CN107282940A - 一种利用三七提取液制备金纳米颗粒的方法 - Google Patents

一种利用三七提取液制备金纳米颗粒的方法 Download PDF

Info

Publication number
CN107282940A
CN107282940A CN201710442842.6A CN201710442842A CN107282940A CN 107282940 A CN107282940 A CN 107282940A CN 201710442842 A CN201710442842 A CN 201710442842A CN 107282940 A CN107282940 A CN 107282940A
Authority
CN
China
Prior art keywords
pseudo
ginseng extract
extract solution
minutes
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710442842.6A
Other languages
English (en)
Other versions
CN107282940B (zh
Inventor
孙丽
吕鹏程
尹跃超
李浩男
王法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201710442842.6A priority Critical patent/CN107282940B/zh
Publication of CN107282940A publication Critical patent/CN107282940A/zh
Application granted granted Critical
Publication of CN107282940B publication Critical patent/CN107282940B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明提供了一种利用三七提取液制备金纳米颗粒的方法,将三七加入去离子水中加热至沸腾并离心后制得0.4~1.0mol/L的三七提取液;将氯金酸晶体溶解于去离子水中形成0.05~0.15mol/L的氯金酸溶液;将氢氧化钠晶体溶解于去离子水形成0.01~0.02mol/L氢氧化钠溶液;将三七提取液加热至沸腾,将氯金酸溶液加入到沸腾的三七提取液中,随后加入氢氧化钠溶液,保持反应体系PH值在5.0‑6.0之间,反应结束,将所得反应液离心分离,干燥后即得金纳米颗粒。本发明的制备方法采用的设备简单,操作方便,三七提取液方便易得、价格低廉、且没有毒性,所制备的金纳米颗粒可以应用于生物医药领域。

Description

一种利用三七提取液制备金纳米颗粒的方法
技术领域
本发明属于材料学领域,涉及一种纳米材料,具体来说是一种利用三七提取液制备金纳米颗粒的方法。
背景技术
近年来,贵金属纳米粒子因其独特性能而日益成为高科技竞争的制高点,在诸多领域都具有非常重要的作用。其中,金纳米颗粒是最稳定的贵金属纳米材料之一,并且金纳米颗粒具有极强的生物相容性,这使得金纳米颗粒在催化、光电传感和生物成像等领域都展现出非凡的应用前景。
目前,传统制备金纳米颗粒的方法很多,可概括为物理法和化学法。物理法即将块体(或粉末状)的金制成纳米级的金颗粒。常用的方法有机械研磨法、激光烧蚀法和气相法等。物理法虽然简单,但对仪器设备的要求较高,生产费用昂贵,而且颗粒的均匀性较差。化学法则是基于不同的氧化还原反应来制备金纳米颗粒。该方法灵活,可用于多形貌的金纳米颗粒的合成,是一种较为成熟的合成方法。化学法主要有气相还原法、液相还原法和相转移法等。化学法的优点虽多,但在反应中一般需引入化学试剂来做还原剂或分散剂,这给环境及生物带来了潜在的风险,不利于后续将金纳米颗粒应用于生物医药方面。
近几年,金纳米颗粒的绿色合成方法逐渐涌现,如通过石榴、红枣和芹菜等植物提取液替代化学还原剂来实现金纳米颗粒的绿色合成。目前,尚未见关于利用三七提取液绿色合成金纳米颗粒的报道。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种利用三七提取液制备金纳米颗粒的方法,所述的这种利用三七提取液制备金纳米颗粒的方法要解决现有技术中制备金纳米颗粒的过程复杂,容易污染环境的技术问题。
本发明提供了一种利用三七提取液制备金纳米颗粒的方法,包括如下步骤:
1)将三七片加入去离子水中加热至沸腾并离心后制得0.4~1.0mol/L的三七提取液;
2)将氯金酸晶体溶解于去离子水中形成0.05~0.15mol/L的氯金酸溶液;
3)将氢氧化钠晶体溶解于去离子水形成0.01~0.02mol/L氢氧化钠溶液;
4)将三七提取液加入到去离子水中,三七提取液和去离子水的体积比为10mL:10~20mL,再加入氢氧化钠溶液使得反应体系PH值在5.0-6.0之间,随后将其加热至沸腾,再将氯金酸溶液加入到沸腾的三七提取液中,所述的三七提取液和氯金酸的摩尔比为20~100:1,沸腾状态下反应1-60分钟,反应结束,将所得反应液离心分离,将所得沉淀物干燥后即得金纳米颗粒。
进一步的,步骤4)中将三七提取液加热至沸腾后,保持沸腾2-20分钟,使三七提取液充分水解,再加入氯金酸溶液进行反应。
上述各步骤中所使用的容器在使用之前都经去离子水洗涤。
本发明通过控制氢氧化钠溶液和氯金酸溶液的比例来控制反应体系的PH值,使反应体系始终保持还原条件,从而能够保证氯金酸被还原完全。发明人在大量试验中发现:通过控制氢氧化钠溶液和氯金酸溶液的比例,使反应体系PH值保持在5.0-6.0之间时,所制得的金纳米颗粒的平均粒径在10nm以下。
本发明所采用的三七提取液方便易得、价格低廉、且没有毒性,以其作为还原剂代替以往使用的化学试剂(柠檬酸钠、硼氢化钠、硫醇、油胺等),对纳米颗粒的分散性好,可以制备出极小的纳米颗粒,且不会造成环境污染,所制备的金纳米颗粒表面不会产生有毒化学试剂残留,且表现出了明显的光学信号,因此合成的金纳米可以应用于生物医药领域。
本发明和已有技术相比,其技术进步是显著的。本发明的制备工艺简单、条件温和、环境友好,无化学试剂残留,为金纳米颗粒在生物医学领域的应用奠定了基础。
附图说明
图1是实施例1中反应2分钟、5分钟、10分钟、15分钟、20分钟后获取的反应液照片。
图2是实施例1中反应2分钟、5分钟、10分钟、15分钟、20分钟后获取样品离心后测其紫外-可见吸收光谱(UV-Vis.)图;
图3是实施例1中反应时间为20分钟时所得到的金纳米的透射电子显微镜图;
图4是实施例1中反应时间为20分钟时所得到的金纳米的X-射线衍射谱图;
图5是实施例2中反应2分钟、5分钟、10分钟、15分钟、20分钟后获取的反应液照片。
图6是实施例2中反应2分钟、5分钟、10分钟、15分钟、20分钟后获取样品离心后测其紫外-可见吸收光谱(UV-Vis.)图;
图7是实施例2中反应时间为20分钟时所得到的金纳米的透射电子显微镜图;
图8是实施例2中反应时间为20分钟时所得到的金纳米的能谱图(EDX)。
具体实施方案
下面结合实施例和附图对本发明做进一步说明,本领域技术人员应该理解,实施例和附图只是为了更好地理解本发明,并不用来做出任何限制。
下面各实施例中所使用的三七提取液的制备过程为:将三七加入到去离子水中加热至沸腾5min,并以8000rpm离心5min两次制得0.58mol/L的三七提取液。
氯金酸溶液制备过程为:将氯金酸晶体溶解于去离子水中形成0.1mol/L氯金酸溶液。
氢氧化钠溶液制备过程为:将氢氧化钠晶体溶解于去离子水中形成0.01mol/L氢氧化钠溶液。
实施例1
(1)用去离子水将所用玻璃容器进行洗涤;
(2)取10mL三七提取液和15mL去离子水放入烧瓶,再加入200μL的氢氧化钠溶液并加热至沸腾,沸腾5分钟;
(3)加入100μL的0.1mol/L的氯金酸溶液在烧瓶中,测试PH值为5.75,在沸腾条件下反应2分钟、5分钟、10分钟、15分钟、20分钟后取样。样品照片如图1。
(4)对上述不同反应时间后所取得的样品在8000rpm离心10分钟,将所得沉淀物在40-50℃下干燥10分钟后即得金纳米颗粒。
图2为采用日本岛津公司的UV-2600型紫外分光光度计对上述反应2分钟、5分钟、10分钟、15分钟、20分钟所得样品离心后测其紫外-可见吸收光谱(UV-Vis.)图。金纳米产生的吸收峰均在516nm左右,产生明显的等离子共振信号,可做进一步的生物应用。
图3为采用日本电子公司的JEM-2100F型场发射透射电子显微镜对上述反应20分钟所得的金纳米进行表征的TEM图。可以明显的看出所得金纳米颗粒呈现类球型。其余的2分钟、5分钟、15分钟、20分钟所制得的样品的形貌与15分钟获得的金纳米颗粒类似,其平均直径均为6nm左右。
图4为采用日本株式会社的D/max-2600PC型X-射线衍射仪对上述反应15分钟所得的金纳米颗粒进行表征的谱图,与金的标准图谱非常吻合,进一步说明了反应合成了金纳米。
实施例2
(1)用去离子水将所用玻璃容器进行洗涤;
(2)取10mL三七提取液和15mL去离子水放入烧瓶,再加入100μL的氢氧化钠溶液并加热至沸腾加热至沸腾,并让其沸腾10分钟;
(3)加入100μL氯金酸溶液在烧瓶中,测试PH值为5.25,在沸腾条件下反应2分钟、5分钟、10分钟、15分钟、20分钟后取样。样品照片如图5。
(4)对上述不同反应时间后所取得的样品在8000rpm离心10分钟,将所得沉淀物在40-50℃下干燥10分钟后即得金纳米颗粒。
图6为采用日本岛津公司的UV-2600型紫外分光光度计对上述反应2分钟、5分钟、10分钟、15分钟、20分钟所得样品离心后测其紫外-可见吸收光谱(UV-Vis.)图。金纳米颗粒产生的吸收峰均在520nm左右,产生明显的等离子共振信号。
图7为采用日本电子公司的JEM-2100F型场发射透射电子显微镜对上述反应20分钟所得的金纳米颗粒进行表征的结果。可以明显看出所得的金纳米颗粒呈现类球型。其余的2分钟、5分钟、10分钟、15分钟所制得的样品的形貌与20分钟的金纳米类似,其平均直径均为7nm左右。
图8为采用日本电子公司EDAX Falcon s60型能谱仪对上述反应10分钟所得金纳米颗粒的EDX图谱,可以明显的看出反应所得的纳米颗粒的成分为金元素。Cu为测试中所用的铜网成分,不是纳米颗粒所包含的杂质。
上述实施例虽然只是列举了实验室规模的反应,但本领域技术人员应该理解,本发明的方法同样适用于工业规模的反应。

Claims (2)

1.一种利用三七提取液制备金纳米颗粒的方法,其特征在于包括如下步骤:
1)将三七片加入去离子水中加热至沸腾并离心后制得0.4~1.0mol/L的三七提取液;
2)将氯金酸晶体溶解于去离子水中形成0.05~0.15mol/L的氯金酸溶液;
3)将氢氧化钠晶体溶解于去离子水形成0.01~0.02mol/L氢氧化钠溶液;
4)将三七提取液加入到去离子水中,三七提取液和去离子水的体积比为10mL:10~20mL,再加入氢氧化钠溶液使得反应体系PH值在5.0-6.0之间,随后将其加热至沸腾,再将氯金酸溶液加入到沸腾的三七提取液中,所述的三七提取液和氯金酸的摩尔比为20~100:1,沸腾状态下反应1-60分钟,反应结束,将所得反应液离心分离,将所得沉淀物干燥后即得金纳米颗粒。
2.根据权利要求1所述的一种利用三七提取液制备金纳米颗粒的方法,其特征在于:步骤4)中将三七提取液加入后,保持沸腾2-20分钟,使三七提取液充分水解,再加入氯金酸溶液进行反应。
CN201710442842.6A 2017-06-13 2017-06-13 一种利用三七提取液制备金纳米颗粒的方法 Active CN107282940B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710442842.6A CN107282940B (zh) 2017-06-13 2017-06-13 一种利用三七提取液制备金纳米颗粒的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710442842.6A CN107282940B (zh) 2017-06-13 2017-06-13 一种利用三七提取液制备金纳米颗粒的方法

Publications (2)

Publication Number Publication Date
CN107282940A true CN107282940A (zh) 2017-10-24
CN107282940B CN107282940B (zh) 2021-02-19

Family

ID=60097185

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710442842.6A Active CN107282940B (zh) 2017-06-13 2017-06-13 一种利用三七提取液制备金纳米颗粒的方法

Country Status (1)

Country Link
CN (1) CN107282940B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855541A (zh) * 2017-11-30 2018-03-30 上海理工大学 一种利用三七浸提液制备银纳米颗粒的方法
CN108031863A (zh) * 2018-01-17 2018-05-15 上海理工大学 一种利用红藤提取液制备金银合金纳米颗粒的方法
CN108031862A (zh) * 2018-01-09 2018-05-15 上海理工大学 一种金银合金纳米颗粒的制备方法
CN108746658A (zh) * 2018-05-24 2018-11-06 西安理工大学 一种具有抗菌活性的海藻多糖纳米金颗粒的制备方法
CN109663931A (zh) * 2019-02-26 2019-04-23 云南师范大学 一种基于三七皂苷合成纳米金颗粒的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101342600A (zh) * 2008-08-15 2009-01-14 厦门大学 一种连续制备纳米银的装置和纳米银的连续制备方法
CN101912976A (zh) * 2010-08-24 2010-12-15 厦门大学 植物提取液还原制备银纳米颗粒的方法
CN104646682A (zh) * 2015-02-10 2015-05-27 上海理工大学 一种利用甘蔗提取液制备纳米金颗粒的方法
CN104759636A (zh) * 2015-04-29 2015-07-08 山西农业大学 用山楂籽提取液制备纳米金的方法
WO2016043349A1 (en) * 2014-09-18 2016-03-24 RI, Kyong Min Solution of bio gold nanoparticles produced by extracts of plants
CN105817643A (zh) * 2016-05-06 2016-08-03 东北师范大学 一种利用人参提取皂甙后废弃物制备纳米粒子的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101342600A (zh) * 2008-08-15 2009-01-14 厦门大学 一种连续制备纳米银的装置和纳米银的连续制备方法
CN101912976A (zh) * 2010-08-24 2010-12-15 厦门大学 植物提取液还原制备银纳米颗粒的方法
WO2016043349A1 (en) * 2014-09-18 2016-03-24 RI, Kyong Min Solution of bio gold nanoparticles produced by extracts of plants
CN104646682A (zh) * 2015-02-10 2015-05-27 上海理工大学 一种利用甘蔗提取液制备纳米金颗粒的方法
CN104759636A (zh) * 2015-04-29 2015-07-08 山西农业大学 用山楂籽提取液制备纳米金的方法
CN105817643A (zh) * 2016-05-06 2016-08-03 东北师范大学 一种利用人参提取皂甙后废弃物制备纳米粒子的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭秋兰 等: "藤茶干粉提取液还原制备金纳米粒子", 《应用化学》 *
陈士林等: "《中药资源化学》", 30 September 2013, 中国中医药出版社 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855541A (zh) * 2017-11-30 2018-03-30 上海理工大学 一种利用三七浸提液制备银纳米颗粒的方法
CN108031862A (zh) * 2018-01-09 2018-05-15 上海理工大学 一种金银合金纳米颗粒的制备方法
CN108031863A (zh) * 2018-01-17 2018-05-15 上海理工大学 一种利用红藤提取液制备金银合金纳米颗粒的方法
CN108746658A (zh) * 2018-05-24 2018-11-06 西安理工大学 一种具有抗菌活性的海藻多糖纳米金颗粒的制备方法
CN109663931A (zh) * 2019-02-26 2019-04-23 云南师范大学 一种基于三七皂苷合成纳米金颗粒的方法

Also Published As

Publication number Publication date
CN107282940B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN107282940A (zh) 一种利用三七提取液制备金纳米颗粒的方法
CN101717122B (zh) 一种微波法制备四氧化三铁纳米片的方法
CN100453220C (zh) 一种改进纳米零价铁粒子的制备方法
CN101434418A (zh) 磁场作用下水热法制备Co3O4纳米材料的方法
CN105965031B (zh) 一种利用枸杞浸提液制备纳米金颗粒的方法
CN109437338A (zh) 一种类锯齿型镍钴铁类普鲁士蓝烧结氧化物纳米材料的制备方法
Adhikari et al. Solar-light-driven improved photocatalytic performance of hierarchical ZnIn2S4 architectures
CN106001608B (zh) 一种利用水溶性淀粉制备银纳米颗粒的方法
CN105478795B (zh) 一种利用甘蔗提取液制备银纳米颗粒的方法
CN106268750B (zh) 一种可见光响应型光还原活性SnO2-X纳米颗粒的制备方法
Hopper et al. Size control in the colloidal synthesis of plasmonic magnesium nanoparticles
Kundu et al. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations
Liu et al. Low temperature synthesis of Bi2WO6 and its photocatalytic activities
Özçelik et al. Structure, magnetic, photocatalytic and blood compatibility studies of nickel nanoferrites prepared by laser ablation technique in distilled water
CN103447028B (zh) 一种形貌可控的纳米银核/介孔二氧化硅壳结构的制备方法
CN101224903A (zh) 一种二氧化铈纳米立方块的制备方法
Nyabadza et al. A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage
CN105764849A (zh) 用于制备石墨烯的方法和***
CN106735296A (zh) 一种制备金银合金纳米颗粒的方法
Swathi et al. Designing rational and cheapest SeO2 electrocatalyst for long stable water splitting process
CN104646682B (zh) 一种利用甘蔗提取液制备纳米金颗粒的方法
CN108640160A (zh) 一种α-三氧化二铁介孔微球、制备方法及其应用
US11505465B2 (en) Method of obtainment of nanomaterials composed of carbonaceous material and metal oxides
CN105665738B (zh) 一种利用水溶性淀粉制备金纳米颗粒的方法
Shafique et al. Synthesis of superfine paramagnetic nickel particles using anionic and cationic surfactants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant