CN107398289A - 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途 - Google Patents

一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途 Download PDF

Info

Publication number
CN107398289A
CN107398289A CN201710467275.XA CN201710467275A CN107398289A CN 107398289 A CN107398289 A CN 107398289A CN 201710467275 A CN201710467275 A CN 201710467275A CN 107398289 A CN107398289 A CN 107398289A
Authority
CN
China
Prior art keywords
agcl
solution
activated carbon
concentration
under
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710467275.XA
Other languages
English (en)
Inventor
王会琴
李金择
刘重阳
吴东遥
刘馨琳
霍鹏伟
王谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710467275.XA priority Critical patent/CN107398289A/zh
Publication of CN107398289A publication Critical patent/CN107398289A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/16Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr
    • B01J27/18Phosphorus; Compounds thereof containing oxygen, i.e. acids, anhydrides and their derivates with N, S, B or halogens without carriers or on carriers based on C, Si, Al or Zr; also salts of Si, Al and Zr with metals other than Al or Zr
    • B01J27/1802Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates
    • B01J27/1817Salts or mixtures of anhydrides with compounds of other metals than V, Nb, Ta, Cr, Mo, W, Mn, Tc, Re, e.g. phosphates, thiophosphates with copper, silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/035Precipitation on carriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明提供了一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途,制备如下:将活性炭加入到去离子水中,超声洗涤,磁力搅拌均匀,得到活性炭分散液;在搅拌条件下,将硝酸银溶液逐滴滴加到所述活性炭分散液中,继续磁力搅拌后,在磁力搅拌下逐滴加入Na3C6H5O7溶液,磁力搅拌;加入NaCl溶液,继续搅拌反应;滴加KH2PO4溶液,继续搅拌反应;将混合液抽滤、洗涤、干燥,遮光条件下抽滤、收集样品,干燥,得到产物;将产物在250W的紫外灯光下照射,得到等离子体光催化剂Ag/AgCl/Ag3PO4/AC。本发明实现了浸渍‑沉积法制备AgCl/Ag3PO4/AC复合材料,并同时采用紫外光还原技术制备出等离子体光催化剂Ag/AgCl/Ag3PO4/AC,成功将其作为光催化剂达到降解抗生素废水的目的。

Description

一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途
技术领域
本发明属于环境材料制备技术领域,设计采用浸渍-沉积法制备出复合催化材料AgCl/Ag3PO4/AC,接着采用紫外光照还原法还原部分Ag,制备出等离子体催化剂Ag/AgCl/Ag3PO4/AC。
背景技术
作为抗菌药物,抗生素广泛用于治疗各种细菌引起的感染。近年来,随着养殖业的发展,为了防治疾病大量抗生素用于规模养殖的家畜及水产养殖中,据世界卫生组织报道中国大陆一年用去的抗生素约占全球总用量的一半,而其中超过5万吨的抗生素废水被直接排放于水土环境中,导致抗生素残留,对环境甚至对当地生态产生了较大的危害,且威胁到人类的健康,产生一系列问题,如过敏性反应、抗药性、双重感染以及遗传变异等等,特别是超级细菌的出现,引起了全世界的关注。目前就治理抗生素水污染技术还没有形成较为***成熟的技术方案,因此国内外专家希望研制出高效绿色的解决方案。
光催化技术为解决抗生素水污染提供了一个绿色高效且环保的处理方法。纳米半导体材料,大的比表面积使其对反应速率的约束减小、表面缺陷和活性中心增加等优点而被用做光催化材料。等离子体光催化材料由于其表面等离子体效应而被研究者们应用于光催化剂的改性制备中。将等离子体催化剂作为负载材料制备出等离子体光催化材料,一方面能够提高半导体的分散性而有效降低贵金属的光腐蚀性,另一方面能够充分发挥贵金属的限域等离子效应,另外,还可以降低材料的制备成本。AgCl和Ag3PO4具有较窄的禁带宽度和太阳光谱中可见光波段相适宜的带宽,目前已有报道将其作为光催化剂运用于光催化领域,但是银系材料自身具有缺陷,比如:光腐蚀现象,使其光催化性能遭到严重抑制,并且大大降低了材料的稳定性能,因此,广泛开展对银系材料进行改性研究具有重要意义。
活性炭以其独有的优势得到研究者的关注:(1)有大量微孔可以增强其吸附污染物的能力;(2)价格便宜;(3)颗粒较大易于分离和回收。基于AC的上述优势,已有研究者将其作为载体材料而应用于改性半导体材料,提高其光催化活性。因此,本发明内容主要在于制备等离子体复合催化材料Ag/AgCl/Ag3PO4/AC,并将其运用于光催化降解四环素废水的研究。
发明内容
本发明采用浸渍沉淀法制备复合光催化材料AgCl/AC、Ag3PO4/AC以及AgCl/Ag3PO4/AC,然后采用紫外光还原技术部分还原Ag制备出等离子体复合催化材料Ag/AgCl/Ag3PO4/AC。
本发明是通过如下技术方案实现的:
一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法,步骤如下:
将活性炭(AC)加入到去离子水中,超声洗涤10min,接着磁力搅拌10min使其分散均匀,得到活性炭分散液;在搅拌条件下,将硝酸银溶液逐滴滴加到所述活性炭分散液中,得到混合液A,继续磁力搅拌30min后,在磁力搅拌下逐滴加入Na3C6H5O7溶液,得到混合液B,磁力搅拌30min;将NaCl溶液逐滴滴加到混合液B中,得到混合液C,继续搅拌反应10min;最后滴加KH2PO4溶液,滴完后继续搅拌反应30min;将反应后的混合液进行抽滤、洗涤、干燥(80℃干燥箱中保持12h),遮光条件下抽滤(去离子水和无水乙醇各洗涤3次)、收集样品,并置于80℃鼓风干燥箱中干燥12h,得到Ag3PO4/AgCl/AC复合材料;将得到的Ag3PO4/AgCl/AC复合材料在250W的紫外灯光下照射,得到等离子体光催化剂Ag/AgCl/Ag3PO4/AC。
所述活性炭分散液、硝酸银溶液、Na3C6H5O7溶液、NaCl溶液、KH2PO4溶液的体积比为1:1:1:1:1;所述活性炭分散液的浓度为0.2g/mL,所述硝酸银溶液的浓度为1.54~2.83mol/L,所述Na3C6H5O7溶液的浓度为1.54~2.83mol/L,所述NaCl溶液的浓度为1.4mol/L,所述KH2PO4溶液的浓度为0.048~0.477mol/L。
所述紫外灯光下照射时间为20min。
所述等离子体光催化剂Ag/AgCl/Ag3PO4/AC用于光催化降解抗生素废水中的四环素。
下面为Ag/AgCl/AC复合材料和Ag/Ag3PO4/AC复合材料的制备:
(1)Ag/AgCl/AC复合材料的制备:
称取2g的活性炭(AC)置于装有10ml去离子水的烧杯中,超声洗涤10min,接着磁力搅拌洗涤10min;将AgNO3溶于装有10ml去离子水的烧杯中形成澄清溶液,逐滴滴加到磁力搅拌下装有去离子水及活性炭的烧杯中,滴加过程用时大约10min,使AgNO3足够多地吸附于活性炭表面;继续磁力搅拌30min后,在磁力搅拌下逐滴加入Na3C6H5O7溶液,滴加过程大约用时10min,在活性炭表面形成柠檬酸银;磁力搅拌30min后,将NaCl溶液逐滴加入到混合溶液中,并继续搅拌30min以保证氯化钠与柠檬酸银反应能够充分进行,使形成AgCl包覆于AC上。遮光条件下抽滤(去离子水和无水乙醇各洗涤3次)、收集样品,并置于80℃鼓风干燥箱中干燥12h,得到AgCl/AC复合材料。
其中,步骤(1)中,所述AgNO3、NaCl和Na3C6H5O7的摩尔比比为1:1:1,浓度都为1.4mmol/mL,所述AC为2g。
Ag/AgCl/AC复合光催化剂是在室温下通过简单的紫外光还原法制备,过程如下:将得到的AgCl/AC在250W的紫外灯光下照射进行部分还原,得到Ag/AgCl/AC复合材料。
其中,步骤(1)中,所述紫外光照射时间为10min。
(2)Ag/Ag3PO4/AC复合材料的制备:
称取一定量AC放入装有10ml去离子水的烧杯中,超声洗涤10min,磁力搅拌10min;接着,磁力搅拌下逐滴加入AgNO3溶液,完成后继续磁力搅拌30min;然后,磁力搅拌下逐滴加入与AgNO3相同体积相同浓度的Na3C6H5O7溶液,滴加大约用时10min,加完后继续搅拌30min;之后,KH2PO4溶液磁力搅拌下逐滴加入,最后形成的混合物继续搅拌30min。过滤、洗涤(经过去离子水、无水乙醇各三次洗涤后)得到固体样品,放入温度为80℃的鼓风干燥箱中保持12h,得到Ag3PO4/AC复合材料。
其中,步骤(2)中,AgNO3、KH2PO4和Na3C6H5O7摩尔比为3:1:3;所述AgNO3、KH2PO4和Na3C6H5O7浓度分别为1.4mmol/mL;所述AC为2g。
采用简易紫外光还原法制备Ag/Ag3PO4/AC复合光催化材料。步骤如下:取一定量Ag3PO4/AC复合材料在250W紫灯光下进行照射,得到Ag/Ag3PO4/AC复合材料。
其中,步骤(2)中,所述紫外光照射时间为20min。
有益效果:
本发明实现了浸渍-沉积法制备AgCl/Ag3PO4/AC复合材料,并同时采用紫外光还原技术一步制备出等离子体光催化剂Ag/AgCl/Ag3PO4/AC,成功将其作为光催化剂达到降解抗生素废水的目的。充分利用贵金属材料Ag的等离子效应及活性炭材料优势改性半导体作为光催化剂,利用可见光进行激发,与抗生素污染物分子接触,相互作用实现特殊的催化或转化效应,使周围的氧气及水分子激发成极具氧化能力的自由负离子,达到降解环境中有害抗生素污染物的目的,该方法不会造成资源浪费与附加污染的形成,且操作简便,成本较低,是一种节能绿色环保的高效处理技术。
附图说明
图1为Ag/AgCl/AC等离子体复合材料的SEM及粒径分析图,其中,a为AC,b为AgCl/AC,c为Ag/AgCl/AC,d为Ag/AgC的扫描图谱,e为AgCl/AC的EDS和AgCl的粒径分布状态,f为Ag/AgCl/AC的EDS和Ag/AgCl的粒径分布状态。
图2为Ag/AgCl/AC等离子体复合材料的光催化降解四环素的效果图。
图3为Ag/Ag3PO4/AC等离子体复合材料的SEM及粒径分析图,其中,a为Ag3PO4的SEM图,b为样品Ag3PO4的粒径分布图,c为Ag3PO4/AC的SEM图,d为Ag3PO4/AC的粒径分布图,e为Ag/Ag3PO4/AC的SEM图,f为Ag/Ag3PO4/AC的粒径分布图,g为AC的SEM图,h为Ag/Ag3PO4/AC的粒径分布图。
图4为Ag/Ag3PO4/AC等离子体复合材料的光催化降解四环素图。
图5为Ag/AgCl/Ag3PO4/AC等离子体复合材料的XRD图,其中,a为AC、b为AgCl、c为Ag3PO4、d为Ag/AgCl/Ag3PO4/AC。
图6为Ag/AgCl/Ag3PO4/AC等离子体复合材料及其他材料的光催化降解TC图。
具体实施方式
下面结合说明书附图及具体实施实例对本发明做进一步说明。
本发明中所制备的光催化剂的光催化活性评价:在DW-01型光化学反应仪(购自扬州大学城科技有限公司)中进行,将100mL浓度为20mg/L的四环素模拟废水加入反应器中并测定其初始光度值,然后加入制得的光催化剂,磁力搅拌,进行半小时暗吸附,达到吸附脱附平衡后,开启曝气装置通入空气保持催化剂处于悬浮状态,打开氙灯进行光照,光照过程中间隔10min取样分析,光降解反应进行1h,离心分离取出的液体后,取上层清液在紫外分光光度计λmax=355nm处测定吸光度,并通过公式:Dr=[1-Ai/A0]×100%算出降解率,其中A0为达到吸附平衡时四环素溶液的吸光度,Ai为定时取样测定的四环素溶液的吸光度。
实施例1:
(1)Ag/AgCl/AC的制备:
称取2g的AC置于去离子水中,超声洗涤10min,接着磁力搅拌洗涤10min;将10ml浓度为1.4mmol/ml的AgNO3溶液逐滴滴加到磁力搅拌下装有去离子水及活性炭的烧杯中;继续磁力搅拌30min后,在磁力搅拌下逐滴加10ml浓度为1.4mmol/ml的Na3C6H5O7溶液;磁力搅拌30min后,将10ml浓度为1.4mmol/ml的NaCl溶液逐滴加入到混合溶液中,并继续搅拌30min以保证反应能够充分进行。遮光条件下抽滤(去离子水和无水乙醇各洗涤3次)、收集样品,并置于80℃鼓风干燥箱中干燥12h,得到AgCl/AC复合材料。
将得到的AgCl/AC在250W的紫外灯光下照射10min,20min,30min,60min使AgCl部分还原,制备出Ag/AgCl/AC复合材料。
(2)取(1)中得到的Ag/AgCl/AC样品在光化学反应仪中进行光催化降解试验,测得光催化剂对四环素抗生素的降解率在60min内分别为97.1%,78.1%,62.6%和65.7%。
(3)Ag/Ag3PO4/AC的制备:
称取2g的AC放入装有10ml去离子水的烧杯中,超声分散洗涤10min,磁力搅拌10min;接着,磁力搅拌下逐滴加入10ml浓度为1.4mmol/ml的AgNO3溶液,完成后继续磁力搅拌30min;磁力搅拌下逐滴加入与AgNO3相同浓度的Na3C6H5O7溶液,加完后继续搅拌30min;之后,10ml浓度为0.47mmol/ml的KH2PO4溶液磁力搅拌下逐滴加入,最后形成的混合物继续搅拌30min。过滤、洗涤(经过去离子水、无水乙醇各三次洗涤后)得到固体样品,放入温度为80℃的鼓风干燥箱中保持12h,得到Ag3PO4/AC复合材料。
采用紫外光照还原法制备Ag/Ag3PO4/AC复合光催化材料。步骤如下:取一定量复合材料Ag3PO4/AC在250W紫外灯光下进行照射10min,20min,30min,60min使Ag3PO4部分还原,得到Ag/Ag3PO4/AC复合材料。
(4)取(3)中得到的Ag/Ag3PO4/AC复合材料在光化学反应仪中进行光催化降解试验,测得光催化剂对四环素抗生素的降解率在60min内分别为89.2%,97.7%,66.7%和61.5%
实施例2:
(1)AgCl/Ag3PO4/AC的制备:
称取2g的AC放入装有10mL去离子水中的烧杯中,70W超声10min,磁力搅拌10min,继续搅拌的同时将10ml浓度为1.54mmol/ml的AgNO3溶液逐滴滴加到上述烧杯中,滴完后再继续搅拌30min;接着将10ml浓度为1.54mmol/ml的Na3C6H5O7澄清溶液逐滴滴加到磁力搅拌的上述溶液中,滴完继续搅拌30min;然后,磁力搅拌条件下将10ml浓度为1.4mmol/ml的NaCl逐滴滴加到烧杯中,滴完后搅拌10min;之后滴加10ml浓度为0.048mmol/ml的KH2PO4溶液,滴完后继续搅拌30min。将最后的混合液抽滤、洗涤、干燥(80℃干燥箱中保持12h),制得WAg3PO4:WAgCl:WAC=0.1:1:10的Ag3PO4/AgCl/AC复合材料,实验的整个过程都要在暗条件下进行,确保所制备的样品受到尽量少的光腐蚀。
(2)Ag/AgCl/Ag3PO4/AC的制备:
取0.5g复合材料AgCl/Ag3PO4/AC在250W紫灯光下进行照射,使Ag部分还原,得到等离子体复合材料Ag/AgCl/Ag3PO4/AC。
其中,步骤(2)中,所述紫外光照射时间为20min。
(3)取(2)中样品在光化学反应仪中进行光催化降解试验,测得该光催化剂对四环素抗生素的降解率在60min内达到91.3%。
实施例3:
(1)AgCl/Ag3PO4/AC的制备:
按实施例2中的步骤,不同的是10ml的AgNO3溶液和10ml的Na3C6H5O7溶液浓度设为1.68mmol/ml,10ml的KH2PO4溶液浓度设为0.095mmol/ml,制得WAg3PO4:WAgCl:WAC=0.2:1:10的Ag3PO4/AgCl/AC复合材料。
(2)Ag/AgCl/Ag3PO4/AC的制备:
取0.5g复合材料AgCl/Ag3PO4/AC在250W紫灯光下进行照射,使Ag部分还原,得到等离子体复合材料Ag/AgCl/Ag3PO4/AC。
其中,步骤(2)中,所述紫外光照射时间为20min。
(3)取(2)中样品在光化学反应仪中进行光催化降解实验,测得该光催化剂对四环素抗生素的降解率在60min内达到90%。
实施例4:
(1)AgCl/Ag3PO4/AC的制备:
按实施例2中的步骤,不同的是10ml的AgNO3溶液和10ml的Na3C6H5O7溶液浓度设为1.83mmol/ml,10ml的KH2PO4溶液浓度设为0.143mmol/ml,制得WAg3PO4:WAgCl:WAC=0.3:1:10的Ag3PO4/AgCl/AC复合材料。
(2)Ag/AgCl/Ag3PO4/AC的制备:
取0.5g复合材料AgCl/Ag3PO4/AC在250W紫灯光下进行照射,使Ag部分还原,得到等离子体复合材料Ag/AgCl/Ag3PO4/AC。
其中,步骤(2)中,所述紫外光照射时间为20min。
(3)取(2)中样品在光化学反应仪中进行光催化降解实验,测得该光催化剂对四环素抗生素的降解率在60min内达到88.1%。
实施例5:
(1)AgCl/Ag3PO4/AC的制备:
按实施例2中的步骤,不同的是10ml的AgNO3溶液和10ml的Na3C6H5O7溶液浓度设为2.27mmol/ml,10ml的KH2PO4溶液浓度设为0.239mmol/ml,制得WAg3PO4:WAgCl:WAC=0.5:1:10的Ag3PO4/AgCl/AC复合材料。
(2)Ag/AgCl/Ag3PO4/AC的制备:
取0.5g复合材料AgCl/Ag3PO4/AC在250W紫灯光下进行照射,使Ag部分还原,得到等离子体复合材料Ag/AgCl/Ag3PO4/AC。
其中,步骤(2)中,所述紫外光照射时间为20min。
(3)取(2)中样品在光化学反应仪中进行光催化降解实验,测得该光催化剂对四环素抗生素的降解率在60min内达到90.28%。
实施例6:
(1)AgCl/Ag3PO4/AC的制备:
按实施例2中的步骤,不同的是10ml的AgNO3溶液和10ml的Na3C6H5O7溶液浓度设为2.83mmol/ml,10ml的KH2PO4溶液浓度设为0.477mmol/ml,制得WAg3PO4:WAgCl:WAC=1:1:10的Ag3PO4/AgCl/AC复合材料。
(2)Ag/AgCl/Ag3PO4/AC的制备:
取0.5g复合材料AgCl/Ag3PO4/AC在250W紫灯光下进行照射,使Ag部分还原,得到等离子体复合材料Ag/AgCl/Ag3PO4/AC。
其中,步骤(2)中,所述紫外光照射时间为20min。
(3)取(2)中样品在光化学反应仪中进行光催化降解实验,测得该光催化剂对四环素抗生素的降解率在60min内达到90.28%。
实施例7:
(1)Ag/AgCl和Ag/Ag3PO4
按实施例1中的步骤(1)(3)(5),不添加AC情况下,制备出纯AgCl、Ag3PO4和AgCl/Ag3PO4,第一个样品经历10min,后两个样品经历20min紫外光照射,制备出等离子体光催化材料Ag/AgCl、Ag/Ag3PO4和Ag/AgCl/Ag3PO4
(2)取(1)中样品在光化学反应仪中进行光催化降解实验,测得Ag/AgCl、Ag/Ag3PO4和Ag/AgCl/Ag3PO4光催化剂对四环素抗生素的降解率在60min内分别达到80.92%、67.9%和88.2%。
图1为纳米Ag包覆AgCl负载于AC等离子体复合材料的SEM及粒径分析图,图中展示了AgCl成功负载于AC表面,AgCl表面有呈凸起状的纳米Ag。
图2为Ag/AgCl/AC等离子体复合材料的光催化降解TC图,从图中可以看出,纳米Ag的引入有利于电子的转移,从而产生更多的活性基团,利于光催化降解反应的进行。
图3为纳米Ag包覆Ag3PO4负载于AC等离子体复合材料的SEM及粒径分析图,图中展示了立方状Ag3PO4成功负载于AC表面,经过紫外光照射Ag3PO4表面有呈凸起状的纳米Ag。
图4为Ag/Ag3PO4/AC等离子体复合材料的光催化降解TC图,从图中可以看出,纳米Ag的生成有利于电子的转移,从而产生更多的活性基团,有助于提高光催化降解效率。
图5为纳米Ag包覆AgCl和Ag3PO4负载于AC等离子体复合催化材料的XRD图,从图中可以看出单质Ag及AgCl和Ag3PO4的特征衍射峰。
图6为Ag/AgCl/Ag3PO4/AC等离子体复合材料及其他材料光催化降解TC图,从图中可以看出,基于银基材料的光敏感性、单质Ag粒子的表面等离子体效应、银基材料的异质结作用和碳质载体的协同效应,共同作用下使形成的等离子体光催化复合材料Ag/AgCl/Ag3PO4/AC显示出增强的光催化降解效果。图中,a.AgCl:Ag3PO4:AC=2:0.6:10,b.AgCl:Ag3PO4:AC=2:1:10,c.AgCl:Ag3PO4:AC=2:2:10,d.Ag/AgCl,e.Ag/AgCl/Ag3PO4,f.Ag/Ag3PO4,g.AgCl/Ag3PO4,h.Ag3PO4

Claims (4)

1.一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法,其特征在于,步骤如下:
将活性炭加入到去离子水中,超声洗涤,磁力搅拌均匀,得到活性炭分散液;在搅拌条件下,将硝酸银溶液逐滴滴加到所述活性炭分散液中,得到混合液A,继续磁力搅拌后,在磁力搅拌下逐滴加入Na3C6H5O7溶液,得到混合液B,磁力搅拌;将NaCl溶液逐滴滴加到混合液B中,得到混合液C,继续搅拌反应;最后滴加KH2PO4溶液,滴完后继续搅拌反应;将反应后的混合液进行抽滤、洗涤、干燥,遮光条件下抽滤、收集样品,干燥,得到Ag3PO4/AgCl/AC复合材料;将得到的Ag3PO4/AgCl/AC复合材料在250W的紫外灯光下照射,得到等离子体光催化剂Ag/AgCl/Ag3PO4/AC。
2.根据权利要求1所述的一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法,其特征在于,所述活性炭分散液、硝酸银溶液、Na3C6H5O7溶液、NaCl溶液、KH2PO4溶液的体积比为1:1:1:1:1;所述活性炭分散液的浓度为0.2g/mL,所述硝酸银溶液的浓度为1.54~2.83mol/L,所述Na3C6H5O7溶液的浓度为1.54~2.83mol/L,所述NaCl溶液的浓度为1.4mol/L,所述KH2PO4溶液的浓度为0.048~0.477mol/L。
3.根据权利要求1所述的一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法,其特征在于,所述紫外灯光下照射时间为20min。
4.权利要求1~3任意一项所述的方法制备的等离子体光催化剂Ag/AgCl/Ag3PO4/AC用于光催化降解抗生素废水中的四环素的用途。
CN201710467275.XA 2017-06-20 2017-06-20 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途 Pending CN107398289A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710467275.XA CN107398289A (zh) 2017-06-20 2017-06-20 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710467275.XA CN107398289A (zh) 2017-06-20 2017-06-20 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途

Publications (1)

Publication Number Publication Date
CN107398289A true CN107398289A (zh) 2017-11-28

Family

ID=60404508

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710467275.XA Pending CN107398289A (zh) 2017-06-20 2017-06-20 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途

Country Status (1)

Country Link
CN (1) CN107398289A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325542A (zh) * 2018-02-02 2018-07-27 华北理工大学 一种网状Ag/Ag3PO4/AgCl复合光催化材料的合成方法
CN110887888A (zh) * 2019-11-15 2020-03-17 超威电源集团有限公司 一种铅酸蓄电池电解液中氯离子含量检测方法
CN112570024A (zh) * 2020-12-28 2021-03-30 青岛科技大学 一种Ag/AgCl/IL/FeOOH/AC光催化材料及其制备与应用
CN113797945A (zh) * 2021-10-03 2021-12-17 桂林理工大学 一种Ag/AgCl/Ag3PO4异质结复合光催化剂的制备方法
CN113797944A (zh) * 2021-10-03 2021-12-17 桂林理工大学 一种以活性炭为载体的Ag/AgBr/Ag3PO4/AC复合光催化剂的制备方法
CN113797943A (zh) * 2021-10-03 2021-12-17 桂林理工大学 一种以碳纳米管为载体的复合光催化剂的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698781A (zh) * 2012-06-15 2012-10-03 桂林理工大学 一种Ag/Ag3PO4复合光催化剂的制备方法
CN106311292A (zh) * 2016-08-25 2017-01-11 闽南师范大学 一种Ag/Ag3PO4光催化剂及其制备方法和应用
CN106732734A (zh) * 2017-01-16 2017-05-31 广西民族大学 一种Z型g‑C3N4@Ag@Ag3PO4复合光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102698781A (zh) * 2012-06-15 2012-10-03 桂林理工大学 一种Ag/Ag3PO4复合光催化剂的制备方法
CN106311292A (zh) * 2016-08-25 2017-01-11 闽南师范大学 一种Ag/Ag3PO4光催化剂及其制备方法和应用
CN106732734A (zh) * 2017-01-16 2017-05-31 广西民族大学 一种Z型g‑C3N4@Ag@Ag3PO4复合光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王会琴: "碳质载体负载银基半导体复合光催化材料的设计与光降解行为及机理研究", 《中国博士学位论文全文数据库工程科技Ⅰ辑》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108325542A (zh) * 2018-02-02 2018-07-27 华北理工大学 一种网状Ag/Ag3PO4/AgCl复合光催化材料的合成方法
CN108325542B (zh) * 2018-02-02 2020-12-08 华北理工大学 一种网状Ag/Ag3PO4/AgCl复合光催化材料的合成方法
CN110887888A (zh) * 2019-11-15 2020-03-17 超威电源集团有限公司 一种铅酸蓄电池电解液中氯离子含量检测方法
CN112570024A (zh) * 2020-12-28 2021-03-30 青岛科技大学 一种Ag/AgCl/IL/FeOOH/AC光催化材料及其制备与应用
CN113797945A (zh) * 2021-10-03 2021-12-17 桂林理工大学 一种Ag/AgCl/Ag3PO4异质结复合光催化剂的制备方法
CN113797944A (zh) * 2021-10-03 2021-12-17 桂林理工大学 一种以活性炭为载体的Ag/AgBr/Ag3PO4/AC复合光催化剂的制备方法
CN113797943A (zh) * 2021-10-03 2021-12-17 桂林理工大学 一种以碳纳米管为载体的复合光催化剂的制备方法

Similar Documents

Publication Publication Date Title
CN107398289A (zh) 一种等离子体光催化剂Ag/AgCl/Ag3PO4/AC的制备方法及用途
Bahmani et al. UiO-66 (Ti)-Fe3O4-WO3 photocatalyst for efficient ammonia degradation from wastewater into continuous flow-loop thin film slurry flat-plate photoreactor
Martins et al. Sol-gel synthesis of new TiO2/activated carbon photocatalyst and its application for degradation of tetracycline
Wu et al. Ag2MoO4 nanoparticles encapsulated in g-C3N4 for sunlight photodegradation of pollutants
Sabzehmeidani et al. Visible light-induced photo-degradation of methylene blue by n–p heterojunction CeO2/CuS composite based on ribbon-like CeO2 nanofibers via electrospinning
CN106975507A (zh) 一种Ag/g‑C3N4复合光催化剂及其制备方法
Chen et al. In-situ synthesis of biochar modified PbMoO4: An efficient visible light-driven photocatalyst for tetracycline removal
CN102380379B (zh) Ag/ZnO-AC光催化剂及其制备方法
CN106044842A (zh) 一种扇形羟基氟化锌的制备方法及其应用
CN105233831A (zh) 一种磁性ZnO@ZnFe2O4复合光催化剂及其制备方法和应用
CN106807400B (zh) 一种复合铁酸铋光催化剂及其制备方法和应用
Qiu et al. Integration of plasmonic effect into MIL-125-NH2: An ultra-efficient photocatalyst for simultaneous removal of ternary system pollutants
CN106423103B (zh) 一种具有吸附-催化降解抗生素功能的复合水凝胶的制备和应用
CN109967128A (zh) 一种降解罗丹明b的光催化复合材料及其制备方法和应用
CN108543542B (zh) 一种三维多孔复合光催化剂的制备方法及应用
CN108671951B (zh) 一种氮化碳复合光催化剂及其制备方法和应用
CN107511130A (zh) 一种沸石负载纳米电气石材料及其制备方法和应用
CN102407149A (zh) Ag-AgBr/凹凸棒石复合光催化材料的制备方法
CN107812529A (zh) 一种复合材料光催化剂及制备方法及应用
CN105344379A (zh) 一种水滑石负载酞菁铁可见光-芬顿催化剂及其制备方法和应用
CN103170331B (zh) 一种微/纳结构氧化锌高效负载银纳米颗粒的制备方法
Zhu et al. Combination of microwave discharge electrodeless lamp and a TiO2/HZSM-5 composite for the photocatalytic degradation of dimethyl sulphide
Zhao et al. Novel Bi2S3/Bi2WO6 nanomaterials with 2D/3D spatial structure stably degrade veterinary antibiotics under visible light
Liu et al. Metal-organic framework CAU-17 derived Bi/BiVO4 photocatalysts for the visible light-driven degradation of tetracycline hydrochloride
Zhong et al. Performance and mechanism of adsorption during synergistic photocatalytic degradation of tetracycline in water under visible (solar) irradiation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171128

RJ01 Rejection of invention patent application after publication