CN107356212A - 一种基于单幅光栅投影的三维测量方法和*** - Google Patents

一种基于单幅光栅投影的三维测量方法和*** Download PDF

Info

Publication number
CN107356212A
CN107356212A CN201710402196.0A CN201710402196A CN107356212A CN 107356212 A CN107356212 A CN 107356212A CN 201710402196 A CN201710402196 A CN 201710402196A CN 107356212 A CN107356212 A CN 107356212A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mfrac
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710402196.0A
Other languages
English (en)
Other versions
CN107356212B (zh
Inventor
田劲东
吴建梅
李东
田勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201710402196.0A priority Critical patent/CN107356212B/zh
Publication of CN107356212A publication Critical patent/CN107356212A/zh
Application granted granted Critical
Publication of CN107356212B publication Critical patent/CN107356212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种基于单幅光栅投影的三维测量方法和***,方法包括:物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;利用S变换法处理变形条纹图以获得主值相位φ(x,y);基于消除包裹法进行解包裹,获得绝对相位对远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。***用于执行方法。本发明基于单幅条纹图,在S变换法得到主值相位后,对该主值相位两端进行补零,使得频域内获得上采样,根据傅里叶变换频移特性将相位的频谱移动到原始位置,消除载波的相位分量,采用远心成像模型,拟合高度‑相位映射关系,对三维测量***进行标定,获取被测物体的三维坐标信息,步骤简单,测量速度更快。

Description

一种基于单幅光栅投影的三维测量方法和***
技术领域
本发明涉及一种基于单幅光栅投影的三维测量方法和***,属于三维测量领域。
背景技术
Takeda等人1983年提出了基于光栅投影的三维面形测量方法——傅里叶变换轮廓术(FTP)。傅里叶变换轮廓术是通过向物体表面投射光栅条纹,获得被物体高度调制而发生变形的光栅,利用特定算法对变形条纹图像进行傅里叶变换、滤波、傅里叶逆变换和解包裹处理,提取其中的相位,再通过对测量***的标定,从而获得物体的三维信息。
近年来,S变换已经应用到光学三维面形测量中光栅投影的相位解调过程,同FTP比较,S变换技术在具备FTP的优点之上,处理速度和频谱处理上有更多优势。
解相位是光栅投影法的基本问题之一。首先通过S变换获得条纹图的相位主值,值域位于(-π,+π]区间,再将相位主值恢复成完整的相位场。目前采用的解包裹方法如洪水法、质量图引导法等,过程都较为复杂,耗时较长,且都需两幅条纹图才能获得绝对相位,
如何快速、简单地进行解包裹,真正实现动态物体测量,满足自动化需求在主动光学三维测量中非常重要。
发明内容
为了解决上述问题,本发明通过提供一种基于单幅光栅投影的三维测量方法和***。
本发明采用的技术方案一方面为一种基于单幅光栅投影的三维测量方法,包括:
物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;
利用S变换法处理变形条纹图以获得主值相位φ(x,y);
基于消除包裹法进行解包裹,获得绝对相位
对基于远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。
优选地,利用S变换法处理变形条纹图的步骤包括:
对获得的变形正弦条纹图h(t)进行一维S变换,S变换系数S(τ,f)公式为:
其中,是高斯函数,f为频率,t表示时间,τ决定高斯窗口的中心位置;
对获得的包含S变换的复杂矩阵采用平顶汉宁窗加权滤波;
对滤波获得的局部基频分量沿时间轴进行叠加,获得完整基频分量,对其进行傅里叶逆变换后,获得基频复信号,表示为解得相位主值φ(x,y):
其中,Im()和Re()分别表示取复信号的虚数部分和实数部分,其值域为[-π,π)。
优选地,所述平顶汉宁窗的数学表达式为:
该平顶汉宁窗以S变换幅值最大处为中心,标记该处为S变换脊,fb为S变换脊的频率,fwlow,fwhigh分别表示从S变换脊分别往低频与高频方向上的延伸宽度,fb+fwhigh,fb-fwlow分别表示高低端截止频率,else表示其他频率。
优选地,利用消除包裹法进行解包裹的步骤包括:
利用欧拉公式将包裹相位φ(x,y)变成复数形式,ejφ(x,y)=cosφ(x,y)+jsinφ(x,y);
令φc(x,y)=ejφ(x,y),取φc(x,y)的第x行,x∈[0,M-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcx(x,y)进行一维傅里叶变换,求得相位的水平方向频谱偏移量μ0
令φc(x,y)=ejφ(x,y),取φc(x,y)的第y列,y∈[0,N-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcy(x,y)进行一维傅里叶变换,得到相位的竖直方向频谱偏移量ν0
根据傅里叶变换频移特性,在空间域将相位的频谱移动到原始位置,所述傅里叶变换频移特性表达式为:
其中,(t,z)表示空间变量,(μ,ν)表示频率域变量,则有,
对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位。
优选地,对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位,所述四象限反正切操作的表达式:
本发明采用的技术方案另一方面为一种基于单幅光栅投影的三维测量***,包括:
光栅模块,用于将物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;
处理模块,用于利用S变换法处理变形条纹图以获得主值相位φ(x,y);
还用于基于消除包裹法进行解包裹,获得绝对相位
测量模块,用于对基于远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。
优选地,利用S变换法处理变形条纹图的步骤包括:
对获得的变形正弦条纹图h(t)进行一维S变换,S变换系数S(τ,f)公式为:
其中,是高斯函数,f为频率,t表示时间,τ决定高斯窗口的中心位置;
对获得的包含S变换的复杂矩阵采用平顶汉宁窗加权滤波;
对滤波获得的局部基频分量沿时间轴进行叠加,获得完整基频分量,对其进行傅里叶逆变换后,获得基频复信号,表示为解得相位主值φ(x,y):
其中,Im()和Re()分别表示取复信号的虚数部分和实数部分,其值域为[-π,π)。
优选地,所述平顶汉宁窗的数学表达式为:
该平顶汉宁窗以S变换幅值最大处为中心,标记该处为S变换脊,fb为S变换脊的频率,fwlow,fwhigh分别表示从S变换脊分别往低频与高频方向上的延伸宽度,fb+fwhigh,fb-fwlow分别表示高低端截止频率,else表示其他频率。
优选地,利用消除包裹法进行解包裹的步骤包括:
利用欧拉公式将包裹相位φ(x,y)变成复数形式,ejφ(x,y)=cosφ(x,y)+jsinφ(x,y);
令φc(x,y)=ejφ(x,y),取φc(x,y)的第x行,x∈[0,M-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcx(x,y)进行一维傅里叶变换,求得相位的水平方向频谱偏移量μ0
令φc(x,y)=ejφ(x,y),取φc(x,y)的第y列,y∈[0,N-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcy(x,y)进行一维傅里叶变换,得到相位的竖直方向频谱偏移量ν0
根据傅里叶变换频移特性,在空间域将相位的频谱移动到原始位置,所述傅里叶变换频移特性表达式为:
其中,(t,z)表示空间变量,(μ,ν)表示频率域变量,则有,
对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位。
优选地,对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位,所述四象限反正切操作的表达式:
本发明的有益效果为基于单幅条纹图,在S变换法得到主值相位后,对该主值相位两端进行补零,使得频域内获得上采样,根据傅里叶变换频移特性将相位的频谱移动到原始位置,消除载波的相位分量,采用远心成像模型,拟合高度-相位映射关系,对三维测量***进行标定,获取被测物体的三维坐标信息,步骤简单,测量速度更快。
附图说明
图1所示为基于本发明实施例的一种基于单幅光栅投影的三维测量方法示意图;
图2所示为基于本发明实施例的S变换法获得的主值相位图像;
图3所示为基于本发明实施例的对主值相位图某一行补零后的结果图;
图4所示为基于本发明实施例的硬币的三维轮廓图像。
具体实施方式
以下结合实施例对本发明进行说明。
基于发明的实施例1,如图1所示一种基于单幅光栅投影的三维测量方法,包括:物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;利用S变换法处理变形条纹图以获得主值相位φ(x,y);基于消除包裹法进行解包裹,获得绝对相位对基于远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。
基于发明的实施例1所述的方法,利用S变换法处理变形条纹图的步骤包括:
对获得的变形正弦条纹图h(t)进行一维S变换,S变换系数S(τ,f)公式为:
其中,是高斯函数,f为频率,t表示时间,τ决定高斯窗口的中心位置;对获得的包含S变换的复杂矩阵采用平顶汉宁窗加权滤波;
对滤波获得的局部基频分量沿时间轴进行叠加,获得完整基频分量,对其进行傅里叶逆变换后,获得基频复信号,表示为解得相位主值φ(x,y):
其中,Im()和Re()分别表示取复信号的虚数部分和实数部分,其值域为[-π,π)。
基于发明的实施例1所述的方法,所述平顶汉宁窗的数学表达式为:
该平顶汉宁窗以S变换幅值最大处为中心,标记该处为S变换脊,fb为S变换脊的频率,fwlow,fwhigh分别表示从S变换脊分别往低频与高频方向上的延伸宽度,fb+fwhigh,fb-fwlow分别表示高低端截止频率,else表示其他频率。
基于发明的实施例1所述的方法,利用消除包裹法进行解包裹的步骤包括:
利用欧拉公式将包裹相位φ(x,y)变成复数形式,ejφ(x,y)=cosφ(x,y)+jsinφ(x,y);
令φc(x,y)=ejφ(x,y),取φc(x,y)的第x行,x∈[0,M-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的1*2KN大小的矩阵φcx(x,y)进行一维傅里叶变换,求得相位的水平方向频谱偏移量μ0
令φc(x,y)=ejφ(x,y),取φc(x,y)的第y列,y∈[0,N-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的2KM*1大小的矩阵φcy(x,y)进行一维傅里叶变换,得到相位的竖直方向频谱偏移量ν0
根据傅里叶变换频移特性,在空间域将相位的频谱移动到原始位置,所述傅里叶变换频移特性表达式为:
其中,(t,z)表示空间变量,(μ,ν)表示频率域变量,则有,
对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位。
基于发明的实施例1所述的方法,对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位,所述四象限反正切操作的表达式:
基于远心成像的三维形貌测量***标定方法为现有技术,包括步骤:
步骤S1:搭建远心三维形貌测量***,所述测量***包括:远心投影设备、远心摄像设备、平移台;远心摄像设备的光轴垂直于水平放置的平移台,远心投影设备的光轴与平移台成一夹角,并控制远心摄像设备的光轴与远心投影设备的光轴处于同一平面内;
步骤S2:使平移台处于远心投影设备和远心摄像设备的共同景深范围内,控制远心投影设备对平移台投射正弦条纹图,远心摄像设备采集所述正弦条纹图,选取远心摄像设备图像平面上的任一像素点作为标定用像素点,利用多步相移法解得该标定用像素点的绝对相位值,并记录此时的平移台高度值;
控制平移台在远心投影设备和远心摄像设备的共同景深范围内沿远心摄像设备的光轴方向进行数次位移,在移动平移台至不同高度时,获取此高度下标定用像素点的绝对相位值,并记录相应的平移台高度值;
对获得的平移台的高度值与相应的标定用像素点的绝对相位值进行线性拟合,建立远心成像的三维形貌测量***中绝对相位值与平移台高度值的转换关系;
步骤S3:通过标定远心摄像设备的参量,将远心摄像设备图像平面上的像素坐标转换为世界坐标。
基于本发明的实施例2,一种基于单幅光栅投影的三维测量***,包括:
光栅模块,用于将物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;
处理模块,用于利用S变换法处理变形条纹图以获得主值相位φ(x,y);
还用于基于消除包裹法进行解包裹,获得绝对相位
测量模块,用于对基于远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。
基于本发明的实施例2所述的***,利用S变换法处理变形条纹图的步骤包括:
对获得的变形正弦条纹图h(t)进行一维S变换,S变换系数S(τ,f)公式为:
其中,是高斯函数,f为频率,t表示时间,τ决定高斯窗口的中心位置;
对获得的包含S变换的复杂矩阵采用平顶汉宁窗加权滤波;
对滤波获得的局部基频分量沿时间轴进行叠加,获得完整基频分量,对其进行傅里叶逆变换后,获得基频复信号,表示为解得相位主值φ(x,y):
其中,Im()和Re()分别表示取复信号的虚数部分和实数部分,其值域为[-π,π)。
基于本发明的实施例2所述的***,所述平顶汉宁窗的数学表达式为:
该平顶汉宁窗以S变换幅值最大处为中心,标记该处为S变换脊,fb为S变换脊的频率,fwlow,fwhigh分别表示从S变换脊分别往低频与高频方向上的延伸宽度,fb+fwhigh,fb-fwlow分别表示高低端截止频率,else表示其他频率。
基于本发明的实施例2所述的***,利用消除包裹法进行解包裹的步骤包括:
利用欧拉公式将包裹相位φ(x,y)变成复数形式,ejφ(x,y)=cosφ(x,y)+jsinφ(x,y);
令φc(x,y)=ejφ(x,y),取φc(x,y)的第x行,x∈[0,M-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcx(x,y)进行一维傅里叶变换,求得相位的水平方向频谱偏移量μ0
令φc(x,y)=ejφ(x,y),取φc(x,y)的第y列,y∈[0,N-1],对其两端进行补零,所述补零的表达式为:
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcy(x,y)进行一维傅里叶变换,得到相位的竖直方向频谱偏移量ν0
根据傅里叶变换频移特性,在空间域将相位的频谱移动到原始位置,所述傅里叶变换频移特性表达式为:
其中,(t,z)表示空间变量,(μ,ν)表示频率域变量,则有,
对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位。
基于本发明的实施例2所述的***,对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位,所述四象限反正切操作的表达式:
基于本发明的实施例3,计算出被测物体的三维坐标信息的方法。在Windows操作***下采用MATLAB编程工具上实现。本实施例采用5角硬币作为被测物体,最终得到物体的绝对相位分布,并生成三维图像。
本发明中首先调整投影仪和相机的位置,使待测物体处于二者共同景深下,调整使得条纹清晰度、正弦性良好时,进行拍摄。
图2为S变换法获得的主值相位图像,如图3所示为对主值相位图某一行补零后的结果图,在S变换法得到主值相位后,对该主值相位两端进行补零,使得频域内获得上采样,根据傅里叶变换频移特性将相位的频谱移动到原始位置,消除载波的相位分量,得到的即是所求受被测物体高度调制的相位;最后采用远心成像模型,拟合高度-相位映射关系,对三维测量***进行标定,求得被测物体的三维坐标信息,如图4所示为硬币的三维轮廓图像。具体处理过程如下:
首先将摄像机像面像素坐标转换为物理世界的二维面内坐标。对于摄像机图像上任意一点(u,v),A为摄像机的内参数矩阵,R和T分别表示摄像机坐标系相对于世界坐标系的旋转矩阵和平移向量,[R,T]为外参矩阵,根据物相双远心光路的成像特点,则参考面(Z=0)上某点的世界坐标与计算机图像坐标的转换关系为:
采用现有技术如径向约束标定方法等可获得内外参数矩阵,即可获得二维面内的物理世界坐标。
通过精密平移台在z轴方向得到一系列的标准高度,分别为H1,H2,······,Hn;对于摄像机图像上任意一点(u,v),利用本方案的方法计算对应的连续相位分布,分别为计算其相位差值为:
······,
对获得的一系列标准高度H1,H2,······,Hn,与获得的对应的Δφ1(u,v),Δφ2(u,v),······,Δφn(u,v),进行线性差值拟合,得到高度-相位的映射关系;最后计算出被测物体的三维坐标信息。
以上所述,只是本发明的较佳实施例而已,本发明并不局限于上述实施方式,只要其以相同的手段达到本发明的技术效果,都应属于本发明的保护范围。在本发明的保护范围内其技术方案和/或实施方式可以有各种不同的修改和变化。

Claims (10)

1.一种基于单幅光栅投影的三维测量方法,其特征在于,包括:
物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;
利用S变换法处理变形条纹图以获得主值相位φ(x,y);
基于消除包裹法进行解包裹,获得绝对相位
对基于远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。
2.根据权利要求1所述一种基于单幅光栅投影的三维测量方法,其特征在于,利用S变换法处理变形条纹图的步骤包括:
对获得的变形正弦条纹图h(t)进行一维S变换,S变换系数S(τ,f)公式为:
其中,是高斯函数,f为频率,t表示时间,τ决定高斯窗口的中心位置;
对获得的包含S变换的复杂矩阵采用平顶汉宁窗加权滤波;
对滤波获得的局部基频分量沿时间轴进行叠加,获得完整基频分量,对其进行傅里叶逆变换后,获得基频复信号,表示为解得相位主值φ(x,y):
其中,Im()和Re()分别表示取复信号的虚数部分和实数部分,其值域为[-π,π)。
3.根据权利要求1所述一种基于单幅光栅投影的三维测量方法,其特征在于,所述平顶汉宁窗的数学表达式为:
<mrow> <mi>w</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>{</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&amp;lsqb;</mo> <mi>d</mi> <mfrac> <mrow> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>-</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mfrac> <mrow> <mn>2</mn> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mfrac> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>f</mi> <mo>&lt;</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>&amp;le;</mo> <mi>f</mi> <mo>&lt;</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>{</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>-</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mfrac> <mrow> <mn>2</mn> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mfrac> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>&lt;</mo> <mi>f</mi> <mo>&amp;le;</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
该平顶汉宁窗以S变换幅值最大处为中心,标记该处为S变换脊,fb为S变换脊的频率,fwlow,fwhigh分别表示从S变换脊分别往低频与高频方向上的延伸宽度,fb+fwhigh,fb-fwlow分别表示高低端截止频率,else表示其他频率。
4.根据权利要求1所述一种基于单幅光栅投影的三维测量方法,其特征在于,利用消除包裹法进行解包裹的步骤包括:
利用欧拉公式将包裹相位φ(x,y)变成复数形式,ejφ(x,y)=cosφ(x,y)+jsinφ(x,y);
令φc(x,y)=ejφ(x,y),取φc(x,y)的第x行,x∈[0,M-1],对其两端进行补零,所述补零的表达式为:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>c</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mi>k</mi> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;phi;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> <mi>k</mi> <mi>M</mi> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcx(x,y)进行一维傅里叶变换,求得相位的水平方向频谱偏移量μ0
令φc(x,y)=ejφ(x,y),取φc(x,y)的第y列,y∈[0,N-1],对其两端进行补零,所述补零的表达式为:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>c</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mi>k</mi> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;phi;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> <mi>k</mi> <mi>N</mi> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>N</mi> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcy(x,y)进行一维傅里叶变换,得到相位的竖直方向频谱偏移量ν0
根据傅里叶变换频移特性,在空间域将相位的频谱移动到原始位置,所述傅里叶变换频移特性表达式为:
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>v</mi> <mo>+</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>F</mi> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;mu;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>/</mo> <mi>M</mi> <mo>+</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mi>z</mi> <mo>/</mo> <mi>N</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
其中,(t,z)表示空间变量,(μ,ν)表示频率域变量,则有,
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;phi;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;mu;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>/</mo> <mi>M</mi> <mo>+</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mi>z</mi> <mo>/</mo> <mi>N</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </msup> <mo>;</mo> </mrow>
对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位。
5.根据权利要求4所述一种基于单幅光栅投影的三维测量方法,其特征在于,对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位,所述四象限反正切操作的表达式:
6.一种基于单幅光栅投影的三维测量***,其特征在于,包括:
光栅模块,用于将物理光栅离焦投影到待测试物体以形成正弦条纹图,采集待测试物体的变形条纹图;
处理模块,用于利用S变换法处理变形条纹图以获得主值相位φ(x,y);
还用于基于消除包裹法进行解包裹,获得绝对相位
测量模块,用于对基于远心成像的三维测量***进行标定以建立成像模型,计算被测物体的三维坐标信息。
7.根据权利要求6所述一种基于单幅光栅投影的三维测量***,其特征在于,利用S变换法处理变形条纹图的步骤包括:
对获得的变形正弦条纹图h(t)进行一维S变换,S变换系数S(τ,f)公式为:
其中,是高斯函数,f为频率,t表示时间,τ决定高斯窗口的中心位置;
对获得的包含S变换的复杂矩阵采用平顶汉宁窗加权滤波;
对滤波获得的局部基频分量沿时间轴进行叠加,获得完整基频分量,对其进行傅里叶逆变换后,获得基频复信号,表示为解得相位主值φ(x,y):
其中,Im()和Re()分别表示取复信号的虚数部分和实数部分,其值域为[-π,π)。
8.根据权利要求6所述一种基于单幅光栅投影的三维测量方法,其特征在于,所述平顶汉宁窗的数学表达式为:
<mrow> <mi>w</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>{</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&amp;lsqb;</mo> <mi>d</mi> <mfrac> <mrow> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>-</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mfrac> <mrow> <mn>2</mn> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mfrac> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> <mo>&amp;le;</mo> <mi>f</mi> <mo>&lt;</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>&amp;le;</mo> <mi>f</mi> <mo>&lt;</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0.5</mn> <mo>{</mo> <mn>1</mn> <mo>+</mo> <mi>cos</mi> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mi>&amp;pi;</mi> <mrow> <mo>(</mo> <mi>f</mi> <mo>-</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>-</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>l</mi> <mi>o</mi> <mi>w</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>)</mo> </mrow> </mrow> <mfrac> <mrow> <mn>2</mn> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> </mfrac> <mo>&amp;rsqb;</mo> <mo>}</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> <mn>3</mn> </mfrac> <mo>&lt;</mo> <mi>f</mi> <mo>&amp;le;</mo> <msub> <mi>f</mi> <mi>b</mi> </msub> <mo>+</mo> <msub> <mi>fw</mi> <mrow> <mi>h</mi> <mi>i</mi> <mi>g</mi> <mi>h</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>e</mi> <mi>l</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
该平顶汉宁窗以S变换幅值最大处为中心,标记该处为S变换脊,fb为S变换脊的频率,fwlow,fwhigh分别表示从S变换脊分别往低频与高频方向上的延伸宽度,fb+fwhigh,fb-fwlow分别表示高低端截止频率,else表示其他频率。
9.根据权利要求6所述一种基于单幅光栅投影的三维测量方法,其特征在于,利用消除包裹法进行解包裹的步骤包括:
利用欧拉公式将包裹相位φ(x,y)变成复数形式,ejφ(x,y)=cosφ(x,y)+jsinφ(x,y);
令φc(x,y)=ejφ(x,y),取φc(x,y)的第x行,x∈[0,M-1],对其两端进行补零,所述补零的表达式为:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>c</mi> <mi>x</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mi>k</mi> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;phi;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> <mi>k</mi> <mi>M</mi> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcx(x,y)进行一维傅里叶变换,求得相位的水平方向频谱偏移量μ0
令φc(x,y)=ejφ(x,y),取φc(x,y)的第y列,y∈[0,N-1],对其两端进行补零,所述补零的表达式为:
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>c</mi> <mi>y</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mn>0</mn> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mi>k</mi> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;phi;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>c</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>;</mo> <mi>k</mi> <mi>N</mi> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>;</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>N</mi> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mrow> <mo>(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
其中,M表示沿水平方向φc(x,y)的像素值大小,N表示沿竖直方向φc(x,y)的像素值大小,k为一个整数,对获得的矩阵φcy(x,y)进行一维傅里叶变换,得到相位的竖直方向频谱偏移量ν0
根据傅里叶变换频移特性,在空间域将相位的频谱移动到原始位置,所述傅里叶变换频移特性表达式为:
<mrow> <mi>F</mi> <mrow> <mo>(</mo> <mi>&amp;mu;</mi> <mo>+</mo> <msub> <mi>&amp;mu;</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>v</mi> <mo>+</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>F</mi> <mo>&amp;lsqb;</mo> <mi>f</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>,</mo> <mi>z</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;mu;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>/</mo> <mi>M</mi> <mo>+</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mi>z</mi> <mo>/</mo> <mi>N</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </msup> <mo>&amp;rsqb;</mo> <mo>,</mo> </mrow>
其中,(t,z)表示空间变量,(μ,ν)表示频率域变量,则有,
<mrow> <msub> <mi>&amp;phi;</mi> <mrow> <mi>c</mi> <mi>s</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;phi;</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mo>(</mo> <mo>-</mo> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;mu;</mi> <mi>o</mi> </msub> <mi>t</mi> <mo>/</mo> <mi>M</mi> <mo>+</mo> <msub> <mi>v</mi> <mn>0</mn> </msub> <mi>z</mi> <mo>/</mo> <mi>N</mi> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </msup> <mo>;</mo> </mrow>
对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位。
10.根据权利要求9所述一种基于单幅光栅投影的三维测量方法,其特征在于,对φcs(x,y)进行四象限反正切操作,获得消除了包裹的相位,所述四象限反正切操作的表达式:
CN201710402196.0A 2017-06-01 2017-06-01 一种基于单幅光栅投影的三维测量方法和*** Active CN107356212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710402196.0A CN107356212B (zh) 2017-06-01 2017-06-01 一种基于单幅光栅投影的三维测量方法和***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710402196.0A CN107356212B (zh) 2017-06-01 2017-06-01 一种基于单幅光栅投影的三维测量方法和***

Publications (2)

Publication Number Publication Date
CN107356212A true CN107356212A (zh) 2017-11-17
CN107356212B CN107356212B (zh) 2020-01-21

Family

ID=60271622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710402196.0A Active CN107356212B (zh) 2017-06-01 2017-06-01 一种基于单幅光栅投影的三维测量方法和***

Country Status (1)

Country Link
CN (1) CN107356212B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955575A (zh) * 2018-08-22 2018-12-07 江南大学 一种基于单幅干涉条纹高精度地恢复波面的方法
CN109443250A (zh) * 2018-12-07 2019-03-08 成都信息工程大学 一种基于s变换的结构光三维面形垂直测量方法
CN110057321A (zh) * 2019-04-28 2019-07-26 西安理工大学 基于x-f-k变换快速实现频域解相的三维物体面形测量方法
CN112361992A (zh) * 2020-11-10 2021-02-12 齐鲁工业大学 一种光栅投影三维测量方法及装置
CN113029042A (zh) * 2021-05-25 2021-06-25 四川大学 一种高温熔融态金属表面形貌动态测量装置及方法
CN113358061A (zh) * 2021-05-31 2021-09-07 东南大学 端到端标定深度学习网络的单幅条纹三维点云测量方法
CN114295327A (zh) * 2021-12-02 2022-04-08 天津大学 基于远心成像***的光学***透射波前测量方法及装置
CN114509024A (zh) * 2022-04-20 2022-05-17 广东工业大学 基于相位融合的大深度范围三维测量方法、***及装置
CN117007598A (zh) * 2023-06-15 2023-11-07 湖南视比特机器人有限公司 一种基于偏折成像的车身漆面缺陷智能检测方法及***

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322949A (ja) * 2006-07-24 2006-11-30 Wakayama Univ エイリアシングを利用した投影格子の位相解析方法
US20080151734A1 (en) * 2006-12-22 2008-06-26 Fuji Xerox Co., Ltd. Hologram recording method and device, hologram reproduction method and device, and optical recording medium
CN101975558A (zh) * 2010-09-03 2011-02-16 东南大学 基于彩色光栅投影的快速三维测量方法
WO2011099377A1 (en) * 2010-02-10 2011-08-18 Canon Kabushiki Kaisha Analyzing method of phase information, analyzing program of the phase information, storage medium, and x-ray imaging apparatus
CN102445165A (zh) * 2011-08-05 2012-05-09 南京航空航天大学 基于单幅彩色编码光栅的立体视觉测量方法
CN102620685A (zh) * 2012-03-23 2012-08-01 东南大学 一种基于史托克维尔变换的改进窗口傅里叶三维测量法
CN104457615A (zh) * 2014-11-14 2015-03-25 深圳大学 基于广义s变换的三维数字成像方法
CN105844633A (zh) * 2016-03-21 2016-08-10 西安电子科技大学 基于De序列和相位编码的单帧结构光深度获取方法
CN106289109A (zh) * 2016-10-26 2017-01-04 长安大学 一种基于结构光的三维重建***及方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322949A (ja) * 2006-07-24 2006-11-30 Wakayama Univ エイリアシングを利用した投影格子の位相解析方法
US20080151734A1 (en) * 2006-12-22 2008-06-26 Fuji Xerox Co., Ltd. Hologram recording method and device, hologram reproduction method and device, and optical recording medium
WO2011099377A1 (en) * 2010-02-10 2011-08-18 Canon Kabushiki Kaisha Analyzing method of phase information, analyzing program of the phase information, storage medium, and x-ray imaging apparatus
CN101975558A (zh) * 2010-09-03 2011-02-16 东南大学 基于彩色光栅投影的快速三维测量方法
CN102445165A (zh) * 2011-08-05 2012-05-09 南京航空航天大学 基于单幅彩色编码光栅的立体视觉测量方法
CN102620685A (zh) * 2012-03-23 2012-08-01 东南大学 一种基于史托克维尔变换的改进窗口傅里叶三维测量法
CN104457615A (zh) * 2014-11-14 2015-03-25 深圳大学 基于广义s变换的三维数字成像方法
CN105844633A (zh) * 2016-03-21 2016-08-10 西安电子科技大学 基于De序列和相位编码的单帧结构光深度获取方法
CN106289109A (zh) * 2016-10-26 2017-01-04 长安大学 一种基于结构光的三维重建***及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑毅 等: "基于S变换滤波解相法的条纹解相研究", 《光学技术》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108955575A (zh) * 2018-08-22 2018-12-07 江南大学 一种基于单幅干涉条纹高精度地恢复波面的方法
CN109443250A (zh) * 2018-12-07 2019-03-08 成都信息工程大学 一种基于s变换的结构光三维面形垂直测量方法
CN110057321A (zh) * 2019-04-28 2019-07-26 西安理工大学 基于x-f-k变换快速实现频域解相的三维物体面形测量方法
CN110057321B (zh) * 2019-04-28 2021-01-15 西安理工大学 基于x-f-k变换快速实现频域解相的三维物体面形测量方法
CN112361992A (zh) * 2020-11-10 2021-02-12 齐鲁工业大学 一种光栅投影三维测量方法及装置
CN112361992B (zh) * 2020-11-10 2022-03-25 齐鲁工业大学 一种光栅投影三维测量方法及装置
CN113029042B (zh) * 2021-05-25 2021-08-03 四川大学 一种高温熔融态金属表面形貌动态测量装置及方法
CN113029042A (zh) * 2021-05-25 2021-06-25 四川大学 一种高温熔融态金属表面形貌动态测量装置及方法
CN113358061A (zh) * 2021-05-31 2021-09-07 东南大学 端到端标定深度学习网络的单幅条纹三维点云测量方法
CN114295327A (zh) * 2021-12-02 2022-04-08 天津大学 基于远心成像***的光学***透射波前测量方法及装置
CN114509024A (zh) * 2022-04-20 2022-05-17 广东工业大学 基于相位融合的大深度范围三维测量方法、***及装置
CN114509024B (zh) * 2022-04-20 2022-08-09 广东工业大学 基于相位融合的大深度范围三维测量方法、***及装置
US11740076B2 (en) 2022-04-20 2023-08-29 Guangdong University Of Technology Large-depth-range three-dimensional (3D) measurement method, system, and device based on phase fusion
CN117007598A (zh) * 2023-06-15 2023-11-07 湖南视比特机器人有限公司 一种基于偏折成像的车身漆面缺陷智能检测方法及***

Also Published As

Publication number Publication date
CN107356212B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
CN107356212A (zh) 一种基于单幅光栅投影的三维测量方法和***
CN105205858B (zh) 一种基于单个深度视觉传感器的室内场景三维重建方法
CN105783775B (zh) 一种镜面及类镜面物体表面形貌测量装置与方法
CN105953747B (zh) 结构光投影全视角三维成像***及方法
CN109489585B (zh) 基于改进多频条纹结构光的三维测量方法
CN106887023A (zh) 用于双目摄像机标定的标定板及其标定方法和标定***
CN102506757B (zh) 双目立体测量***多视角测量中的自定位方法
CN107063129A (zh) 一种阵列式并行激光投影三维扫描方法
CN107274453A (zh) 一种结合标定与校正的摄像机三维测量装置、***及方法
CN104897083B (zh) 一种基于投影仪散焦解相位的光栅投影三维快速测量方法
CN109215108A (zh) 基于激光扫描的全景三维重建***及方法
CN107633536A (zh) 一种基于二维平面模板的相机标定方法及***
CN105427298A (zh) 基于各向异性梯度尺度空间的遥感图像配准方法
CN107993258A (zh) 一种图像配准方法及装置
CN107167093A (zh) 一种激光线扫描与阴影莫尔的复合式测量***及测量方法
CN108225216A (zh) 结构光***标定方法及装置、结构光***及移动设备
CN107729893A (zh) 一种合模机的视觉定位方法、***和存储介质
Yang et al. Flexible and accurate implementation of a binocular structured light system
CN107869954A (zh) 一种双目视觉体积重量测量***及其实现方法
CN106500625A (zh) 一种远心立体视觉测量装置及其应用于物体三维形貌微米级精度测量的方法
CN104680570B (zh) 一种基于视频的动作捕捉***及方法
CN110264527A (zh) 基于zynq的实时双目立体视觉输出方法
CN106500626A (zh) 一种手机立体成像方法及三维成像手机
CN109993801A (zh) 一种用于二维相机与三维传感器的标定装置及标定方法
CN102903078B (zh) 一种基于多分辨率傅里叶分析理论的运动模糊图像参数估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant