CN107287222B - 一种组氨酸激酶基因Hisk2301的用途 - Google Patents

一种组氨酸激酶基因Hisk2301的用途 Download PDF

Info

Publication number
CN107287222B
CN107287222B CN201710593680.6A CN201710593680A CN107287222B CN 107287222 B CN107287222 B CN 107287222B CN 201710593680 A CN201710593680 A CN 201710593680A CN 107287222 B CN107287222 B CN 107287222B
Authority
CN
China
Prior art keywords
ala
leu
val
thr
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710593680.6A
Other languages
English (en)
Other versions
CN107287222A (zh
Inventor
张琦
肖虎
魏云林
林连兵
季秀玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming University of Science and Technology
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201710593680.6A priority Critical patent/CN107287222B/zh
Publication of CN107287222A publication Critical patent/CN107287222A/zh
Application granted granted Critical
Publication of CN107287222B publication Critical patent/CN107287222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • C12N15/815Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/13Protein-histidine kinases (2.7.13)
    • C12Y207/13003Histidine kinase (2.7.13.3)

Abstract

本发明公开了一种组氨酸激酶基因Hisk2301的用途,即组氨酸激酶Hisk2301基因在低温下生产多不饱和脂肪酸中的应用,利用该基因在低温下生产多不饱和脂肪酸,通过基因工程手段对微生物进行改造来提高多不饱和脂肪酸LA和ALA的含量,对多不饱和脂肪酸的工业化生产提供良好的应用前景和经济效益,为大规模商业化生产多不饱和脂肪酸如奠定基础。

Description

一种组氨酸激酶基因Hisk2301的用途
技术领域
本发明属于生物技术领域和遗传工程领域,涉及一种组氨酸激酶基因Hisk2301的用途。
背景技术
产油酵母细胞中富含多不饱和脂肪酸( polyunsaturated fatty acids,PUFAs),PUFAs 在人体内具有广泛的生理功能,其合成变化会导致多种疾病,比如心血管疾病、肥胖、非胰岛素依赖性糖尿病、高血压、神经性疾病和癌症等。 PUFAs 在细胞膜生物学方面也具有重要的功能,细胞膜膜脂中PUFAs 相对含量对大多数生物膜的物理性质具有重要的影响,比如细胞膜的流动性,稳定的流动性对于维持细胞膜正常功能具有十分重要的作用。传统的PUFAs 来源在产量、质量、生产成本以及安全性等方细胞中油脂方面的问题无法满足市场的大量需求,研究开发新的PUFAs 资源已成为热点。产油酵母成分和常见的植物油相类似,而且产油酵母中油脂具有独特与明确的生物化学和物理化学性质,作为生活中植物食用油的替代品以及生产生物柴油的原料,在工业上具有重要的潜在应用价值。除了通过发酵工艺学研究获得高产量油脂外,研究不同条件下提高脂肪酸脱氢酶活性或者基因表达水平来提高细胞中PUFAs 的组成和含量,也已成为该领域的研究热点课题。
长期以来人们都在研究如何从动植物油脂中提取PUFAs,但因为动植物的生长随着季节、地理位置等的影响而不断发生变化,所以PUFAs含量和构成也随之而变,况且从动植物中提取PUFAs的成本高,周期长,不能适应市场的需要。另外动植物油脂资源含油量及不饱和脂肪酸类型、比例均受到一定的限制。因此,近年来人们一直在探索利用PUFAs的新来源---即利用微生物技术来生产PUFAs;微生物具有发酵周期短、油脂含量高、培养成本低、不受原料控制、对环境的适应性强、生物转化率高等优点。
组氨酸激酶(Histidine kinases, HK)是一种跨膜转移酶类蛋白质,在信号转导过程中可作为信号分子的细胞受体。HK一般作为双组份信号转导***(Two-componentsignal transduction systems, TCSs)成分来传递信号,双组份信号转导***普遍存在于原核和真核生物中,主要由一个HK和一个应答调控蛋白(response regulator protein,RR)组成。双组份信号转导***参与细胞生长、胁迫抗性、次级代谢产物调控、维持细胞毒力等多种机制的调控。因此,HK在很多细胞生物学过程中起到重要的调节作用,但是目前没有关于HK促进多不饱和脂肪酸合成的研究报道。
发明内容
本发明的目的是提供一种组氨酸激酶基因Hisk2301的新用途,即组氨酸激酶基因Hisk2301在低温下生产多不饱和脂肪酸中的应用。
组氨酸激酶基因Hisk2301从红冬孢酵母(Rhodosporidium kratochvilovae)YM25235中分离得到,该基因核苷酸序列如SEQ ID NO:1所示或该核苷酸序列的片段,或与SEQ ID NO:1互补的核苷酸序列,该基因序列长为3888bp(碱基),该基因编码的氨基酸序列如SEQ ID NO:2所示的多肽或其片段。
本发明将组氨酸激酶基因Hisk2301直接与不同表达载体(质粒、病毒或运载体)连接构建重组载体,并在低温下促进红冬孢酵母YM25235生产多不饱和脂肪酸。
具体涉及从红冬孢酵母(Rhodosporidium kratochvilovae)YM25235中克隆的组氨酸激酶基因Hisk2301***pRH2034质粒,构建了重组表达质粒pRHHisk2301,将其转入红冬孢酵母YM25235中进行过表达,获得转基因菌株YM25235/pRHHisk2301,并对其表达特性进行研究,为阐明Hisk2301基因与其低温适应性机制和低温下多不饱和脂肪酸的合成机制奠定基础。
本发明的有益效果:本发明从红冬孢酵母(Rhodosporidium kratochvilovae)YM25235的染色体基因组中分离得到双组份***的核心分子组氨酸激酶的基因Hisk2301。该基因全长3888bp,此前的研究认为Hisk2301主要参与渗透压胁迫的响应。本研究表明基因Hisk2301不但有抗渗透胁迫的功能,且与盐压抗性和红冬孢酵母中PUFAs的低温合成有关,该基因在低温下能提高红冬孢酵母YM25235中催化油酸转化为亚油酸和亚麻酸的Δ12/15-脂肪酸脱氢酶基因RKD12基因的mRNA转录水平的提高,从而引起细胞膜脂中PUFAs的合成量显著增加。本研究将有助于阐明红冬孢酵母 YM25235 中亚油酸和α-亚麻酸低温合成调节的信号转导途径,揭示低温条件下 YM25235 菌株中亚油酸和α-亚麻酸合成的调节机制,而且也将有助于进一步揭示真菌中多不饱和脂肪酸合成的调节机制,并为阐明真菌低温适应机制的研究提供参考,而且探索低温条件下多不饱和脂肪酸合成的调节机制有助于利用相关的合成调节过程,为今后大规模生产多不饱和脂肪酸的研究与应用奠定基础。
附图说明
图1为本发明的红冬孢酵母YM25235的Hisk2301基因PCR扩增图;
图2为重组质粒pRHHisk2301的质粒图谱;
图3为重组质粒pRHHisk2301限制性酶切分析;其中:1、空质粒pRH2304的BamHⅠ、EcoRⅤ双酶切;2、重组质粒pRHHisk2301的BamHⅠ、EcoRⅤ双酶切;3、Hisk2301基因的PCR 产物;4、DNA 分子量标记DL15000;
图4 为低温条件下 Hisk2301基因转化的红冬孢酵母YM25235细胞脂肪酸气相色谱分析A: YM25235/pRH2304 at 15℃;B: YM25235/pRHRKHisk2301 at 15℃。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明,但本发明保护范围不局限于所述内容,实施例中使用的试剂和方法,如无特殊说明,均采用常规试剂和使用常规方法。
实施例1:红冬孢酵母(Rhodosporidium kratochvilovae)YM25235组氨酸激酶基因Hisk2301基因克隆
采用OMEGA试剂盒E.Z.N.A Fungal RNA Kit提取红冬孢酵母YM25235总RNA,反转录试剂盒Takara First Strand cDNA Synthesis Kit合成cDNA。根据红冬孢酵母YM25235的转录组序列设计特异性引物(引物1和引物2)进行PCR扩增;反应所用引物、组份和扩增条件如下:
引物1:Hisk2301-F: 5’- CACACCGCGGATCCATGCCGCAGACGCC -3’(SEQ ID NO:3)
引物2:Hisk2301-R: 5’- CTGACCGCGATATCTCACTGCGGGTCGTT -3’(SEQ ID NO:4)
GGATCCBamHⅢ酶切位点,GATATCEcoRV酶切位点);
PCR扩增体系如下(50 μL):
Figure DEST_PATH_IMAGE002
PCR扩增条件:95℃预变性5 min,再用95℃变性30 s,62℃退火15 s,72℃延伸2min30 s进行30个循环,最后72℃彻底延伸10 min。反应完后取产物2μL,然后在浓度为1%的琼脂糖凝胶中,进行电泳分析,结果如图1所示。经凝胶成像***成像确认片段大小正确后,用百泰克生物技术有限公司多动能DNA纯化回收试剂盒回收目的片段,然后将PCR扩增得到的目的基因连接到pMD-18T上,连接产物转化至大肠杆菌DH5α感受态细胞中,用含有氨苄青霉素(AMP+)的LB固体平板进行筛选,挑取平板上的转化子进行菌落PCR筛选阳性克隆,然后送去上海生工测序。测序结果显示,获得一段3888bp长的序列,命名为Hisk2301,序列组成如SEQ ID NO:1所示的核苷酸序列。
实施例2:Hisk2301过表达载体pRHHisk2301的构建
以反转录的YM25235 cDNA 为模板,用Hisk2301-F 和Hisk2301-R 作为引物扩增Hisk2301编码序列,获得的Hisk2301片段大小约3888 bp,将扩增获得的Hisk2301片段经BamHⅠ、EcoRⅤ两个限制性内切酶进行酶切后,连接到表达载体 pRH2304 上获得重组质粒pRHHisk2301(图 2)。将获得的重组质粒转入大肠杆菌 DH5α中扩增,再经菌落 PCR 验证后提取重组质粒,并用BamHⅠ、EcoRⅤ对pRHHisk2301进行双酶切验证。结果表明,重组质粒pRHHisk2301经双酶切后产生了3.8 kb 和10 kb左右的两个条带(图 3 第2泳道),这两个条带分别与Hisk2301片段和pRH2304载体经双酶切后的片段大小一致,初步表明重组质粒pRHHisk2301构建成功。用测序引物进行测序,将酶切验证正确的质粒送出测序进一步进行验证。测序结果表明,测序所获得的序列与目的序列完全一致,没有出现任何碱基突变和缺失等。
实施例3:Hisk2301基因与低温合成多不饱和脂肪酸关系的分析
1、重组质粒pRH2034-Hisk2301转化红冬孢酵母YM25235菌株
采用醋酸锂转化法将重组质粒pRH2034-Hisk2301转化至红冬孢酵母YM25235菌株,以含潮霉素B(HygromycinB)终浓度为150 µg/mL的 YPD 培养基筛选转化子;提取基因组DNA PCR验证转化子。
2、Hisk2301基因与红冬孢酵母脂肪酸含量变化的分析
将转入空质粒pRH2304和重组质粒pRHHisK2301的两株转基因红冬孢酵母YM25235分别在30℃培养24h后,立即将培养物置于15℃继续培养24h进行冷处理,冷处理后分别提取两株转基因酵母的脂肪酸并进行甲酯化,以转化空质粒pRH2304的红冬孢酵母菌株作为对照,进行气相色谱分析相同处理条件下两个质粒转化菌株的脂肪酸含量变化。图4中的A图和B图分别代表空质粒pRH2304转化的对照菌株和重组质粒pRHHisK2301转化的过表达菌株的脂肪酸色谱图,由图可以看出,重组质粒pRHHisK2301转化菌株在13.3min处的亚油酸(C18: 2 LA)(灰色箭头所示)值明显增加,其含量占总脂肪酸含量的29.53%(表1),而转化空质粒pRH2304的对照菌株中亚油酸含量占总脂肪酸含量的23.47%。因此在相同的处理条件下增加了25.82%。在亚油酸含量增加的同时,重组质粒pRHHisK2301转化菌株在 15.5min处的α-亚麻酸(C18: 3ALA)峰值(图4黑色箭头所示)也明显增加,其脂肪酸含量占总脂肪酸含量的 14.17%(表1),而对照菌株中α-亚麻酸含量占总脂肪酸含量的 11.04%,增加了28.35%。这些结果表明,组氨酸激酶 HisK2301 的过表达引起红冬孢酵母菌株中的亚油酸和亚麻酸两种多不饱和脂肪酸的含量增加。
表1:15℃条件下Hisk2301转基因红冬孢酵母YM25235细胞中脂肪酸含量
Figure DEST_PATH_IMAGE004
序列表
<110> 昆明理工大学
<120> 一种组氨酸激酶基因Hisk2301的用途
<160> 4
<170> PatentIn version 3.3
<210> 1
<211> 3888
<212> DNA
<213> Rhodosporidium kratochvilovae
<400> 1
atgccgcaga cgcccacacc gagcaccgag ccagacccct tcgccgcctc gttcgcctcg 60
tccccctcgc cagctccgcc cccgccgccg cgcccgccgc tcgccgcaca cctcttctcg 120
tccggctcga gcgcgtccag cgccgccgtc tcgactcccg cgacctccgt cttcagctac 180
tctaccagcc ccgccagcag cttcgtcgac atgaccgcct gccctacccc cgccccggcc 240
ctcgccctcg cgcaggaagc cggcgcagtg ggcctcagcc ccgagcccct ctcgcccgac 300
aacatgagca ggccgctcgc gtccgcccag cccctccaca ccttcccgac cttcctcctc 360
tcgctcctca ccgccctcga gagcgacccc gcgagcgtcc gctcccacct cgccaacctc 420
gcagcgtccc acgccgcgcc cgcgaccttc tcccccacgc ccgagggcaa gcccgtcgag 480
acggacgcca tcatcgcgtg cgcgtcccgc atcgccgacc gcctccaggc cgccgagcgc 540
ccgcaggacg aacccgtcca gccggcgagc gaacccgcag ccgaggagga ggccgttccg 600
ccgccggtgg tagcgcccgc cgtgtcgcgg acgacgagcg acgactcggt gccgccgaag 660
aagcggcccg tcgtccccgg cgacacggtc gaggaagtgc gccgcaactg cgaggaccag 720
atccaggcgc tcaaggtcct ccacgccgag gagctccacc gcgcgcagct ctcgcacgac 780
aacgaggtcc gttccatcgc cgtcgtcacg tctgccattg cgcgcggaga cctcacgaag 840
acgatcgacg ccgaggtcga gggcgagatg gcgacgctca aggagacgat caacgacatg 900
gtgtacaagc tccgcctctt ctcgagcgag gtcacgcgcg tgtcgctcga cgtcggcacg 960
atgggccagc tcggcggaca ggccgtcgtt accggcgtcg aggggacgtg gaagaccttg 1020
acggagacgg tcaacacgat ggcgacgcag ctcacggttc agatccgctc catcgccatc 1080
gtcacgtccg ccatcgcgcg gggcgatctc tcgaagacga tcgacgccga ggtgcagggc 1140
gagatggcga ccctcaagga gacggtcaac tcgatggtga cgcgcctccg cgtcttctcg 1200
agcgaggtga cgcgcgttgc gcgcgaggtc ggcactgatg ggcagctcgg agggcaggcg 1260
gtcgtgcatg gcgtggaggg gacgtggaag gagcttaccg actcggtcaa ccgcatggcg 1320
cagaacctca cgctgcaggt gcgcgagatc gcgagcgtca ccaaggcggt cgcgaacggc 1380
gacctgagca agacggtcga cattggcgcg tcgggcgaga tccgggagct caagacgacc 1440
gtcaactcga tggtcgcgca actccgccgc ttcgccgccg aggtcacacg cgtcgcgctc 1500
gaagtcggca ccgaagggca gctaggcggc acggcgaacg tcgagggcgt gcagggcgag 1560
tggaagtcgc tcgtgtcctc ggtcaacacg atggcgatga acctcacgca gcaagtgcgc 1620
tccatcgccg acgtcacgcg cgctgtcgcc gagggagacc tttcgaggaa gatcgatgtc 1680
aaggtcaagg gtgagatgct cgacctcaag ctcacggtca actcgatggt cgattcgctc 1740
cggctgttcg cagccgaagt gacgcgcgtc gccaaggagg tcggcacgga cgggcaactc 1800
ggtggccagg cgtacgtgat caacgtctcg ggcgagtgga agtctctcgt cgactcggtc 1860
aaccagatgt gcggcaacct caccgaccag gtccgctcca tcgccaaggc cacgaccgcc 1920
gtcgcgaggg gcgacctcac gcagaaggtc atgatcgagg cgaacggcga ggtcctccag 1980
ctcgtcgtta cgatcaacga gatggtcgac cgcctcgcaa cattcgcgtc cgaggtcacg 2040
cgcgtcgcgc acgaggtcgg gaccaagggc aacctcggcg tgacggccaa ggtcgacaac 2100
atcgagggga cgtggcagga gatcacgaac aacgtcaaca cgatggcgac gaacctcacg 2160
tcgcaggtgc gcgcgtttgc gcagatctcg gcggccgcga ccgagggcga cttcagctcg 2221
tttgtcacgg tcgaggcgag cggcgagatg gactcgctca aaaccaagat caacaagatg 2281
gtcttctcgc tccgcgactc gctgcagaag aacacgatgg cgcgcgaggc ggccgagctc 2341
gcgaaccgct ccaagagcga gttcctcgcc aacatgtcgc acgagatccg gacgccgatg 2400
aacggcatca tcggcctgac gggcgtcacg ctcgagacgg acctcacgcg gcagcagcgc 2460
gagaacctca tgatcgtctc gaacctcgcc aactcgctcc tcctcatcat cgacgacatc 2520
ctcgacatct ccaagatcga ggccggccgc atgacggtcg agcagatccc gttcagcgtc 2580
cgctcggccg tgttcggcat cctcaagacg ctcgccgtca aggcgacgca gagccggctc 2640
gacctcatgt actcggtcga gagcgacatc cccgacctcc tcgtcggcga cccgttccgc 2700
ctccggcagg tcatcaccaa cctcgtcggc aacgcgatca agttcacgca gcgtggccag 2760
gtcgccctct cgtgccgact cgccgccgcc gacatggagg agaagacgta ccagctcgag 2820
ttctgcatca gcgacacggg gatcgggatc aagcccgaca agctcaacct catcttcgac 2880
acgtttgcgc aggcggacgg ctccacgacg cgcaagtacg gcgggaccgg cctcgggctc 2940
accatttcga agcgtctcgt gcagctcatg ggcggcgagc tctgggtcac gtcgcagttt 3000
gggcgcgggt cgcagttcta ctttacgatc cagtgccgca tcggcgagtg gaacctcgac 3060
caggtgcggc agaagacgct catcccgcac ccggggcgct gcatcctctt catcgacacg 3120
ctccaccacg acccgagcgt gatcgacagc gtcgagcagc tcgggctcga gatcaccgtc 3180
gtcgactcgc tcgaggaggc gtgcatgctc gaccactcgc agaacggcta tttcgacacc 3240
gtcctcgtcg accagctctc gatcgtcgag cgtctccgcg acgtcgagca cctccgctac 3300
atccccctcg tcctgattac gccgcagatc ccgcagctca acctcaagta ctgcctcgac 3360
tttgggatcg ccaactgcgt cgagtcgccg acgaacgcgc aggacatgtg caacgcgctc 3420
ctccctgcgc tcgaggcgag caaccggata ccctcggagc gcggcggcga cgcgtctttc 3480
aaggttctcc tcgccgagga caacatcgtc aaccagaaag tcgcgctcaa attcctcgag 3540
agcgcggggc accagagcga ggtcgtcgag aacggcgcgc tcgcgctcga ggcggtccgc 3600
aagaactact acgacatcgt cctgatggac ttgagcatgc cgatcatggg cgggcaggag 3660
gcgacgcaga tcatccgcca gttcgagcag gacaacggcc tcgagcggct gcccatcgtc 3720
gccctcacgg cgcacgcgat gctcggcgac cgcgagaagt gcatccaggc cggcatggac 3780
gactacctca ccaagccgct ccgcaagccg gacctgctcg ccaccatcaa caagattgtc 3840
ttggcgaggc gagcgggttc gtctcccacc gcgttgcgct tcttctga 3888
<210> 2
<211> 1295
<212> PRT
<213> Rhodosporidium kratochvilovae
<400> 2
MET Pro Gln Thr Pro Thr Pro Ser Thr Glu Pro Asp Pro Phe Ala Ala Ser Phe Ala Ser
1 10
Ser Pro Ser Pro Ala Pro Pro Pro Pro Pro Arg Pro Pro Leu Ala Ala His Leu Phe Ser
30
Ser Gly Ser Ser Ala Ser Ser Ala Ala Val Ser Thr Pro Ala Thr Ser Val Phe Ser Tyr
50
Ser Thr Ser Pro Ala Ser Ser Phe Val Asp MET Thr Ala Cys Pro Thr Pro Ala Pro Ala
70
Leu Ala Leu Ala Gln Glu Ala Gly Ala Val Gly Leu Ser Pro Glu Pro Leu Ser Pro Asp
90
Asn MET Ser Arg Pro Leu Ala Ser Ala Gln Pro Leu His Thr Phe Pro Thr Phe Leu Leu
110
Ser Leu Leu Thr Ala Leu Glu Ser Asp Pro Ala Ser Val Arg Ser His Leu Ala Asn Leu
130
Ala Ala Ser His Ala Ala Pro Ala Thr Phe Ser Pro Thr Pro Glu Gly Lys Pro Val Glu
150
Thr Asp Ala Ile Ile Ala Cys Ala Ser Arg Ile Ala Asp Arg Leu Gln Ala Ala Glu Arg
170
Pro Gln Asp Glu Pro Val Gln Pro Ala Ser Glu Pro Ala Ala Glu Glu Glu Ala Val Pro
190
Pro Pro Val Val Ala Pro Ala Val Ser Arg Thr Thr Ser Asp Asp Ser Val Pro Pro Lys
210
Lys Arg Pro Val Val Pro Gly Asp Thr Val Glu Glu Val Arg Arg Asn Cys Glu Asp Gln
230
Ile Gln Ala Leu Lys Val Leu His Ala Glu Glu Leu His Arg Ala Gln Leu Ser His Asp
250
Asn Glu Val Arg Ser Ile Ala Val Val Thr Ser Ala Ile Ala Arg Gly Asp Leu Thr Lys
270
Thr Ile Asp Ala Glu Val Glu Gly Glu MET Ala Thr Leu Lys Glu Thr Ile Asn Asp MET
290
Val Tyr Lys Leu Arg Leu Phe Ser Ser Glu Val Thr Arg Val Ser Leu Asp Val Gly Thr
310
MET Gly Gln Leu Gly Gly Gln Ala Val Val Thr Gly Val Glu Gly Thr Trp Lys Thr Leu
330
Thr Glu Thr Val Asn Thr MET Ala Thr Gln Leu Thr Val Gln Ile Arg Ser Ile Ala Ile
350
Val Thr Ser Ala Ile Ala Arg Gly Asp Leu Ser Lys Thr Ile Asp Ala Glu Val Gln Gly
370
Glu MET Ala Thr Leu Lys Glu Thr Val Asn Ser MET Val Thr Arg Leu Arg Val Phe Ser
390
Ser Glu Val Thr Arg Val Ala Arg Glu Val Gly Thr Asp Gly Gln Leu Gly Gly Gln Ala
410
Val Val His Gly Val Glu Gly Thr Trp Lys Glu Leu Thr Asp Ser Val Asn Arg MET Ala
430
Gln Asn Leu Thr Leu Gln Val Arg Glu Ile Ala Ser Val Thr Lys Ala Val Ala Asn Gly
450
Asp Leu Ser Lys Thr Val Asp Ile Gly Ala Ser Gly Glu Ile Arg Glu Leu Lys Thr Thr
470
Val Asn Ser MET Val Ala Gln Leu Arg Arg Phe Ala Ala Glu Val Thr Arg Val Ala Leu
490
Glu Val Gly Thr Glu Gly Gln Leu Gly Gly Thr Ala Asn Val Glu Gly Val Gln Gly Glu
510
Trp Lys Ser Leu Val Ser Ser Val Asn Thr MET Ala MET Asn Leu Thr Gln Gln Val Arg
530
Ser Ile Ala Asp Val Thr Arg Ala Val Ala Glu Gly Asp Leu Ser Arg Lys Ile Asp Val
550
Lys Val Lys Gly Glu MET Leu Asp Leu Lys Leu Thr Val Asn Ser MET Val Asp Ser Leu
570
Arg Leu Phe Ala Ala Glu Val Thr Arg Val Ala Lys Glu Val Gly Thr Asp Gly Gln Leu
590
Gly Gly Gln Ala Tyr Val Ile Asn Val Ser Gly Glu Trp Lys Ser Leu Val Asp Ser Val
610
Asn Gln MET Cys Gly Asn Leu Thr Asp Gln Val Arg Ser Ile Ala Lys Ala Thr Thr Ala
630
Val Ala Arg Gly Asp Leu Thr Gln Lys Val MET Ile Glu Ala Asn Gly Glu Val Leu Gln
650
Leu Val Val Thr Ile Asn Glu MET Val Asp Arg Leu Ala Thr Phe Ala Ser Glu Val Thr
670
Arg Val Ala His Glu Val Gly Thr Lys Gly Asn Leu Gly Val Thr Ala Lys Val Asp Asn
690
Ile Glu Gly Thr Trp Gln Glu Ile Thr Asn Asn Val Asn Thr MET Ala Thr Asn Leu Thr
710
Ser Gln Val Arg Ala Phe Ala Gln Ile Ser Ala Ala Ala Thr Glu Gly Asp Phe Ser Ser
730
Phe Val Thr Val Glu Ala Ser Gly Glu MET Asp Ser Leu Lys Thr Lys Ile Asn Lys MET
750
Val Phe Ser Leu Arg Asp Ser Leu Gln Lys Asn Thr MET Ala Arg Glu Ala Ala Glu Leu
770
Ala Asn Arg Ser Lys Ser Glu Phe Leu Ala Asn MET Ser His Glu Ile Arg Thr Pro MET
790
Asn Gly Ile Ile Gly Leu Thr Gly Val Thr Leu Glu Thr Asp Leu Thr Arg Gln Gln Arg
810
Glu Asn Leu MET Ile Val Ser Asn Leu Ala Asn Ser Leu Leu Leu Ile Ile Asp Asp Ile
830
Leu Asp Ile Ser Lys Ile Glu Ala Gly Arg MET Thr Val Glu Gln Ile Pro Phe Ser Val
850
Arg Ser Ala Val Phe Gly Ile Leu Lys Thr Leu Ala Val Lys Ala Thr Gln Ser Arg Leu
870
Asp Leu MET Tyr Ser Val Glu Ser Asp Ile Pro Asp Leu Leu Val Gly Asp Pro Phe Arg
890
Leu Arg Gln Val Ile Thr Asn Leu Val Gly Asn Ala Ile Lys Phe Thr Gln Arg Gly Gln
910
Val Ala Leu Ser Cys Arg Leu Ala Ala Ala Asp MET Glu Glu Lys Thr Tyr Gln Leu Glu
930
Phe Cys Ile Ser Asp Thr Gly Ile Gly Ile Lys Pro Asp Lys Leu Asn Leu Ile Phe Asp
950
Thr Phe Ala Gln Ala Asp Gly Ser Thr Thr Arg Lys Tyr Gly Gly Thr Gly Leu Gly Leu
970
Thr Ile Ser Lys Arg Leu Val Gln Leu MET Gly Gly Glu Leu Trp Val Thr Ser Gln Phe
990
Gly Arg Gly Ser Gln Phe Tyr Phe Thr Ile Gln Cys Arg Ile Gly Glu Trp Asn Leu Asp
1010
Gln Val Arg Gln Lys Thr Leu Ile Pro His Pro Gly Arg Cys Ile Leu Phe Ile Asp Thr
1030
Leu His His Asp Pro Ser Val Ile Asp Ser Val Glu Gln Leu Gly Leu Glu Ile Thr Val
1050
Val Asp Ser Leu Glu Glu Ala Cys MET Leu Asp His Ser Gln Asn Gly Tyr Phe Asp Thr
1070
Val Leu Val Asp Gln Leu Ser Ile Val Glu Arg Leu Arg Asp Val Glu His Leu Arg Tyr
1090
Ile Pro Leu Val Leu Ile Thr Pro Gln Ile Pro Gln Leu Asn Leu Lys Tyr Cys Leu Asp
1110
Phe Gly Ile Ala Asn Cys Val Glu Ser Pro Thr Asn Ala Gln Asp MET Cys Asn Ala Leu
1130
Leu Pro Ala Leu Glu Ala Ser Asn Arg Ile Pro Ser Glu Arg Gly Gly Asp Ala Ser Phe
1150
Lys Val Leu Leu Ala Glu Asp Asn Ile Val Asn Gln Lys Val Ala Leu Lys Phe Leu Glu
1170
Ser Ala Gly His Gln Ser Glu Val Val Glu Asn Gly Ala Leu Ala Leu Glu Ala Val Arg
1190
Lys Asn Tyr Tyr Asp Ile Val Leu MET Asp Leu Ser MET Pro Ile MET Gly Gly Gln Glu
1210
Ala Thr Gln Ile Ile Arg Gln Phe Glu Gln Asp Asn Gly Leu Glu Arg Leu Pro Ile Val
1230
Ala Leu Thr Ala His Ala MET Leu Gly Asp Arg Glu Lys Cys Ile Gln Ala Gly MET Asp
1250
Asp Tyr Leu Thr Lys Pro Leu Arg Lys Pro Asp Leu Leu Ala Thr Ile Asn Lys Ile Val
1270
Leu Ala Arg Arg Ala Gly Ser Ser Pro Thr Ala Leu Arg Phe Phe ***
1290 1295
<210> 3
<211> 28
<212> DNA
<213>人工序列
<400>3
cacaccgcgg atccatgccg cagacgcc 28
<210> 4
<211> 29
<212> DNA
<213>人工序列
<400> 4
ctgaccgcga tatctcactg cgggtcgtt 29

Claims (1)

1. 组氨酸激酶基因Hisk2301在低温下生产多不饱和脂肪酸中的应用,组氨酸激酶基因Hisk2301的核苷酸序列如SEQ ID NO:1所示,该基因编码的氨基酸序列如SEQ ID NO:2所示;
所述应用是指在红冬孢酵母菌株中过表达组氨酸激酶基因Hisk2301会引起亚油酸和亚麻酸两种多不饱和脂肪酸含量的增加。
CN201710593680.6A 2017-07-20 2017-07-20 一种组氨酸激酶基因Hisk2301的用途 Active CN107287222B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710593680.6A CN107287222B (zh) 2017-07-20 2017-07-20 一种组氨酸激酶基因Hisk2301的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710593680.6A CN107287222B (zh) 2017-07-20 2017-07-20 一种组氨酸激酶基因Hisk2301的用途

Publications (2)

Publication Number Publication Date
CN107287222A CN107287222A (zh) 2017-10-24
CN107287222B true CN107287222B (zh) 2020-07-10

Family

ID=60102294

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710593680.6A Active CN107287222B (zh) 2017-07-20 2017-07-20 一种组氨酸激酶基因Hisk2301的用途

Country Status (1)

Country Link
CN (1) CN107287222B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108753810B (zh) * 2018-05-22 2021-06-18 昆明理工大学 一种转录调节蛋白基因orf2的用途
CN108753802B (zh) * 2018-05-22 2021-07-16 昆明理工大学 一个苹果酸脱氢酶基因cimdh1及其重组表达载体
CN109777815B (zh) * 2019-03-28 2021-10-29 昆明理工大学 HMG-CoA合成酶基因RKHMGCS及其应用
CN111454854B (zh) * 2020-05-02 2022-05-06 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
:Identification and characterization of a novel bifunctional Δ12/Δ15-fatty acid desaturase gene from Rhodosporidium kratochvilovae.;Jinjin Cui et.al;《Biotechnology Letters》;20160331;1155–1164 *
hybird sensory histidine kinase[Rhodotorula kratochvilovae];GenBank: AOR06392.1;《GenBank》;20140924;1-2 *
Rhodotorula kratochvilovae strain YM25235;GenBank: KU871222.1;《GenBank》;20140924;1 *

Also Published As

Publication number Publication date
CN107287222A (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
CN107287222B (zh) 一种组氨酸激酶基因Hisk2301的用途
CN112410355B (zh) 一种酰基辅酶a氧化酶2基因rkacox2及其应用
CN110358692B (zh) 生产神经酸的重组酵母菌株及其应用
CN107267529B (zh) 一种锌指蛋白转录因子基因RkMSN4及其应用
CN115011616B (zh) 一种乙醛脱氢酶基因rkaldh及其应用
KR20200066752A (ko) 바이오레티놀을 생산하는 미생물 및 이를 이용한 바이오레티놀의 생산방법
CN116286900B (zh) 一种乙酸渗透酶A基因RkAcpa及其应用
CN110747206A (zh) 3-羟基-3-甲基戊二酸单酰辅酶a还原酶基因rkhmgr及其应用
CN106916837B (zh) 高渗透压甘油蛋白激酶基因RkHog1及其重组表达载体
US8652815B2 (en) Transformant comprising gene coding for ws/dgat and method of producing fatty acid ethyl esters using the same
KR20100081096A (ko) 신규한 재조합 효모 균주 및 이를 이용한 에탄올 및 목적단백질의 동시 생산 방법
CN107384979B (zh) 高渗透压甘油蛋白激酶基因RKHog1的用途
JP7072809B2 (ja) 組換え微生物、その製造方法及び補酵素q10の生産における使用
CN106244615B (zh) 一种工程菌及其构建方法与在制备香叶醇中的应用
CN112920960A (zh) 一种提高酿酒酵母棕榈油酸含量的方法
CN107815425A (zh) 一种产脂肪酸乙酯的解脂耶氏酵母基因工程菌及其应用
CN114426983B (zh) 敲除谷氨酸棒杆菌中转录调控因子Ncgl0580生产5-氨基乙酰丙酸的方法
CN108753810B (zh) 一种转录调节蛋白基因orf2的用途
Laptev et al. New recombinant strains of the yeast Yarrowia lipolytica with overexpression of the aconitate hydratase gene for the obtainment of isocitric acid from rapeseed oil
KR20130055477A (ko) 활성이 증진된 변이 리파제 및 이를 이용한 바이오디젤의 생산방법
CN103540558B (zh) 一种生物法合成异戊烯醇的方法
CN112852847A (zh) 一种重组酿酒酵母菌株及其构建方法与应用
CN106754768B (zh) 一种热稳定性提高的脂肪氧合酶突变体及其构建方法
KR101775226B1 (ko) 페리플라즘으로 분비되는 지방산 이중결합 수화효소를 이용한 히드록시지방산 제조방법
CN113755419B (zh) 生产己二胺的重组质粒及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant