CN107311231A - 一种具有光催化分解水制氢性能的超薄二维纳米片 - Google Patents

一种具有光催化分解水制氢性能的超薄二维纳米片 Download PDF

Info

Publication number
CN107311231A
CN107311231A CN201710577841.2A CN201710577841A CN107311231A CN 107311231 A CN107311231 A CN 107311231A CN 201710577841 A CN201710577841 A CN 201710577841A CN 107311231 A CN107311231 A CN 107311231A
Authority
CN
China
Prior art keywords
nbo
hti
nanometer sheet
thin
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710577841.2A
Other languages
English (en)
Inventor
吴棱
罗水广
刘玉豪
王志同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201710577841.2A priority Critical patent/CN107311231A/zh
Publication of CN107311231A publication Critical patent/CN107311231A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30
    • B01J35/39
    • B01J35/615
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

本发明公开了一种具有光催化分解水制氢性能的超薄二维纳米片,属于材料制备和光催化技术领域。采用层状HTi2NbO7为前驱体,通过离子交换辅助液体法,以四丁基氢氧化铵作为剥离剂,成功合成超薄二维HTi2NbO7纳米片,HTi2NbO7纳米片的厚度只有1.65nm,厚度接近单个分子的厚度。本发明制备方法简单、使用性强、原料廉价易得、节能环保,有利于大规模的工业生产,具备显著地经济和社会效益。制备的超薄二维HTi2NbO7纳米片厚度薄,具有大的比表面积,首次应用于光催化分解水制氢并具有高效的光催化分解水制氢性能。

Description

一种具有光催化分解水制氢性能的超薄二维纳米片
技术领域
本发明属于材料制备和光催化技术领域,具体涉及一种具有光催化分解水制氢性能的超薄二维纳米片。
背景技术
清洁能源的使用可以有效的解决能源危机和环境污染所引发的问题。氢能被认为是最有发展前景的清洁能源之一。使用无机半导体光催化剂吸收太阳光分解水制氢能被认为是最引人注目和最环保的方式。超薄二维纳米材料是一类新兴的纳米材料,其具有横向尺寸大于100nm或高达几微米的片状结构,但是厚度只有单个或几个原子厚。由于电子被限制在二维环境中,超薄二维纳米材料表现出无与伦比的物理、电子和化学性能,因此将超薄二维材料作为光催化材料用于光催化分解水制氢具有广阔的发展前景。
超薄二维HTi2NbO7纳米片是一种单分子层纳米材料,首次应用于光催化分解水制氢并具有高效的光催化分解水制氢性能,为研究者从分子水平上认识光催化反应的本质提供了可能,对于探索光催化反应的本质具有重大的意义。本发明旨在通过离子交换辅助液体法,开发一种新型超薄二维HTi2NbO7纳米片光催化分解水制氢材料。
发明内容
本发明的目的在于针对现有技术不足,提供一种具有光催化分解水制氢性能的超薄二维纳米片,所述二维纳米片的化学式为HTi2NbO7,厚度为1.65 nm,比表面积达107 m2/g,长宽为100-1000 nm,具有高效的光催化分解水制氢性能。本发明制备方法简单、原料廉价易得、有利于大规模的工业生产,具有显著的经济和社会效益。
为实现上述目的,本发明采用如下技术方案:
一种具有光催化分解水制氢性能的超薄二维纳米片的制备方法,通过高温固相法合成层状前驱体CsTi2NbO7,通过质子交换法获得层状前驱体HTi2NbO7,以层状HTi2NbO7为前驱体制备单分子层HTi2NbO7纳米片,具体包括以下步骤:
(1)称量化学计量比的Cs2CO3、Nb2O5和TiO2充分研磨均匀后,在马弗炉中1273 K温度下煅烧24 h,然后重复煅烧一次,获得层状前驱体CsTi2NbO7
(2)将步骤(1)制得的层状前驱体CsTi2NbO7加入酸溶液中进行质子交换反应7天,然后洗涤、烘干获得层状前驱体HTi2NbO7
(3)以四丁基氢氧化铵溶液作为剥离剂,将步骤(2)制得的层状前驱体HTi2NbO7加入到四丁基氢氧化铵溶液中,在室温下搅拌7天,形成均匀的半透明胶状单分子层HTi2NbO7纳米片悬浮液,然后再经离心、烘干制得超薄二维HTi2NbO7纳米片。
步骤(2)中所述酸溶液为HNO3溶液,浓度为6 mol/L。
步骤(3)中所述四丁基氢氧化铵溶液的质量分数为40%。
本发明制得的HTi2NbO7纳米片的比表面积高达107m2/g,厚度约为1.65nm,长宽为100-1000nm,能够有效分离光生载流子,具有较大的平面尺寸。将其作为光催化剂,首次将其应用于光催化分解水制氢领域并具有高效的光催化分解水制氢性能。
本发明的有益效果在于:
(1)本发明首次将单分子层HTi2NbO7纳米片应用于光催化分解水制氢领域,具有大的比表面积,能有效分离光生载流子,是一种性能优异的光催化剂;
(2)本发明的整个工艺过程简单易控制,生产过程绿色环保,能耗低,产率高,成本低,符合实际生产需要,有利于大规模工业化生产;
(3)单分子层HTi2NbO7纳米片具有高效的光催化分解水产氢性能,同时具有良好的活性稳定性,在光催化反应体系中可以方便地进行分离处理,光催化剂抗毒和可再生能力强,重复利用率高,具有较高的实用价值和应用前景。
附图说明
图1为本发明制备的单分子层HTi2NbO7纳米片的透射电子显微镜图;
图2为本发明制备的单分子层HTi2NbO7纳米片的原子力显微镜图;
图3为本发明制备的单分子层HTi2NbO7纳米片的光催化分解水制氢活性图;
图4为本发明制备的单分子层HTi2NbO7纳米片的紫外可见漫反射光谱和Mott−Schottky平带电势测试图;
图5为本发明制备的单分子层HTi2NbO7纳米片的低温氮气吸附测试图。
具体实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例
具有粉末状单分子层HTi2NbO7纳米片光催化剂的制备
本发明的制备步骤如下:将化学计量比的Cs2CO3、Nb2O5和TiO2充分研磨均匀后,在马弗炉中1273 K温度下煅烧24 h,然后重复煅烧一次,获得层状前驱体CsTi2NbO7;取4 g层状CsTi2NbO7分散到400 ml 6 mol/L的HNO3溶液进行质子交换反应七天,然后离心洗涤至中性在333K烘箱烘干即得到层状前驱体HTi2NbO7;取2 g的层状前驱体HTi2NbO7加入到1.8 ml质量分数为40%的四丁基氢氧化铵溶液中,在室温下搅拌七天,形成均匀的半透明胶状单分子层HTi2NbO7纳米片悬浮液,然后将悬浮液离心絮凝重堆积,经过洗涤烘干(333 K烘箱烘干24h)即得到所述的粉末状纳米片光催化剂。
图1展示了本发明得到的单分子层HTi2NbO7纳米片光催化剂的透射电子显微镜图,从图1中可以发现本发明所制备的单分子层HTi2NbO7纳米片光催化剂为超薄纳米片状。图2展示了本发明得到的单分子层HTi2NbO7纳米片光催化剂的原子力显微镜图,从图2中可以发现本发明所制备的单分子层HTi2NbO7纳米片光催化剂的厚度约为1.65nm,厚度接近单个分子的厚度。图4展示了本发明得到的单分子层HTi2NbO7纳米片光催化剂的紫外可见漫反射光谱和Mott−Schottky平带电势测试图,从图4中可以发现本发明所制备的单分子层HTi2NbO7纳米片光催化剂的带隙为3.51eV,导带位置为-0.80 V (vs NHE)。图5展示了本发明得到的单分子层HTi2NbO7纳米片光催化剂的低温氮气吸附测试图,从图5中可以发现本发明所制备的单分子层HTi2NbO7纳米片光催化剂的比表面积高达107m2/g。
应用例
具有粉末状单分子层HTi2NbO7纳米片光催化剂的光催化分解水制氢应用
将制备的光催化剂用于光催化分解水制氢,来评价其光催化性能。光催化剂用上述得到的粉末状单分子层HTi2NbO7纳米片,将其放入石英反应器里,并加胶圈和石英盖密封,反应前先抽真空,然后用全波段氙灯模拟太阳光进行光照。反应产物由在线色谱每隔一段时间手动取样,产生的氢气量采用外标法来确定。比较本发明获得的粉末状单分子层HTi2NbO7纳米片和层状前驱体HTi2NbO7的光催化活性,二者的光催化分解水制氢活性如图3所示。由图3可知,本发明得到的粉末状单分子层HTi2NbO7纳米片的光催化分解水制氢活性是层状前驱体HTi2NbO7的31倍左右。因此,本发明获得的粉末状单分子层HTi2NbO7纳米片具有高效的光催化分解水制氢性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种具有光催化分解水制氢性能的超薄二维纳米片,其特征在于:所述纳米片的化学式为HTi2NbO7,厚度为1.65 nm,比表面积达107 m2/g,长宽为100-1000 nm。
2.一种制备如权利要求1所述的具有光催化分解水制氢性能的超薄二维纳米片的方法,其特征在于:具体包括以下步骤:
(1)称量化学计量比的Cs2CO3、Nb2O5和TiO2充分研磨均匀后,在马弗炉中1273 K温度下煅烧24 h,然后重复煅烧一次,获得层状前驱体CsTi2NbO7
(2)将步骤(1)制得的层状前驱体CsTi2NbO7加入酸溶液中进行质子交换反应7天,然后洗涤、烘干获得层状前驱体HTi2NbO7
(3)以四丁基氢氧化铵溶液作为剥离剂,将步骤(2)制得的层状前驱体HTi2NbO7加入到四丁基氢氧化铵溶液中,在室温下搅拌7天,形成均匀的半透明胶状单分子层HTi2NbO7纳米片悬浮液,然后再经离心、烘干制得超薄二维HTi2NbO7纳米片。
3. 根据权利要求2所述的具有光催化分解水制氢性能的超薄二维纳米片的制备方法,其特征在于:步骤(2)中所述酸溶液为HNO3溶液,浓度为6 mol/L。
4.根据权利要求2所述的具有光催化分解水制氢性能的超薄二维纳米片的制备方法,其特征在于:步骤(3)中所述四丁基氢氧化铵溶液的质量分数为40%。
5.一种如权利要求1所述的超薄二维纳米片的应用,其特征在于:所述的超薄二维HTi2NbO7纳米片应用于光催化分解水制氢领域。
CN201710577841.2A 2017-07-15 2017-07-15 一种具有光催化分解水制氢性能的超薄二维纳米片 Pending CN107311231A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710577841.2A CN107311231A (zh) 2017-07-15 2017-07-15 一种具有光催化分解水制氢性能的超薄二维纳米片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710577841.2A CN107311231A (zh) 2017-07-15 2017-07-15 一种具有光催化分解水制氢性能的超薄二维纳米片

Publications (1)

Publication Number Publication Date
CN107311231A true CN107311231A (zh) 2017-11-03

Family

ID=60177914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710577841.2A Pending CN107311231A (zh) 2017-07-15 2017-07-15 一种具有光催化分解水制氢性能的超薄二维纳米片

Country Status (1)

Country Link
CN (1) CN107311231A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031481A (zh) * 2017-12-20 2018-05-15 福州大学 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法
CN109622007A (zh) * 2018-12-04 2019-04-16 盐城工学院 一种氮掺杂复合光催化剂及其制备方法
CN110449148A (zh) * 2019-06-28 2019-11-15 天津大学 过渡金属掺杂的单层二氧化钛纳米片及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036918A (zh) * 2008-05-23 2011-04-27 独立行政法人物质·材料研究机构 电介体膜、电介体元件及其制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102036918A (zh) * 2008-05-23 2011-04-27 独立行政法人物质·材料研究机构 电介体膜、电介体元件及其制造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KOSHO AKATSUKA等: "Electronic Band Structure of Exfoliated Titanium- and/or Niobium-Based Oxide Nanosheets Probed by Electrochemical and Photoelectrochemical Measurements", 《THE JOURNAL OF PHYSICAL CHEMISTRY C》 *
SHUIGUANG LUO等: "Rhodamine B sensitize HTi2NbO7 nanosheet for highly efficient reduction of water to hydrogen under visible light irradiation", 《第二届能源转化与存储国际研讨会 摘要集》 *
TYLER GUBB: "Colloidal Processing and Photocatalytic Properties of Titanate-Niobate Nanosheets", 《HTTPS://WWW.RESEARCHGATE.NET/PUBLICATION/312328217》 *
王梦君等: "ANI/HTi2NbO7层状纳米复合材料的合成及表征", 《淮海工学院学报》 *
许磊: "钛基复合催化剂的构建及其光催化性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108031481A (zh) * 2017-12-20 2018-05-15 福州大学 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法
CN108031481B (zh) * 2017-12-20 2019-12-31 福州大学 一种银插层剥离的超薄卤氧化铋纳米片光催化剂及其制备方法
CN109622007A (zh) * 2018-12-04 2019-04-16 盐城工学院 一种氮掺杂复合光催化剂及其制备方法
CN110449148A (zh) * 2019-06-28 2019-11-15 天津大学 过渡金属掺杂的单层二氧化钛纳米片及其制备方法

Similar Documents

Publication Publication Date Title
Chen et al. High piezo/photocatalytic efficiency of Ag/Bi5O7I nanocomposite using mechanical and solar energy for N2 fixation and methyl orange degradation
Yu et al. Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity
Zhang et al. Au nanoparticles sensitized ZnO nanorod@ nanoplatelet core–shell arrays for enhanced photoelectrochemical water splitting
Wang et al. Enhanced photoelectrocatalytic activity for dye degradation by graphene–titania composite film electrodes
Su et al. Recent advances in the photocatalytic reduction of carbon dioxide
CN103990485B (zh) 氮化碳纳米粒子修饰钒酸铋复合光催化剂及其制备方法
CN106000431B (zh) 片状CdS/BiOCl复合纳米材料及其制备方法
CN103638922B (zh) 介孔三氧化钨/还原氧化石墨烯复合光催化剂的制备方法
CN106119882B (zh) 钛酸铁/三氧化二铁复合光电极的制备及表面改性方法
Dai et al. Magnetic ZnFe2O4@ ZnSe hollow nanospheres for photocatalytic hydrogen production application
CN106206043B (zh) 一种FeS2纳米棒/石墨烯对电极材料及其制备方法与应用
CN105044180A (zh) 一种异质结光电极的制备方法和用途
CN103922395A (zh) 一种TiO2纳米棒阵列薄膜材料及其制备方法
Wang et al. In situ decomposition-thermal polymerization method for the synthesis of Au nanoparticle–decorated gC 3 N 4 nanosheets with enhanced sunlight-driven photocatalytic activity
CN106549068B (zh) 一种Ag@Ag2S/TiO2纳米棒阵列的合成方法
CN107311231A (zh) 一种具有光催化分解水制氢性能的超薄二维纳米片
CN102703952A (zh) 利用离子液体在钛基上制备碳硼氮掺杂双管二氧化钛纳米管阵列的方法及其应用
CN110026207B (zh) CaTiO3@ZnIn2S4纳米复合材料及其制备方法与应用
CN103191708B (zh) 一种量子点TiO2负载SiO2光催化剂及其制备方法
CN104028309B (zh) 一种复合型可见光催化剂及其制备方法
CN105568309A (zh) 一种光电化学电池的光电极的制备方法
CN110993355B (zh) 一种二维碳化钛衬底层优化α相氧化铁光阳极的制备方法
Zhang et al. Ta 2 O 5 NTs-TiO 2 nanodots heterostructure photocatalyst material for enhanced photodegradation and photoelectrochemical performance under simulated solar light
Liu et al. Photocatalytic hydrogen production over In2S3–Pt–Na2Ti3O7 nanotube films under visible light irradiation
CN103521205A (zh) 一种制备高光催化活性核壳结构TiO2材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171103