CN107497459B - Bi2Sn2O7/Bi24O31Br10Preparation method of composite visible light catalyst - Google Patents
Bi2Sn2O7/Bi24O31Br10Preparation method of composite visible light catalyst Download PDFInfo
- Publication number
- CN107497459B CN107497459B CN201710950047.8A CN201710950047A CN107497459B CN 107497459 B CN107497459 B CN 107497459B CN 201710950047 A CN201710950047 A CN 201710950047A CN 107497459 B CN107497459 B CN 107497459B
- Authority
- CN
- China
- Prior art keywords
- solution
- preparation
- mixture
- mmol
- room temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000203 mixture Substances 0.000 claims abstract description 56
- 238000002360 preparation method Methods 0.000 claims abstract description 39
- 239000002131 composite material Substances 0.000 claims abstract description 28
- 239000002243 precursor Substances 0.000 claims abstract description 15
- 239000003054 catalyst Substances 0.000 claims abstract description 14
- 239000011941 photocatalyst Substances 0.000 claims abstract description 10
- 238000000926 separation method Methods 0.000 claims abstract description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 47
- 238000003756 stirring Methods 0.000 claims description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 28
- 239000000843 powder Substances 0.000 claims description 26
- 238000010438 heat treatment Methods 0.000 claims description 18
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 17
- 239000008367 deionised water Substances 0.000 claims description 16
- 229910021641 deionized water Inorganic materials 0.000 claims description 16
- 239000000839 emulsion Substances 0.000 claims description 16
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 8
- 229910017604 nitric acid Inorganic materials 0.000 claims description 8
- -1 polytetrafluoroethylene Polymers 0.000 claims description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 8
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 8
- 239000012498 ultrapure water Substances 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- IDGUHHHQCWSQLU-UHFFFAOYSA-N ethanol;hydrate Chemical compound O.CCO IDGUHHHQCWSQLU-UHFFFAOYSA-N 0.000 claims description 5
- 238000005406 washing Methods 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000013329 compounding Methods 0.000 claims 1
- 238000001816 cooling Methods 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 17
- 238000000034 method Methods 0.000 abstract description 10
- 239000002105 nanoparticle Substances 0.000 abstract description 5
- 238000001354 calcination Methods 0.000 abstract 1
- 239000002800 charge carrier Substances 0.000 abstract 1
- 238000001027 hydrothermal synthesis Methods 0.000 abstract 1
- 230000001788 irregular Effects 0.000 abstract 1
- 239000002135 nanosheet Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 101
- 238000012546 transfer Methods 0.000 description 16
- 238000005119 centrifugation Methods 0.000 description 8
- 210000000232 gallbladder Anatomy 0.000 description 6
- 230000001699 photocatalysis Effects 0.000 description 6
- 230000006798 recombination Effects 0.000 description 5
- 238000005215 recombination Methods 0.000 description 5
- 239000013543 active substance Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000003911 water pollution Methods 0.000 description 4
- 229910052797 bismuth Inorganic materials 0.000 description 3
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001000 micrograph Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 238000013032 photocatalytic reaction Methods 0.000 description 1
- 230000001443 photoexcitation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/06—Halogens; Compounds thereof
- B01J27/08—Halides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种Bi2Sn2O7/Bi24O31Br10复合可见光催化剂的制备方法,该复合光催化剂包括Bi2Sn2O7纳米颗粒和不规则纳米片状Bi24O31Br10。本发明通过使用水热法和煅烧法,即利用Bi2Sn2O7与Bi24O31Br10前驱物的混合制备Bi2Sn2O7/Bi24O31Br10复合光催化剂。这种复合光催化剂不仅可以增加Bi24O31Br10表面的活性位点,还可以促进载流子在材料界面的分离率。本发明的优点是:方法简单,稳定性高,重复性强。
The invention discloses a preparation method of a Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst, which comprises Bi 2 Sn 2 O 7 nano-particles and irregular nano-sheet Bi 24 O 31 Br 10 . The present invention prepares the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite photocatalyst by using a hydrothermal method and a calcination method, that is, using a mixture of Bi 2 Sn 2 O 7 and Bi 24 O 31 Br 10 precursors. This composite photocatalyst can not only increase the active sites on the surface of Bi24O31Br10 , but also promote the separation rate of charge carriers at the material interface. The advantages of the invention are: the method is simple, the stability is high, and the repeatability is strong.
Description
技术领域technical field
本发明涉及复合可见光催化剂的制备方法,特别涉及一种Bi2Sn2O7/Bi24O31Br10复合可见光催化剂的制备方法。The invention relates to a preparation method of a composite visible light catalyst, in particular to a preparation method of a Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst.
背景技术Background technique
社会发展的背后是日益严重的环境污染问题,而水污染问题尤其严重,解决水污染问题已经刻不容缓。目前,造成水污染问题的主要原因是工业废水无休止的排放以及抗生素的滥用等,而水中的污染物很难被生物降解或者发生化学降解。为了找到能够降解这些污染物的方法,研究学者进行了大量研究,而光催化剂的出现为解决水污染问题指明了新方向。目前,光催化剂的原理是半导体材料受光照以后,电子会从基态激发到导带,而导带中的电子及价带中的空穴会参与活性物质的生成,生成的活性物质会将有机物直接氧化分解。而影响光催化效率的主要因素是半导体材料的禁带宽度及电子和空穴的复合程度。因此,研究学者进行了大量改性,以及开发了很多种光催化剂。目前研究最多的是TiO2和ZnO等宽带隙半导体,由于材料的禁带宽度较大,只能吸收紫外光,因此限制了其实际应用。Behind the social development is the increasingly serious problem of environmental pollution, and the problem of water pollution is particularly serious. It is urgent to solve the problem of water pollution. At present, the main causes of water pollution problems are the endless discharge of industrial wastewater and the abuse of antibiotics, etc., while pollutants in water are difficult to be biodegraded or chemically degraded. In order to find ways to degrade these pollutants, researchers have conducted a lot of research, and the emergence of photocatalysts has pointed out a new direction for solving the problem of water pollution. At present, the principle of photocatalyst is that after the semiconductor material is exposed to light, electrons will be excited from the ground state to the conduction band, and the electrons in the conduction band and the holes in the valence band will participate in the generation of active substances, and the generated active substances will direct organic substances. Oxidative decomposition. The main factors affecting the photocatalytic efficiency are the forbidden band width of the semiconductor material and the degree of recombination of electrons and holes. Therefore, researchers have carried out a lot of modification and developed many kinds of photocatalysts. The wide-bandgap semiconductors such as TiO2 and ZnO are the most studied at present. Due to the large forbidden band width of the materials, they can only absorb ultraviolet light, thus limiting their practical application.
近年来,铋基氧化物半导体作为一种新型、无毒、绿色的光催化剂,受到了研究学者的青睐。虽然铋基材料的特殊电子结构及较分散的价带结构决定了大部分铋基材料都可以吸收可见光,但是由于材料内部光生电子和空穴对的复合率相对较高,因此必须对材料进行改性,而构造复合材料是提高光催化效率的常用方法之一。In recent years, bismuth-based oxide semiconductors have been favored by researchers as a novel, non-toxic and green photocatalyst. Although the special electronic structure and relatively dispersed valence band structure of bismuth-based materials determine that most bismuth-based materials can absorb visible light, due to the relatively high recombination rate of photo-generated electron and hole pairs inside the material, it is necessary to modify the material. , and constructing composites is one of the common methods to improve the photocatalytic efficiency.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种方法简单、稳定性高、重复性强的Bi2Sn2O7/Bi24O31Br10复合可见光催化剂的制备方法。The purpose of the present invention is to provide a preparation method of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst with simple method, high stability and strong repeatability.
为了实现上述的目的,本发明采用技术方案如下:In order to achieve the above-mentioned purpose, the present invention adopts the technical scheme as follows:
一种Bi2Sn2O7/Bi24O31Br10复合可见光催化剂的制备方法,该方法包括:A preparation method of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst, the method comprising:
1)Bi2Sn2O7的制备: 1 ) Preparation of Bi2Sn2O7 :
将0.5~2 mmol的Bi(NO3)3溶于10~30 mL体积比为1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 0.5-2 mmol of Bi(NO 3 ) 3 in 10-30 mL of nitric acid solution with a volume ratio of 1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将0.5~2 mmol的Na2Sn2O3溶于20~50mL 的去离子水中得溶液B;Dissolve 0.5-2 mmol of Na 2 Sn 2 O 3 in 20-50 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O溶液至pH为9~12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用50~100mL去离子水和50~100mL无水乙醇分别清洗3次,70~90 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O solution dropwise to emulsion C until the pH is 9-12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In a vinyl fluoride liner, kept at 180ºC for 24h, cooled to room temperature, washed three times with 50-100mL deionized water and 50-100mL absolute ethanol, and dried at 70-90ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备:2) Preparation of Bi 24 O 31 Br 10 precursor solution:
将2~4 mmol的Bi(NO3)3超声溶于20~80 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 2-4 mmol of Bi(NO 3 ) 3 in 20-80 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将2~4 mmol的KBr溶于20~50mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 2-4 mmol of KBr in 20-50 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于70~90 ºC的水浴中加热4.5h后,室温搅拌0.5 h至室温,得到澄清溶液G。Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 70-90 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G.
3)Bi2Sn2O7/Bi24O31Br10的制备:3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 :
将0.01~0.2g的Bi2Sn2O7分散于50~100 mL体积比为10:1的乙醇-水溶液中,超声0.5h,得混合物H;将溶液G滴加到混合物H中,得到混合物I,离心分离后,用超纯水和无水乙醇分别清洗3次,70~90 ºC下干燥2h,得粉末J;将粉末J转移到马弗炉中,以5 ºC/min的升温速率加热到400~700 ºC,保持2h,得到Bi2Sn2O7/Bi24O31Br10复合可见光催化剂。Disperse 0.01-0.2 g of Bi 2 Sn 2 O 7 in 50-100 mL of ethanol-aqueous solution with a volume ratio of 10:1, and sonicate for 0.5 h to obtain mixture H; add solution G dropwise to mixture H to obtain a mixture I. After centrifugation, wash with ultrapure water and absolute ethanol for 3 times respectively, and dry at 70-90 ºC for 2 h to obtain powder J; transfer powder J into a muffle furnace and heat at a heating rate of 5 ºC/min to 400~700 ºC and kept for 2h to obtain Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst.
优选的是,在Bi2Sn2O7的制备中,烘干温度为80 ºC。Preferably, in the preparation of Bi 2 Sn 2 O 7 , the drying temperature is 80 ºC.
优选的是,在Bi24O31Br10前驱物溶液的制备中,水浴的温度为80 ºC。Preferably, in the preparation of the Bi 24 O 31 Br 10 precursor solution, the temperature of the water bath is 80 ºC.
优选的是,在Bi2Sn2O7/Bi24O31Br10的制备中,干燥的温度为80 ºC。Preferably, in the preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 , the drying temperature is 80 ºC.
本发明的Bi2Sn2O7/Bi24O31Br10复合可见光催化剂是将Bi24O31Br10前驱溶液滴加到分散有Bi2Sn2O7纳米颗粒的乙醇-水溶液中,然后通过离心、洗涤和退火使Bi2Sn2O7纳米颗粒附着在片状Bi24O31Br10表面上,从而形成复合材料,使性能得到提高。In the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst of the present invention, the Bi 24 O 31 Br 10 precursor solution is added dropwise to the ethanol-water solution dispersed with Bi 2 Sn 2 O 7 nanoparticles, and then passed through Centrifugation, washing, and annealing enabled the attachment of Bi2Sn2O7 nanoparticles on the sheet- like Bi24O31Br10 surface , resulting in the formation of composites with enhanced performance.
光催化反应体系中,材料内部的缺陷等因素导致了单组分材料的光催化效率比较低,因此将两种能带相匹配的材料构造成复合材料,可以降低光生载流子的复合率,是目前提高光催化效率的一种常用方法。虽然Bi2Sn2O7可以吸收可见光,但材料受光激发所形成的电子和空穴对的复合率较高,因此极大地影响光催化效率。而Bi24O31Br10作为一种二维材料,对可见光也有响应,并且受光激发形成的光生电子和空穴复合率也较高。因此,可以将纳米颗粒与二维材料进行复合,通过构造复合材料来提高材料的光催化效率。本发明首先将Bi24O31Br10前驱溶液与Bi2Sn2O7颗粒进行混合,在利用退火法使得复合材料中的Bi24O31Br10相形成,最终形成能带结构交叉错位式的Bi2Sn2O7/Bi24O31Br10复合可见光催化剂。所述Bi24O31Br10前驱溶液是Bi24O31Br10前驱物析出来之前的澄清溶液。所述交叉错位式的能带结构是指Bi2Sn2O7的价带和导带位置均高于或低于Bi24O31Br10的导带和价带位置,即相互错位式的异质结结构。通过将Bi2Sn2O7微粒分散在片状Bi24O31Br10表面上,在两种材料的界面会形成电势差,使光生载流子发生运动,达到有效分离,最终在两种材料的表面分别形成不同种活性物质,这些活性物质可以直接将水中污染物降解,在保证两种材料均可以吸收可见光外,还能使复合材料内部形成的光生电子和空穴对有效分离。In the photocatalytic reaction system, factors such as defects inside the material lead to the low photocatalytic efficiency of single-component materials. Therefore, two materials with matching energy bands are constructed into composite materials, which can reduce the recombination rate of photogenerated carriers. It is a common method to improve the photocatalytic efficiency. Although Bi 2 Sn 2 O 7 can absorb visible light, the recombination rate of electron and hole pairs formed by the material excited by light is high, thus greatly affecting the photocatalytic efficiency. As a two-dimensional material, Bi 24 O 31 Br 10 also responds to visible light, and the recombination rate of photogenerated electrons and holes formed by photoexcitation is also high. Therefore, nanoparticles can be composited with two-dimensional materials, and the photocatalytic efficiency of the materials can be improved by constructing the composite materials. In the present invention, the Bi 24 O 31 Br 10 precursor solution is first mixed with the Bi 2 Sn 2 O 7 particles, and the Bi 24 O 31 Br 10 phase in the composite material is formed by an annealing method, and finally a cross-displaced energy band structure is formed. Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst. The Bi 24 O 31 Br 10 precursor solution is a clear solution before the Bi 24 O 31 Br 10 precursor is precipitated. The energy band structure of the cross-dislocation type means that the positions of the valence band and the conduction band of Bi 2 Sn 2 O 7 are both higher or lower than the positions of the conduction band and the valence band of Bi 24 O 31 Br 10 , that is, the different positions of the mutually dislocation type. junction structure. By dispersing Bi 2 Sn 2 O 7 particles on the sheet-like Bi 24 O 31 Br 10 surface, a potential difference will be formed at the interface of the two materials, so that the photogenerated carriers can move and achieve effective separation. Different active substances are formed on the surface. These active substances can directly degrade the pollutants in the water. In addition to ensuring that both materials can absorb visible light, they can also effectively separate the photogenerated electron and hole pairs formed inside the composite material.
本发明均采用化学方法制备Bi2Sn2O7/Bi24O31Br10复合可见光催化剂,方法简单,稳定性高,重复性强。In the present invention, the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst is prepared by chemical methods, and the method is simple, high in stability and strong in repeatability.
附图说明Description of drawings
图1是本发明制备的Bi2Sn2O7/Bi24O31Br10的扫描电镜图。Fig. 1 is a scanning electron microscope image of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 prepared by the present invention.
图2是Bi2Sn2O7/Bi24O31Br10复合可见光催化剂的透射图。Figure 2 is a transmission diagram of the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible light catalyst.
图3是Bi2Sn2O7-Bi24O31Br10机械共混物的扫描电镜图。Figure 3 is a scanning electron microscope image of Bi 2 Sn 2 O 7 -Bi 24 O 31 Br 10 mechanical blend.
具体实施方式Detailed ways
实施例1:Example 1:
1)Bi2Sn2O7的制备 1 ) Preparation of Bi2Sn2O7
将1.5 mmol的Bi(NO3)3溶于10 mL、v/v=1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 1.5 mmol of Bi(NO 3 ) 3 in 10 mL of nitric acid solution with v/v=1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将1.5 mmol的Na2Sn2O3溶于10 mL 的去离子水中得溶液B;Dissolve 1.5 mmol of Na 2 Sn 2 O 3 in 10 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O至pH为12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用去离子水和无水乙醇分别清洗三次,80 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O dropwise to emulsion C until pH is 12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In the gallbladder, kept at 180ºC for 24h, cooled to room temperature, washed three times with deionized water and absolute ethanol respectively, and dried at 80ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备2) Preparation of Bi 24 O 31 Br 10 precursor solution
将3.8 mmol的Bi(NO3)3超声溶于50 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 3.8 mmol of Bi(NO 3 ) 3 in 50 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将3.8 mmol的KBr溶于20 mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 3.8 mmol of KBr in 20 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于80 ºC的水浴中加热4.5 h后,室温搅拌0.5 h至室温,得到澄清溶液G。Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 80 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G.
3)Bi2Sn2O7/Bi24O31Br10的制备3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10
将0.03g的Bi2Sn2O7分散于50 mL、v/v=10:1的乙醇-水溶液中,超声0.5h,得混合物H;将溶液G滴加到混合物H中,得到混合物I,离心分离后,用超纯水和无水乙醇分别清洗3次,80 ºC下干燥2h,得粉末J;将粉末J转移到马弗炉中,以5 ºC/min的升温速率加热到700ºC,保持2h,得到Bi2Sn2O7/Bi24O31Br10复合材料。Disperse 0.03 g of Bi 2 Sn 2 O 7 in 50 mL of ethanol-aqueous solution with v/v=10:1, and sonicate for 0.5 h to obtain mixture H; add solution G dropwise to mixture H to obtain mixture I, After centrifugation, washed with ultrapure water and absolute ethanol for 3 times respectively, and dried at 80 ºC for 2 h to obtain powder J; powder J was transferred to a muffle furnace, heated to 700 ºC at a heating rate of 5 ºC/min, and kept at 700 ºC. 2h, the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite material was obtained.
由图1和图2可看出所制备的Bi2Sn2O7/Bi24O31Br10复合可见光催化剂由Bi2Sn2O7纳米微粒均匀的附着在片状Bi24O31Br10表面上。It can be seen from Figure 1 and Figure 2 that the prepared Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite visible photocatalyst is uniformly attached to the surface of the sheet-like Bi 24 O 31 Br 10 by the Bi 2 Sn 2 O 7 nanoparticles .
对比例1Comparative Example 1
1)Bi2Sn2O7的制备 1 ) Preparation of Bi2Sn2O7
将1.5 mmol的Bi(NO3)3溶于10 mL、v/v=1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 1.5 mmol of Bi(NO 3 ) 3 in 10 mL of nitric acid solution with v/v=1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将1.5 mmol的Na2Sn2O3溶于10 mL 的去离子水中得溶液B;Dissolve 1.5 mmol of Na 2 Sn 2 O 3 in 10 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O至pH为12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用去离子水和无水乙醇分别清洗三次,80 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O dropwise to emulsion C until pH is 12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In the gallbladder, kept at 180ºC for 24h, cooled to room temperature, washed three times with deionized water and absolute ethanol respectively, and dried at 80ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备2) Preparation of Bi 24 O 31 Br 10 precursor solution
将3.8 mmol的Bi(NO3)3超声溶于50 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 3.8 mmol of Bi(NO 3 ) 3 in 50 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将3.8 mmol的KBr溶于20 mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 3.8 mmol of KBr in 20 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于80 ºC的水浴中加热4.5 h后,室温搅拌0.5 h至室温,得到澄清溶液G;将溶液滴加到50 mL、v/v=10:1的乙醇-水溶液中,离心分离后,用超纯水和无水乙醇分别清洗3次,80 ºC下干燥2h,得粉末H;将粉末H转移到马弗炉中,以5 ºC/min的升温速率加热到700 ºC,保持2h,得到Bi24O31Br10粉末;Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 80 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G; add the solution dropwise to 50 mL, v/v=10:1 ethanol-water solution, after centrifugation, washing with ultrapure water and absolute ethanol for 3 times, drying at 80 ºC for 2 h to obtain powder H; transfer powder H into a muffle furnace, Heating to 700 ºC at a heating rate of 5 ºC/min and holding for 2 h to obtain Bi 24 O 31 Br 10 powder;
3)Bi2Sn2O7/Bi24O31Br10的制备3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10
将1.0g的Bi2Sn2O7和1.0g的Bi24O31Br10粉末分散于20 mL无水乙醇中,超声0.5h,搅拌3h,70 ºC下烘干溶剂,得Bi2Sn2O7-Bi24O31Br10混合光催化剂。Disperse 1.0 g of Bi 2 Sn 2 O 7 and 1.0 g of Bi 24 O 31 Br 10 powder in 20 mL of absolute ethanol, ultrasonicate for 0.5 h, stir for 3 h, and dry the solvent at 70 ºC to obtain Bi 2 Sn 2 O 7 -Bi 24 O 31 Br 10 mixed photocatalyst.
将对比例1的SEM图片即图3与实施例1进行SEM图片即图1和图2对比,可以看出机械共混得到的Bi2Sn2O7-Bi24O31Br10混合光催化剂中Bi24O31Br10被Bi2Sn2O7包覆。Comparing the SEM pictures of Comparative Example 1, i.e., Fig. 3 and Example 1, i.e., Fig. 1 and Fig. 2, it can be seen that in the Bi 2 Sn 2 O 7 -Bi 24 O 31 Br 10 mixed photocatalyst obtained by mechanical blending Bi 24 O 31 Br 10 is coated with Bi 2 Sn 2 O 7 .
实施例2:Example 2:
1)Bi2Sn2O7的制备 1 ) Preparation of Bi2Sn2O7
将1.0 mmol的Bi(NO3)3溶于10 mL、v/v=1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 1.0 mmol of Bi(NO 3 ) 3 in 10 mL of nitric acid solution of v/v=1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将1.0 mmol的Na2Sn2O3溶于10 mL 的去离子水中得溶液B;Dissolve 1.0 mmol of Na 2 Sn 2 O 3 in 10 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O至pH为12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用去离子水和无水乙醇分别清洗三次,80 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O dropwise to emulsion C until pH is 12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In the gallbladder, kept at 180ºC for 24h, cooled to room temperature, washed three times with deionized water and absolute ethanol respectively, and dried at 80ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备2) Preparation of Bi 24 O 31 Br 10 precursor solution
将3.8 mmol的Bi(NO3)3超声溶于50 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 3.8 mmol of Bi(NO 3 ) 3 in 50 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将3.8 mmol的KBr溶于20 mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 3.8 mmol of KBr in 20 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于80 ºC的水浴中加热4.5 h后,室温搅拌0.5 h至室温,得到澄清溶液G。Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 80 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G.
3)Bi2Sn2O7/Bi24O31Br10的制备3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10
将0.01g的Bi2Sn2O7分散于50 mL、v/v=10:1的乙醇-水溶液中,超声0.5h,得混合物H;将溶液G滴加到混合物H中,得到混合物I,离心分离后,用超纯水和无水乙醇分别清洗3次,80 ºC下干燥2h,得粉末J;将粉末J转移到马弗炉中,以5 ºC/min的升温速率加热到700ºC,保持2h,得到Bi2Sn2O7/Bi24O31Br10复合材料。Disperse 0.01 g of Bi 2 Sn 2 O 7 in 50 mL of ethanol-aqueous solution with v/v=10:1, sonicate for 0.5 h to obtain mixture H; add solution G dropwise to mixture H to obtain mixture I, After centrifugation, washed with ultrapure water and absolute ethanol for 3 times respectively, and dried at 80 ºC for 2 h to obtain powder J; powder J was transferred to a muffle furnace, heated to 700 ºC at a heating rate of 5 ºC/min, and kept at 700 ºC. 2h, the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite material was obtained.
实施例3:Example 3:
1)Bi2Sn2O7的制备 1 ) Preparation of Bi2Sn2O7
将2.0 mmol的Bi(NO3)3溶于10 mL、v/v=1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 2.0 mmol of Bi(NO 3 ) 3 in 10 mL of nitric acid solution of v/v=1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将2.0 mmol的Na2Sn2O3溶于10 mL 的去离子水中得溶液B;Dissolve 2.0 mmol of Na 2 Sn 2 O 3 in 10 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O至pH为12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用去离子水和无水乙醇分别清洗三次,80 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O dropwise to emulsion C until pH is 12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In the gallbladder, kept at 180ºC for 24h, cooled to room temperature, washed three times with deionized water and absolute ethanol respectively, and dried at 80ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备2) Preparation of Bi 24 O 31 Br 10 precursor solution
将3.8 mmol的Bi(NO3)3超声溶于50 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 3.8 mmol of Bi(NO 3 ) 3 in 50 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将3.8 mmol的KBr溶于20 mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 3.8 mmol of KBr in 20 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于80 ºC的水浴中加热4.5 h后,室温搅拌0.5 h至室温,得到澄清溶液G。Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 80 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G.
3)Bi2Sn2O7/Bi24O31Br10的制备3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10
将0.05g的Bi2Sn2O7分散于50 mL、v/v=10:1的乙醇-水溶液中,超声0.5h,得混合物H;将溶液G滴加到混合物H中,得到混合物I,离心分离后,用超纯水和无水乙醇分别清洗3次,80 ºC下干燥2h,得粉末J;将粉末J转移到马弗炉中,以5 ºC/min的升温速率加热到700ºC,保持2h,得到Bi2Sn2O7/Bi24O31Br10复合材料。Disperse 0.05 g of Bi 2 Sn 2 O 7 in 50 mL of ethanol-aqueous solution with v/v=10:1, sonicate for 0.5 h to obtain mixture H; add solution G dropwise to mixture H to obtain mixture I, After centrifugation, washed with ultrapure water and absolute ethanol for 3 times respectively, and dried at 80 ºC for 2 h to obtain powder J; powder J was transferred to a muffle furnace, heated to 700 ºC at a heating rate of 5 ºC/min, and kept at 700 ºC. 2h, the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite material was obtained.
实施例4:Example 4:
1)Bi2Sn2O7的制备 1 ) Preparation of Bi2Sn2O7
将3.0 mmol的Bi(NO3)3溶于10 mL、v/v=1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 3.0 mmol of Bi(NO 3 ) 3 in 10 mL of nitric acid solution of v/v=1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将3.0 mmol的Na2Sn2O3溶于10 mL 的去离子水中得溶液B;Dissolve 3.0 mmol of Na 2 Sn 2 O 3 in 10 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O至pH为12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用去离子水和无水乙醇分别清洗三次,80 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O dropwise to emulsion C until pH is 12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In the gallbladder, kept at 180ºC for 24h, cooled to room temperature, washed three times with deionized water and absolute ethanol respectively, and dried at 80ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备2) Preparation of Bi 24 O 31 Br 10 precursor solution
将3.8 mmol的Bi(NO3)3超声溶于50 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 3.8 mmol of Bi(NO 3 ) 3 in 50 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将3.8 mmol的KBr溶于20 mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 3.8 mmol of KBr in 20 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于80 ºC的水浴中加热4.5 h后,室温搅拌0.5 h至室温,得到澄清溶液G。Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 80 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G.
3)Bi2Sn2O7/Bi24O31Br10的制备3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10
将0.1g的Bi2Sn2O7分散于50 mL、v/v=10:1的乙醇-水溶液中,超声0.5h,得混合物H;将溶液G滴加到混合物H中,得到混合物I,离心分离后,用超纯水和无水乙醇分别清洗3次,80 ºC下干燥2h,得粉末J;将粉末J转移到马弗炉中,以5 ºC/min的升温速率加热到700ºC,保持2h,得到Bi2Sn2O7/Bi24O31Br10复合材料。Disperse 0.1 g of Bi 2 Sn 2 O 7 in 50 mL of ethanol-water solution with v/v=10:1, and ultrasonicate for 0.5 h to obtain mixture H; add solution G dropwise to mixture H to obtain mixture I, After centrifugation, washed with ultrapure water and absolute ethanol for 3 times respectively, and dried at 80 ºC for 2 h to obtain powder J; powder J was transferred to a muffle furnace, heated to 700 ºC at a heating rate of 5 ºC/min, and kept at 700 ºC. 2h, the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite material was obtained.
实施例5:Example 5:
1)Bi2Sn2O7的制备 1 ) Preparation of Bi2Sn2O7
将3.0 mmol的Bi(NO3)3溶于10 mL、v/v=1:10的硝酸溶液里,超声10min,搅拌20min后,得澄清溶液A;Dissolve 3.0 mmol of Bi(NO 3 ) 3 in 10 mL of nitric acid solution of v/v=1:10, ultrasonicate for 10 min, and stir for 20 min to obtain clear solution A;
将3.0 mmol的Na2Sn2O3溶于10 mL 的去离子水中得溶液B;Dissolve 3.0 mmol of Na 2 Sn 2 O 3 in 10 mL of deionized water to obtain solution B;
将溶液B转移到溶液A中,得乳浊液C;向乳浊液C中滴加NH3•H2O至pH为12,得混合物D;将混合物D转移到50mL的聚四氟乙烯内胆中,180ºC下保持24h,冷却至室温后,用去离子水和无水乙醇分别清洗三次,80 ºC下烘干得Bi2Sn2O7黄色粉末;Transfer solution B to solution A to obtain emulsion C; add NH 3 ·H 2 O dropwise to emulsion C until pH is 12 to obtain mixture D; transfer mixture D to 50 mL of polytetrafluoroethylene In the gallbladder, kept at 180ºC for 24h, cooled to room temperature, washed three times with deionized water and absolute ethanol respectively, and dried at 80ºC to obtain Bi 2 Sn 2 O 7 yellow powder;
2)Bi24O31Br10前驱物溶液的制备2) Preparation of Bi 24 O 31 Br 10 precursor solution
将3.8 mmol的Bi(NO3)3超声溶于50 mL的乙二醇溶液中,室温下搅拌1h,得溶液E;Dissolve 3.8 mmol of Bi(NO 3 ) 3 in 50 mL of ethylene glycol solution by ultrasonic, and stir at room temperature for 1 h to obtain solution E;
将3.8 mmol的KBr溶于20 mL 的乙二醇中,搅拌1h,得溶液F;Dissolve 3.8 mmol of KBr in 20 mL of ethylene glycol and stir for 1 h to obtain solution F;
将溶液F加到溶液E中,搅拌1h,得混合物G;将混合物G于80 ºC的水浴中加热4.5 h后,室温搅拌0.5 h至室温,得到澄清溶液G。Add solution F to solution E and stir for 1 h to obtain mixture G; after heating mixture G in a water bath at 80 ºC for 4.5 h, stir at room temperature for 0.5 h to room temperature to obtain clear solution G.
3)Bi2Sn2O7/Bi24O31Br10的制备3) Preparation of Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10
将0.15g的Bi2Sn2O7分散于50 mL、v/v=10:1的乙醇-水溶液中,超声0.5h,得混合物H;将溶液G滴加到混合物H中,得到混合物I,离心分离后,用超纯水和无水乙醇分别清洗3次,80 ºC下干燥2h,得粉末J;将粉末J转移到马弗炉中,以5 ºC/min的升温速率加热到700ºC,保持2h,得到Bi2Sn2O7/Bi24O31Br10复合材料。Disperse 0.15 g of Bi 2 Sn 2 O 7 in 50 mL of ethanol-water solution with v/v=10:1, and ultrasonicate for 0.5 h to obtain mixture H; add solution G dropwise to mixture H to obtain mixture I, After centrifugation, washed with ultrapure water and absolute ethanol for 3 times respectively, and dried at 80 ºC for 2 h to obtain powder J; powder J was transferred to a muffle furnace, heated to 700 ºC at a heating rate of 5 ºC/min, and kept at 700 ºC. 2h, the Bi 2 Sn 2 O 7 /Bi 24 O 31 Br 10 composite material was obtained.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710950047.8A CN107497459B (en) | 2017-10-13 | 2017-10-13 | Bi2Sn2O7/Bi24O31Br10Preparation method of composite visible light catalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710950047.8A CN107497459B (en) | 2017-10-13 | 2017-10-13 | Bi2Sn2O7/Bi24O31Br10Preparation method of composite visible light catalyst |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107497459A CN107497459A (en) | 2017-12-22 |
CN107497459B true CN107497459B (en) | 2020-09-01 |
Family
ID=60701588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710950047.8A Expired - Fee Related CN107497459B (en) | 2017-10-13 | 2017-10-13 | Bi2Sn2O7/Bi24O31Br10Preparation method of composite visible light catalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107497459B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108568303A (en) * | 2018-04-10 | 2018-09-25 | 青岛农业大学 | A kind of TiO2/Bi24O31Br10The preparation method of/BiOBr composite photocatalyst materials |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104646039A (en) * | 2015-02-15 | 2015-05-27 | 济南大学 | Preparation method and application of a hierarchical structure BiOI/Bi2MoO6 composite visible light catalyst |
CN106111114A (en) * | 2016-06-14 | 2016-11-16 | 西安交通大学 | A kind of In2O3/Bi2Sn2O7 composite visible light catalyst and its preparation method |
CN106807410A (en) * | 2017-01-25 | 2017-06-09 | 宁德师范学院 | A kind of Bi24O31Br10/In2O3The preparation method of heterojunction photocatalyst |
CN106925304A (en) * | 2017-04-19 | 2017-07-07 | 宁德师范学院 | Bi24O31Br10/ ZnO composite visible light catalysts and preparation method thereof |
-
2017
- 2017-10-13 CN CN201710950047.8A patent/CN107497459B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104646039A (en) * | 2015-02-15 | 2015-05-27 | 济南大学 | Preparation method and application of a hierarchical structure BiOI/Bi2MoO6 composite visible light catalyst |
CN106111114A (en) * | 2016-06-14 | 2016-11-16 | 西安交通大学 | A kind of In2O3/Bi2Sn2O7 composite visible light catalyst and its preparation method |
CN106807410A (en) * | 2017-01-25 | 2017-06-09 | 宁德师范学院 | A kind of Bi24O31Br10/In2O3The preparation method of heterojunction photocatalyst |
CN106925304A (en) * | 2017-04-19 | 2017-07-07 | 宁德师范学院 | Bi24O31Br10/ ZnO composite visible light catalysts and preparation method thereof |
Non-Patent Citations (2)
Title |
---|
Bi2Sn2O7改性ZnO微球纳米复合材料的制备及其光催化性能研究;邢永雷等;《中国科技论文在线精品论文》;20160131;第9卷(第1期);第40页第4段 * |
Facile Synthesis of BiOBr/Bi2Sn2O7 Heterojunction Photocatalysts with Improved Photocatalytic Activities;Dongdong Lv et al.;《Journal of the American Ceramic Society》;20161231;第99卷(第12期);第3973页右栏第2段以及图5-6 * |
Also Published As
Publication number | Publication date |
---|---|
CN107497459A (en) | 2017-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107442150B (en) | Two-dimensional anatase TiO2/g-C3N4Composite material and preparation method and application thereof | |
CN105935594B (en) | A kind of bismuth oxyiodide/nitrogen mixes graphene composite photocatalyst and preparation method thereof | |
CN102688755A (en) | A kind of Ag/TiO2/graphene nanocomposite photocatalyst and preparation method thereof | |
CN103861621B (en) | A kind of Bi 7o 9i 3/ Graphene composite visible light catalyst and preparation method thereof | |
CN107020143A (en) | A kind of preparation method and purposes of visible light-responded Three-element composite photocatalyst | |
CN103611551B (en) | Preparation method of bismuth sulfide/bismuth molybdenum oxide heterojunction photocatalytic composite material | |
CN106732738A (en) | A kind of Graphene/g C3N4Three-dimensional network laminated film and its preparation and application | |
CN106807410B (en) | A kind of Bi24O31Br10/In2O3The preparation method of heterojunction photocatalyst | |
CN106925304B (en) | Bi24O31Br10/ZnO composite visible light catalyst and preparation method thereof | |
CN104307538B (en) | Preparation and application methods of high-efficiency composite photocatalytic material | |
CN103071535A (en) | Preparation method and application of zinc oxide visible-light-induced photocatalyst sensitized by squarylium cyanine | |
CN108057436A (en) | A kind of CeO2/Bi2MoO6The preparation method and photochemical catalyst of flower-shaped composite photo-catalyst | |
CN104785280A (en) | Flaky titanium dioxide/bismuth oxybromide composite photocatalyst and preparation method thereof | |
CN106563470A (en) | NiS2 nanoparticle/g-C3N4 mesoporous nanosheet composite material and preparation method thereof | |
CN105772051B (en) | A kind of Bi2O2CO3-BiFeO3Composite photo-catalyst and preparation method thereof | |
CN104689838A (en) | Preparation method for BiOCl photocatalyst with controllable morphology and crystal face | |
CN105709793A (en) | Cadmium sulfide nanoparticle modified niobium pentoxide nanorod/nitrogen doped graphene composite photocatalyst and preparation method and application thereof | |
CN106179415A (en) | A kind of preparation method of nano titanium oxide/molybdenum bisuphide composite material film | |
CN103551145A (en) | Nanometer silver/graphene/P25 composite material preparation method | |
CN104148094B (en) | A kind of preparation method of bismuth oxyfluoride/Graphene composite visible light catalyst | |
CN106799247B (en) | A kind of Bi24O31Br10/In2O3Heterojunction photocatalyst | |
CN107497459B (en) | Bi2Sn2O7/Bi24O31Br10Preparation method of composite visible light catalyst | |
CN114433066B (en) | Nano bismuth-oxide-based material and preparation method and application thereof | |
CN106345509B (en) | A method for preparing C3N4/CaTi2O5 composite material by solvothermal method | |
CN106492865B (en) | A method of C3N4/CaTi2O4 (OH) 2 composite material is prepared using solvent-thermal method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200901 |