B2 (en) Composite membrane and method for forming the same
CN111644076B (zh) 一种在多孔陶瓷基体表面负压涂膜制备碳化有机层的方法
CN103992472A (zh) 一种聚醚酮树脂及其聚合终止的制备方法
JP5906675B2 (ja) 中空糸炭素膜、分離膜モジュールおよび中空糸炭素膜の製造方法
KR102000353B1 (ko) 투명 폴리이미드 필름의 제조방법
Xing et al. Fabrication and characterization of cellulose triacetate porous membranes by combined nonsolvent-thermally induced phase separation
Liu et al. Preparation and properties of poly (vinylidene fluoride) membranes via the low temperature thermally induced phase separation method
CN106046360A (zh) 一种芳腈基聚合物及其制备方法
KR101823050B1 (ko) 수처리 분리막용 다공성 지지체, 이를 포함하는 초박형 복합막 및 그 제조방법
Huang et al. Pore structure and properties of poly (ether ether ketone) hollow fiber membranes: influence of solvent‐induced crystallization during extraction
Hou et al. Porous poly (l-lactide)/poly (d-lactide) blend film with enhanced flexibility and heat resistance via constructing a regularly oriented pore structure
CN107630256B (zh) 耐高温高强度聚砜纤维及其制备方法
Tian et al. Formation of Honeycomb‐Patterned Polyetherketone Cardo (PEK‐C) Films in a Highly Humid Atmosphere
KR101524804B1 (ko) 마이크로파를 사용한 고강도 나노섬유의 제조방법 및 이에 의해 제조된 고강도 나노섬유
Xing et al. Local grafting of ionic liquid in poly (vinylidene fluoride) amorphous region and the subsequent microphase separation behavior in melt
Liu et al. Preparation and characterization of thermally stable copoly (phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes
Hirai et al. Fabrication of Porous Polyimide Membrane with Through‐Hole via Multiple Solvent Displacement Method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240411

Address after: No. 484, 2nd Floor, Unit 1, Building 1, Chengnan Lingyu, No. 88 Zhengxi Street, Huayang Street, Tianfu New District, Chengdu City, Sichuan Province, 610000

Patentee after: Unicorn Rhinoceros Material Technology (Chengdu) Co.,Ltd.

Country or region after: China

Address before: Room 1609, 16th floor, Hemei Haitang Center (Tianfu maker), 2039 Tianfu Avenue South, Tianfu New District, Chengdu, Sichuan 610213

Patentee before: SICHUAN SIPAIEN NEW MATERIAL CO.,LTD.

Country or region before: China