CN107264523A - 车辆控制方法及*** - Google Patents

车辆控制方法及*** Download PDF

Info

Publication number
CN107264523A
CN107264523A CN201710446105.3A CN201710446105A CN107264523A CN 107264523 A CN107264523 A CN 107264523A CN 201710446105 A CN201710446105 A CN 201710446105A CN 107264523 A CN107264523 A CN 107264523A
Authority
CN
China
Prior art keywords
vehicle
current vehicle
maximum deceleration
deceleration
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710446105.3A
Other languages
English (en)
Other versions
CN107264523B (zh
Inventor
刘成祺
谢明维
李从心
易迪华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BAIC langu New Energy Technology Co., Ltd
Original Assignee
Beijing Electric Vehicle Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Electric Vehicle Co Ltd filed Critical Beijing Electric Vehicle Co Ltd
Priority to CN201710446105.3A priority Critical patent/CN107264523B/zh
Publication of CN107264523A publication Critical patent/CN107264523A/zh
Priority to PCT/CN2017/118833 priority patent/WO2018227933A1/zh
Application granted granted Critical
Publication of CN107264523B publication Critical patent/CN107264523B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/064Degree of grip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/12Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to parameters of the vehicle itself, e.g. tyre models
    • B60W40/13Load or weight

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Abstract

本发明提出一种车辆控制方法及***,其中,方法包括:获取当前车辆所处路面所能提供的最大减速度;获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据;其中,目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆;根据第一数据确定目标车辆是否处于制动状态;在目标车辆处于制动状态时,获取当前车辆所需的目标减速度;根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险;当存在追尾风险时,控制当前车辆以最大减速度减速制动且转向。该方法将当前车辆所处路面所能提供的最大减速度和所需的目标减速度作为判断是否存在追尾风险的一个依据,解决了现有ACC控制过程中未考虑路面附着条件,导致控制效果差、安全性低的问题。

Description

车辆控制方法及***
技术领域
本发明涉及车辆工程领域,尤其涉及一种车辆控制方法及***。
背景技术
目前,与传统汽车相比,纯电动汽车降低了排放、减少了机油泄露带来的水污染。因此纯电动汽车越来越受消费者的青睐。
自适应巡航***(Adaptive Cruise Control,简称ACC)控制车辆的安全行驶,可以有效地缓解了驾驶员的驾驶疲劳,保证了车辆的安全行驶。在车辆行驶过程中,当与前车之间的距离过小时,ACC可以通过与制动防抱死***、发动机控制***协调动作,使车轮适当制动,并使发动机的输出功率下降,以使车辆与前方车辆始终保持安全距离。目前,自适应巡航***在传统燃油汽车上应用较多,而在纯电动汽车上却很少被应用。
ACC的控制能力往往会受到路面附着条件的影响。尤其在沙地、泥地、雪地等低附路面条件下,当前方车辆进行紧急刹车时,由于路面能够提供的附着力有限,在ACC的激活条件下,会出现当前车辆刹车力不足,从而造成追尾风险,因而会降低控制效果,进而降低汽车的安全性。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明的第一个目的在于提出一种车辆控制方法,以实现根据车辆所处的路面所能提供的最大减速度和车辆所需的目标减速度,判断车辆是否存在追尾风险,用于解决现有汽车控制方法中没有考虑路面附着条件,造成控制效果差,汽车安全性低的问题。
本发明的第二个目的在于提出一种车辆控制***。
本发明的第三个目的在于提出一种车辆控制装置。
本发明的第四个目的在于提出一种计算机程序产品。
本发明的第五个目的在于提出一种非临时性计算机可读存储介质。
为达上述目的,本发明第一方面实施例提出了一种车辆控制方法,包括:获取当前车辆所处路面所能提供的最大减速度;获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据;其中,目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆;根据第一数据确定目标车辆是否处于制动状态;在目标车辆处于制动状态时,获取当前车辆所需的目标减速度;根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险;当存在追尾风险时,控制当前车辆以最大减速度减速制动且转向。
本发明实施例的车辆控制方法,通过获取当前车辆所处路面所能提供的最大减速度,以及包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据,根据第一数据确定目标车辆是否处于制动状态,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度,并根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,当存在追尾风险时,控制当前车辆以最大减速度减速制动和转向。在本实施例中,在ACC原有功能上增加根据路面附着条件判断车辆是否存在追尾风险的功能。当前方车辆处于制动状态时,将当前车辆所处路面所能提供的最大减速度和当前车辆所需的目标减速度,作为判断是否存在追尾风险的一个依据,解决了现有ACC控制过程中没有考虑路面附着条件,导致控制效果差、安全性低的问题,提高了汽车控制效果和安全性。
另外,本发明实施例的车辆控制方法,还具有如下附加的技术特征:
在本发明的一个实施例中,获取当前车辆所处路面所能提供的最大减速度,包括:获取当前车辆路面的路面附着系数;根据路面附着系数获取最大减速度。
在本发明的一个实施例中,获取当前车辆路面的路面附着系数,包括:获取当前车辆的驱动轮和从动轮的轮速信息;根据轮速信息计算当前车辆的车速信息;根据轮速信息和车速信息,计算得到驱动轮的滑移率;根据当前车辆的质心加速度和驱动轮的滑移率,确定路面附着系数。
在本发明的一个实施例中,根据路面附着系数获取最大减速度,包括:获取所处路面的坡度信息和当前车辆的重量;根据坡度信息和重量,获取当前车辆相对于所处路面的垂直分力;根据垂直分力和路面附着系数,得到最大减速度。
在本发明的一个实施例中,根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,包括:将目标减速度与最大减速度进行比较;如果目标减速度大于最大减速度,则判定存在追尾风险。
在本发明的一个实施例中,根据第一数据确定目标车辆是否处于制动状态,包括:将相对速度与前一时刻的相对速度比较;当相对速度小于前一时刻的相对速度时,确定目标车辆处于制动状态;或者,将第一时距与前一时刻的第二时距比较;如果第一时距小于第二时距,确定目标车辆处于制动状态。
在本发明的一个实施例中,持续对路面附着系数进行检测;判断检测到的路面附着系数对应的危险等级是否下降;如果危险等级下降,则在所处车道内重新选择目标车辆进行跟随。
在本发明的一个实施例中,在控制当前车辆转向的过程中,实时获取准备转向的目标车道内的图像信息;根据所述图像信息判断目标车道内是否存在侧方车辆;其中侧方车辆为与当前车辆之间的距离低于预设阈值的车辆;如果所述图像信息中存在侧方车辆,则控制当前车辆发出告警信息。
为达上述目的,本发明第二方面实施例提出了一种车辆控制***,包括:ACU,用于获取当前车辆所处路面所能提供的最大减速度;数据采集装置,用于获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据;其中,目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆;ACC,用于根据第一数据确定目标车辆是否处于制动状态,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度,以及根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,并在判断出存在追尾风险时,控制当前车辆的ESP以最大减速度减速制动且控制当前车辆的EPS转向;ESP,用于根据ACC的指令,控制当前车辆以最大减速度减速制动;EPS,用于根据ACC的指令,控制转向机构进行转向。
本发明实施例的车辆控制***,通过ACU获取当前车辆所处路面所能提供的最大减速度,通过数据采集装置获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据,ACC根据第一数据确定目标车辆是否处于制动状态,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度,并根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,当存在追尾风险时,控制当前车辆的ESP以最大减速度减速制动并且控制当前车辆的EPS进行转向。在本实施例中,在ACC原有功能上增加根据路面附着条件判断车辆是否存在追尾风险的功能。当前方车辆处于制动状态时,将当前车辆所处路面所能提供的最大减速度和当前车辆所需的目标减速度,作为判断是否存在追尾风险的一个依据,解决了现有ACC控制过程中没有考虑路面附着条件,导致控制效果差、安全性低的问题,提高了汽车控制效果和安全性。
另外,本发明实施例的车辆控制***,还具有如下附加的技术特征:
在本发明的一个实施例中,ACU,具体用于获取当前车辆所处路面的路面附着系数,以及根据路面附着系数获取最大减速度。
在本发明的一个实施例中,ESP,具体用于获取当前车辆的驱动轮和从动轮的轮速信息,根据轮速信息计算当前车辆的车速信息,并将轮速信息和车速信息发给ACU;ACU,具体用于根据轮速信息和车速信息,计算得到驱动轮的滑移率,根据当前车辆的质心加速度和驱动轮的滑移率,确定路面附着系数。
在本发明的一个实施例中,ACU,具体用于获取所处路面的坡度信息和当前车辆的重量,根据坡度信息和重量,获取当前车辆相对于所处路面的垂直分力,根据垂直分力和路面附着系数,得到最大减速度。
在本发明的一个实施例中,ACC,具体用于将目标减速度与最大减速度进行比较,如果目标减速度大于最大减速度,则判定存在追尾风险。
在本发明的一个实施例中,ACC,具体用相对速度与前一时刻的相对速度比较,当相对速度小于前一时刻的相对速度时,确定目标车辆处于制动状态;或者,将第一时距与前一时刻的第二时距比较,如果第一时距小于第二时距,确定目标车辆处于制动状态。
在本发明的一个实施例中,ACU,还用于持续对路面附着系数进行检测;ACC,还用于判断检测到的路面附着系数对应的危险等级是否下降,如果危险等级下降,则在所处车道内重新选择目标车辆进行跟随。
在本发明的一个实施例中,ACC,还用于在控制当前车辆转向的过程中,实时获取准备转向的目标车道内的图像信息,根据图像信息判断目标车道内是否存在侧方车辆;其中侧方车辆为与当前车辆之间的距离低于预设阈值的车辆,如果图像信息中存在侧方车辆,则通过当前车辆上的BCM和/或ICM发出告警信息。
为达上述目的,本发明第三方面实施例提出了一种车辆控制装置,包括存储器和处理器,其中,处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行第一方面实施例所述的车辆控制方法。
为达上述目的,本发明第四方面实施例提出了一种计算机程序产品,当计算机程序产品中的指令由处理器执行时,执行第一方面实施例所述的车辆控制方法。
为达上述目的,本发明第五方面实施例提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现第一方面实施例所述的车辆控制方法。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本发明实施例提供的一种车辆控制***的结构示意图;
图2为本发明实施例提供的另一种车辆控制***的结构示意图;
图3为本发明实施例提供的一种车辆控制方法的流程示意图;
图4为本发明实施例提供的另一种车辆控制方法的流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
下面参考附图描述本发明实施例的车辆控制方法及***。
车辆上的ACC的控制能力往往会受到路面附着条件的影响。例如,在沙地、泥地、雪地等低附路面条件下,当前方车辆进行紧急刹车时,由于路面能够提供的附着力有限,即使在ACC的控制下,也会出现当前车辆刹车不足,从而造成追尾风险,因而会降低控制效果,进而降低汽车的安全性。
针对以上一问题,本发明实施例在纯电动汽车上加装ACC,并且在ACC原有功能上,增加了根据路面附着条件判断车辆是否存在追尾风险的功能,提出一种车辆控制***,以实现根据车辆所处的路面所能提供的最大减速度和车辆所需的目标减速度,判断车辆是否存在追尾风险,用于解决现有汽车控制***没有考虑路面附着条件,造成其控制效果差,汽车安全性低的问题。
图1为本发明实施例提供的一种车辆控制***的结构示意图。
如图1所示,该车辆控制***包括:路面附着系数识别控制器(AdhesionCoefficient Control Unit,简称ACU)110、数据采集装置120、ACC 130、电子稳定性***(Electronic Stability Program,简称ESP)140、电动助力转向***(Electric PowerSteering,简称EPS)150。
ACU 110用于获取当前车辆所处路面所能提供的最大减速度。
在当前车辆处于行车模式过程中,ACU 110可以通过设置在车轮上的车轮轮速传感器获取到车轮的轮速信息,基于轮速信息可以计算出车速信息。进一步地,ACU 110根据轮速信息、车速信息以及加速度传感器采集的当前车辆的质心加速度,可以得到当前车辆所处路面所能提供的最大减速度。
数据采集装置120用于获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据。其中,目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆;时距是指在同一车道上行驶的车辆队列中,当前车辆按照当前速度行驶的情况下,当前车辆可以追上目标车辆所需的时间。
ACC 130用于根据第一数据确定目标车辆是否处于制动状态,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度,以及根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,并在判断出存在追尾风险时,控制当前车辆的ESP 140以最大减速度减速制动且转向。
ESP 140用于根据ACC 130的指令,控制当前车辆以最大减速度减速制动并控制EPS150进行转向。
EPS 150,根据ACC 130的指令,控制当前车辆的转向机构转向。
本发明实施例的车辆控制***,通过ACU获取当前车辆所处路面所能提供的最大减速度,通过数据采集装置获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据,ACC根据第一数据确定目标车辆是否处于制动状态,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度,并根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,当存在追尾风险时,控制当前车辆的ESP以最大减速度减速制动和控制EPS进行转向。在本实施例中,在ACC原有功能上增加根据路面附着条件判断车辆是否存在追尾风险的功能。当前方车辆处于制动状态时,将当前车辆所处路面所能提供的最大减速度和当前车辆所需的目标减速度,作为判断是否存在追尾风险的一个依据,解决了现有ACC控制过程中没有考虑路面附着条件,导致控制效果差、安全性低的问题,提高了汽车控制效果和安全性。
为了清楚说明上一实施例,下面结合图2通过一个具体实施例说明本发明提出的车辆控制***。
如图2所示,该车辆控制***可分为三层:感知层、决策层、执行层。
其中,感知层包括用于识别路面附着系数的ACU、安装于车辆前进气格栅处的前置雷达探头、安装于内后视镜上的前视摄像头、安装于两侧车门侧面的侧视摄像头、车轮轮速传感器等等。
决策层包括ACC 130,主要实现车辆控制***的控制功能。
执行层包括ESP 140、车身控制器(Body Control module,简称BCM)、组合仪表控制器(Instrument Control Management,简称ICM)、EPS150等。
该车辆控制***的具体工作过程如下:
在当前车辆处于行车模式过程中,车轮轮速传感器采集车轮的轮速信息并发送给ESP140,ESP 140获取当前车辆的驱动轮和从动轮的轮速信息后,根据轮速信息计算当前车辆的车速信息,并将轮速信息和车速信息通过控制器局域网络(Controller AreaNetwork,简称CAN)总线发送给ACU 110。
ACU 110根据轮速信息和车速信息,计算得到驱动轮的滑移率,其中,驱动轮的滑移率指在车轮运动中滑动成分所占的比例,用于表征抓地性。驱动轮的滑移率的计算方法,如公式一所示。
公式一:
其中,s为驱动轮的滑移率,u为车速,uw为车轮速度。
ACU 110再根据驱动轮的滑移率和加速度传感器采集的当前车辆的质心加速度,通过二维查表的方式识别路面类型并获得精确的路面附着系数。
之后,ACU 110获取当前车辆的重量和加速度传感器采集的路面坡度信息,如路面与水平面的夹角,并根据坡度信息和车辆的重量,获取当前车辆相对于所处路面的垂直分力,再根据垂直分力和路面附着系数,得到最大减速度,并通过CAN总线发送给ACC 130。
同时,数据采集装置120,通过前置雷达探头和前视摄像头采集目标车辆与当前车辆之间的相对速度、时距等,以获取第一数据,并将第一数据发送给ACC 130。
ACC 130接收到第一数据后,根据第一数据确定目标车辆是否处于制动状态。在本发明的一个实施例中,可以通过当前车辆与目标车辆的相对速度进行判断。具体地,将当前时刻的相对速度与前一时刻的相对速度进行比较,当相对速度小于前一时刻的相对速度时,可以确定目标车辆处于制动状态,当相对速度大于前一时刻的相对速度时,可以确定目标车辆处于加速状态。
在另外一个实施例中,可以通过时距进行判断。具体而言,将当前时刻的第一时距与前一时刻的第二时距比较,如果第一时距小于第二时距,说明当前车辆与目标车辆之间的距离缩小,则可以确定目标车辆处于制动状态。
当然,也可以结合上述两种方式进行判断,以提高判断的准确性。本发明实施例包括但不限于上述判断目标车辆是否处于制动状态的方法。
当目标车辆处于制动状态时,ACC 130获取当前车辆所需的目标减速度,目标减速度的计算方法,如公式二所示。
公式二:
其中,V1为当前车辆的瞬时速度,V2为目标车辆的瞬时速度,Δt为预测周期,a为计算得到的当前车辆的目标减速度。
ACC 130接收ACU 110发送的最大减速度,并比较最大减速度与目标减速度的大小。如果目标减速度大于最大减速度,由于受到路面的限制,即使在路面所能提供的最大减速度小于目标减速度的情况下,当前车辆也只能按照最大减速度进行减速,这样就会导致当前车辆无法在追尾之前停车。在控制当前车辆的ESP 140以最大减速度减速制动时,为了避免发生追尾,通过控制当前车辆的EPS 150进行转向,EPS 150根据ACC 130的指令,控制转向机构转向。如果目标减速度小于最大减速度,则控制当前车辆的ESP 140以目标减速度,在当前车道内进行跟车制动。
由于减速度是矢量,在本发明实施例中,比较最大减速度与目标减速度时,比较的是两者的绝对值大小。例如,目标减速度大于最大减速度是指目标减速度的绝对值大于最大减速度的绝对值。
为了提高在转向时的安全性,在控制当前车辆转向的过程中,ACC 130可通过侧视摄像头,实时获取准备转向的目标车道内的图像信息,以根据图像信息判断目标车道内是否存在侧方车辆。其中,侧方车辆为与当前车辆之间的距离低于预设阈值的车辆,预设阈值可以根据实际需要进行设置。
如果图像信息中存在侧方车辆,则ACC 130向当前车辆上的BCM和ICM发送预警信息。BCM接收到预警信息后,开启危险警告灯,ICM播放紧急预警语音,实现了通过视觉和听觉的方式,提醒当前车辆的驾驶员采用鸣笛方式,提醒侧方车辆避让,避免发生交通事故,提高了转向时的安全性。
为了进一步提高安全性,可根据实践测试结果,预先建立路面附着系数与危险等级的对应关系。在目标车辆制动的过程中,当前车辆的ACU 110持续检测路面附着系数,并发送给ACC 130。ACC 130通过查询路面附着系数与危险等级的对应关系,获取当前路面条件对应的危险等级,以判断检测到的路面附着系数对应的危险等级是否下降。如果危险等级下降,则在所处车道内重新选择目标车辆进行跟随。如果路面条件未得到改善,ACC 130判定危险等级升级,则控制当前车辆继续转向。
本发明实施例提出的车辆控制***,考虑了实时的路面附着系数,提高了车辆控制***的控制效果,在判断出当前车辆与目标车辆存在追尾风险时,及时进行转向,从而可以防止由于对路面附着情况估计不足而导致的车辆失控时存在的追尾风险,提高了车辆的安全性。
为达上述目的,本发明实施例还提出一种车辆控制方法。
图3为本发明实施例所提供的一种车辆控制方法的流程图。
如图3所示,该车辆控制方法包括:
S301,获取当前车辆所处路面所能提供的最大减速度。
在本发明的实施例中,可通过当前车辆所处路面的路面附着系数和当前车辆相对于所处路面的垂直分力,获得所处路面所能提供的最大减速度。
具体地,首先根据车轮轮速传感器采集的当前车辆的驱动轮和从动轮的轮速信息,计算当前车辆的车速信息。然后,根据轮速信息和车速信息,计算得到驱动轮的滑移率。再根据驱动轮的滑移率和加速度传感器采集的当前车辆的质心加速度,通过二维查询方式识别路面类型和确定路面附着系数。
同时,通过加速度传感器获得路面的坡度信息,如路面与水平面的夹角,根据获得的坡度信息和当前车辆的重量,计算当前车辆相对于所处路面的垂直分力。
最后,根据路面附着系数和垂直分力,计算得到当前车辆所处路面所能提供的最大减速度。
S302,获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据。
其中,目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆。
在本发明实施例中,可通过安装在前进气格栅处的前置雷达探头、前视摄像头采集目标车辆与当前车辆之间的相对速度、时距等第一数据。
S303,根据第一数据确定目标车辆是否处于制动状态。
在本发明的一个实施例中,可以通过当前车辆与目标车辆的相对速度进行判断。具体地,将当前时刻的相对速度与前一时刻的相对速度进行比较,当相对速度小于前一时刻的相对速度时,可以确定目标车辆处于制动状态,当相对速度大于前一时刻的相对速度时,可以确定目标车辆处于加速状态。
在另外一个实施例中,可以通过时距进行判断。具体而言,将当前时刻的第一时距与前一时刻的第二时距比较,如果第一时距小于第二时距,说明当前车辆与目标车辆之间的距离缩小,则可以确定目标车辆处于制动状态。
当然,也可以结合上述两种方式进行判断,以提高判断的准确性。本发明实施例包括但不限于上述判断目标车辆是否处于制动状态的方法。
S304,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度。
其中,目标减速度的计算方法如上述实施例中的公式二所示,在此不再赘述。
S305,根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险。
如果目标减速度大于最大减速度,可以判定当前车辆与目标车辆存在追尾风险。也就是说,需要按照目标减速度减速,才能使当前车辆在追尾目标车辆之前停止。但是由于受到路面的限制,即使在路面所能提供的最大减速度小于目标减速度的情况下,当前车辆也只能按照最大减速度进行减速,这样就会导致当前车辆无法在追尾之前停车。
由于减速度是矢量,在本发明实施例中,比较最大减速度与目标减速度时,比较的是两者的绝对值大小。例如,目标减速度大于最大减速度是指目标减速度的绝对值大于最大减速度的绝对值。
S306,当存在追尾风险时,控制当前车辆以最大减速度减速制动且转向。
当路面所能提供的最大减速度小于目标减速度时,由于受到路面条件的限制,当前车辆只能按照最大减速度进行减速,这时当前车辆与目标车辆存在追尾的风险。为了降低追尾风险,在控制当前车辆以最大减速度减速制动的过程中,并控制当前车辆转向其他车道,以避免与当前车道内的目标车辆发生追尾。
当目标减速度小于最大减速度时,可控制当前车辆以目标减速度,在当前车道内进行跟车制动。
为了更清楚地说明上一实施例,下面结合图4以电动汽车为例,说明本发明提出的车辆控制方法。
如图4所示,该车辆控制方法包括:
S401,整车控制器(Vehicle control Unit,简称VCU)初始化。
通过接通ON上电,唤醒VCU。VCU被唤醒后,进行控制器数据初始化,并读取电可擦除只读存储器(Electrically Erasable Programmable Read-Only Memory,简称EEPROM)中的数据。如果在上一个上电周期内有不可抗拒故障出现,则禁止上电;整合车辆上电前数据,如果有下电故障,则VCU将禁止***上高压。
S402,VCU唤醒各相关控制器。
VCU将对整车模式进行判断,其中,整车模式包括但不限于远程模式、行车模式、慢充模式、快充模式等。如果整车模式确定为行车模式,则VCU唤醒电池管理***(BatteryManagement System,简称BMS)、BCM、空调控制器等等。
S403,VCU引导整车上电。
VCU通过整车各高压部件上电,以实现整车上电。
S404,雷达、摄像头采集数据。
基于安装于前进气格栅处的前置雷达探头、安装于内后视镜上的前视摄像头采集数据,如采集目标车辆与当前车辆之间的距离等数据。
S405,获得相对速度、时距。
基于步骤S404采集的数据,获得当前车辆与目标车辆之间的相对速度、时距等。
S406,MRR确定所需的目标减速度,并获取最大减速度。
由于前置毫米波探测雷达控制器(The Front Millimeter wave detectionController,简称MRR)为ACC的核心控制器,因此可由MRR执行ACC的功能。
MRR可根据前、后车相对速度、时距等确定目标车辆是否处于制动状态,判断方法如上述实施例所述,在此不再赘述。当目标车辆处于制动状态时,确定当前车辆所需的目标减速度,计算方法如上述实施例所示。同时,获取当前车辆所处路面所能提供的最大减速度。
最大减速度的计算方法,如步骤S407-S412所示。
S407,基于车轮轮速传感器采集驱动轮与从动轮的轮速信息。
在获取轮速信息后,根据轮速信息计算当前车辆的车速信息,并将轮速信息和车速信息通过CAN总线发送至ACU。
S408,ACU计算驱动轮的滑移率。
ACU基于轮速信息和车速信息计算得到驱动轮的滑移率,计算方法如公式一所示。
S409,基于加速度传感器获取质心加速度信息。
S410,ACU通过二维查询方式识别路面类型并获得路面附着系数。
ACU根据获取的质心加速度信息与驱动轮的滑移率,通过二维查询方式识别路面类型,并获得路面附着系数。
S411,基于加速度传感器获取坡度信息。
并将获取的坡度信息发送给ACU。
S412,ACU计算路面所能提供的最大减速度。
ACU根据获得的坡度信息,结合当前车辆的重量,获得当前车辆的垂直分力。之后,根据垂直分力和路面附着系数,计算得到当前车辆所处路面所能提供的最大减速度,并将最大减速度通过CAN总线发送给MRR。
S413,MRR判断目标减速度是否小于最大减速度。
MRR判断当前车辆所需的目标减速度,是否小于从ACU获取的最大减速度。如果目标减速度小于最大减速,则执行步骤S415,ACC控制ESP以目标减速度在当前车道内,对目标车辆进行跟车制动。如果目标减速度大于最大减速度,则执行步骤S414。
S414,MRR控制ESP以最大减速减速制动且控制EPS进行转向。
由于路面所能提供的最大减速度小于目标减速度,因此存在追尾风险。为了降低追尾风险MRR控制ESP以最大减速度进行制动,并控制EPS转向目标车道,避免当前车辆与目标车辆发生追尾。
在转向的过程中,MRR可通过侧视摄像头对目标车道内的车辆进行监控,若发现侧方车辆,则通过BCM和ICM提醒驾驶员鸣笛,具体方法见上述实施例,在此不再赘述。
S416,MRR判断路面附着系数对应的危险等级是否下降。
在目标车辆进行转向的过程中,ACU持续检测路面附着系数,MRR判断路面附着系数对应的危险等级是否下降。如果危险等级升级,则继续控制EPS进行转向,直至更换车道,使危险等级下降。
S417,以目标车道内的最近前车作为目标车辆。
如果危险等级下降,则以目标车道内的最近的前方车辆作为目标车辆,进行重新跟随。
从图4可以看出,在车辆控制过程中,将路面条件作为横向控制逻辑加入控制方法中,能够降低由于地面附着力不够,导致当前车辆刹车不足引起的追尾风险,提高了***的安全性。
本发明实施例的车辆控制方法,通过获取当前车辆所处路面所能提供的最大减速度,以及包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据,根据第一数据确定目标车辆是否处于制动状态,在目标车辆处于制动状态时,获取当前车辆所需的目标减速度,并根据最大减速度和目标减速度,判断当前车辆是否存在追尾风险,当存在追尾风险时,控制当前车辆以最大减速度减速制动和转向。在本实施例中,在ACC原有功能上增加根据路面附着条件判断车辆是否存在追尾风险的功能。当前方车辆处于制动状态时,将当前车辆所处路面所能提供的最大减速度和当前车辆所需的目标减速度,作为判断是否存在追尾风险的一个依据,解决了现有ACC控制过程中没有考虑路面附着条件,导致控制效果差、安全性低的问题,提高了汽车控制效果和安全性。
为达上述目的,本发明实施例提出了一种车辆控制装置,包括存储器和处理器,其中,处理器通过读取存储器中存储的可执行程序代码来运行与可执行程序代码对应的程序,以用于执行上述实施例所述的车辆控制方法。
为达上述目的,本发明实施例还提出了一种计算机程序产品,当计算机程序产品中的指令由处理器执行时,执行上述实施例所述的车辆控制方法。
为达上述目的,本发明实施例还提出了一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现上述实施例所述的车辆控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行***、装置或设备(如基于计算机的***、包括处理器的***或其他可以从指令执行***、装置或设备取指令并执行指令的***)使用,或结合这些指令执行***、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行***、装置或设备或结合这些指令执行***、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行***执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

1.一种车辆控制方法,其特征在于,包括:
获取当前车辆所处路面所能提供的最大减速度;
获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据;其中,所述目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆;
根据所述第一数据确定所述目标车辆是否处于制动状态;
在所述目标车辆处于制动状态时,获取当前车辆所需的目标减速度;
根据所述最大减速度和所述目标减速度,判断当前车辆是否存在追尾风险;
当存在追尾风险时,控制当前车辆以所述最大减速度减速制动且转向。
2.根据权利要求1所述的车辆控制方法,其特征在于,所述获取当前车辆所处路面所能提供的最大减速度,包括:
获取当前车辆所处路面的路面附着系数;
根据所述路面附着系数获取所述最大减速度。
3.根据权利要求2所述的车辆控制方法,其特征在于,所述获取当前车辆所处路面的路面附着系数,包括:
获取当前车辆的驱动轮和从动轮的轮速信息;
根据所述轮速信息计算当前车辆的车速信息;
根据所述轮速信息和所述车速信息,计算得到所述驱动轮的滑移率;
根据当前车辆的质心加速度和所述驱动轮的滑移率,确定所述路面附着系数。
4.根据权利要求2所述的车辆控制方法,其特征在于,所述根据所述路面附着系数获取所述最大减速度,包括:
获取所述所处路面的坡度信息和当前车辆的重量;
根据所述坡度信息和所述重量,获取当前车辆相对于所述所处路面的垂直分力;
根据所述垂直分力和所述路面附着系数,得到所述最大减速度。
5.根据权利要求1-4任一项所述的车辆控制方法,其特征在于,所述根据所述最大减速度和所述目标减速度,判断当前车辆是否存在追尾风险,包括:
将所述目标减速度与所述最大减速度进行比较;
如果所述目标减速度大于所述最大减速度,则判定存在追尾风险。
6.根据权利要求1-4任一项所述的车辆控制方法,其特征在于,所述根据所述第一数据确定所述目标车辆是否处于制动状态,包括:
将所述相对速度与前一时刻的相对速度比较;
当所述相对速度小于前一时刻的相对速度时,确定所述目标车辆处于制动状态;或者,
将所述第一时距与前一时刻的第二时距比较;
如果所述第一时距小于所述第二时距,确定所述目标车辆处于制动状态。
7.根据权利要求1-4任一项所述的车辆控制方法,其特征在于,还包括:
持续对所述路面附着系数进行检测;
判断检测到的所述路面附着系数对应的危险等级是否下降;
如果所述危险等级下降,则在所处车道内重新选择目标车辆进行跟随。
8.根据权利要求1-4任一项所述的车辆控制方法,其特征在于,还包括:
在控制当前车辆转向的过程中,实时获取准备转向的目标车道内的图像信息;
根据所述图像信息判断所述目标车道内是否存在侧方车辆;其中所述侧方车辆为与当前车辆之间的距离低于预设阈值的车辆;
如果所述图像信息中存在所述侧方车辆,则控制当前车辆发出告警信息。
9.一种车辆控制***,其特征在于,包括:
ACU,用于获取当前车辆所处路面所能提供的最大减速度;
数据采集装置,用于获取包括目标车辆与当前车辆之间的相对速度和/或时距的第一数据;其中,所述目标车辆为位于当前车辆的前方且距离当前车辆最近的车辆;
ACC,用于根据所述第一数据确定所述目标车辆是否处于制动状态,在所述目标车辆处于制动状态时,获取当前车辆所需的目标减速度,以及根据所述最大减速度和所述目标减速度,判断当前车辆是否存在追尾风险,并在判断出存在追尾风险时,控制当前车辆的ESP以所述最大减速度减速制动且控制当前车辆的EPS转向;
所述ESP,用于根据所述ACC的指令,控制当前车辆以所述最大减速度减速制动;
所述EPS,用于根据所述ACC的指令,控制当前车辆的转向机构转向。
10.根据权利要求9所述的车辆控制***,其特征在于,所述ACU,具体用于获取当前车辆所处路面的路面附着系数,以及根据所述路面附着系数获取所述最大减速度。
11.根据权利要求10所述的车辆控制***,其特征在于,所述ESP,具体用于获取当前车辆的驱动轮和从动轮的轮速信息,根据所述轮速信息计算当前车辆的车速信息,并将所述轮速信息和所述车速信息发给所述ACU;
所述ACU,具体用于根据所述轮速信息和所述车速信息,计算得到所述驱动轮的滑移率,根据当前车辆的质心加速度和所述驱动轮的滑移率,确定所述路面附着系数。
12.根据权利要求11所述的车辆控制***,其特征在于,所述ACU,具体用于获取所述所处路面的坡度信息和当前车辆的重量,根据所述坡度信息和所述重量,获取当前车辆相对于所述所处路面的垂直分力,根据所述垂直分力和所述路面附着系数,得到所述最大减速度。
13.根据权利要求9-12任一项所述的车辆控制***,其特征在于,所述ACC,具体用于将所述目标减速度与所述最大减速度进行比较,如果所述目标减速度大于所述最大减速度,则判定存在追尾风险。
14.根据权利要求9-12任一项所述的车辆控制***,其特征在于,所述ACC,具体用将所述相对速度与前一时刻的相对速度比较,当所述相对速度小于前一时刻的相对速度时,确定所述目标车辆处于制动状态;或者,将所述第一时距与前一时刻的第二时距比较,如果所述第一时距小于所述第二时距,确定所述目标车辆处于制动状态。
15.根据权利要求9-12任一项所述的车辆控制***,其特征在于,所述ACU,还用于持续对所述路面附着系数进行检测;
所述ACC,还用于判断检测到的所述路面附着系数对应的危险等级是否下降,如果所述危险等级下降,则在所处车道内重新选择目标车辆进行跟随。
16.根据权利要求9-12任一项所述的车辆控制***,其特征在于,所述ACC,还用于在控制当前车辆转向的过程中,实时获取准备转向的目标车道内的监控录像,根据所述监控录像判断所述目标车道内是否存在侧方车辆;其中所述侧方车辆为与当前车辆之间的距离低于预设阈值的车辆,如果所述监控录像中存在所述侧方车辆,则通过当前车辆上的BCM和/或ICM发出告警信息。
17.一种车辆控制装置,其特征在于,包括存储器和处理器,其中,所述处理器通过读取所述存储器中存储的可执行程序代码来运行与所述可执行程序代码对应的程序,以用于执行如权利要求1-8中任一项所述的车辆控制方法。
18.一种计算机程序产品,当所述计算机程序产品中的指令由处理器执行时,执行如权利要求1-8中任一项所述的车辆控制方法。
19.一种非临时性计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1-8中任一项所述的车辆控制方法。
CN201710446105.3A 2017-06-14 2017-06-14 车辆控制方法及*** Active CN107264523B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201710446105.3A CN107264523B (zh) 2017-06-14 2017-06-14 车辆控制方法及***
PCT/CN2017/118833 WO2018227933A1 (zh) 2017-06-14 2017-12-27 车辆控制方法及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710446105.3A CN107264523B (zh) 2017-06-14 2017-06-14 车辆控制方法及***

Publications (2)

Publication Number Publication Date
CN107264523A true CN107264523A (zh) 2017-10-20
CN107264523B CN107264523B (zh) 2019-06-04

Family

ID=60066715

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710446105.3A Active CN107264523B (zh) 2017-06-14 2017-06-14 车辆控制方法及***

Country Status (2)

Country Link
CN (1) CN107264523B (zh)
WO (1) WO2018227933A1 (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107963081A (zh) * 2017-11-27 2018-04-27 财团法人车辆研究测试中心 自适应车速控制方法及其自适应车速控制装置
CN108482351A (zh) * 2018-03-16 2018-09-04 吉林大学 一种自动制动***低速紧急制动控制方法
WO2018227933A1 (zh) * 2017-06-14 2018-12-20 北京新能源汽车股份有限公司 车辆控制方法及***
CN109927720A (zh) * 2019-03-25 2019-06-25 浙江吉利汽车研究院有限公司 一种动态制动辅助控制方法、装置及***
CN110182215A (zh) * 2019-05-23 2019-08-30 南京航空航天大学 一种汽车经济性巡航控制方法及装置
CN110335504A (zh) * 2019-07-04 2019-10-15 北京交通大学 车辆跟驰状态下基于车路协同的避撞预警***及方法
CN110466520A (zh) * 2019-08-01 2019-11-19 武汉理工大学 一种基于路面附着系数识别的自适应巡航方法
CN110667573A (zh) * 2019-09-02 2020-01-10 山西省交通科技研发有限公司 一种汽车行驶状态风险感知预警***及其方法
CN111301420A (zh) * 2020-02-18 2020-06-19 北京汽车集团有限公司 车辆换道控制方法、装置、可读存储介质及车辆
CN111301432A (zh) * 2020-03-03 2020-06-19 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN111373457A (zh) * 2017-11-30 2020-07-03 本田技研工业株式会社 车辆控制装置、车辆以及车辆控制方法
CN111469837A (zh) * 2020-04-13 2020-07-31 中国联合网络通信集团有限公司 车辆碰撞预测方法及装置
CN111497843A (zh) * 2019-01-29 2020-08-07 罗伯特·博世有限公司 驾驶辅助***及其制动控制单元和制动控制方法
CN111516687A (zh) * 2020-05-11 2020-08-11 上海汽车集团股份有限公司 一种跟车距离的确定方法及装置
CN111539371A (zh) * 2020-05-06 2020-08-14 腾讯科技(深圳)有限公司 一种车辆控制的方法、装置、设备及存储介质
CN113071489A (zh) * 2021-04-30 2021-07-06 宝能(广州)汽车研究院有限公司 车辆行驶控制方法、装置、车载电子设备及可读存储介质
CN113085839A (zh) * 2021-04-14 2021-07-09 北京云迹科技有限公司 一种机器人制动方法及相关设备
CN114291050A (zh) * 2021-12-28 2022-04-08 菲格智能科技有限公司 一种车辆控制方法、装置、可读存储介质和车辆
CN114312724A (zh) * 2022-02-14 2022-04-12 北京路凯智行科技有限公司 制动***故障诊断及处理方法
CN114368385A (zh) * 2022-03-21 2022-04-19 北京宏景智驾科技有限公司 巡航控制方法和装置、电子设备和存储介质
CN115635958A (zh) * 2022-12-22 2023-01-24 福思(杭州)智能科技有限公司 一种车辆辅助驾驶方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111873988B (zh) * 2020-08-03 2021-12-07 上海元城汽车技术有限公司 泊车控制方法、装置、车辆及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072772A (ja) * 2008-09-17 2010-04-02 Hitachi Automotive Systems Ltd 車両運転支援装置
CN103419785A (zh) * 2012-05-23 2013-12-04 现代摩比斯株式会社 车辆停止控制***及方法
CN105235681A (zh) * 2015-11-11 2016-01-13 吉林大学 一种基于路面条件的车辆追尾防碰撞***与方法
WO2016092824A1 (ja) * 2014-12-12 2016-06-16 株式会社デンソー 車両制御装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6285944B1 (en) * 1998-06-18 2001-09-04 Nissan Motor Co., Ltd. Apparatus and method for performing automatic control over velocity of automotive vehicle
US6208106B1 (en) * 1999-12-22 2001-03-27 Visteon Global Technologies, Inc. Method and system for adjusting headway in an adaptive speed control system based on road surface coefficient of friction
EP1577147B1 (en) * 2004-03-15 2011-12-28 Nissan Motor Company Limited Deceleration control apparatus and method for automotive vehicle
US7751961B2 (en) * 2005-09-15 2010-07-06 Gm Global Technology Operations, Inc. Acceleration/deceleration induced real-time identification of maximum tire-road friction coefficient
KR100793869B1 (ko) * 2005-12-17 2008-01-15 현대자동차주식회사 차량의 차간거리 제어 시스템
JP6011105B2 (ja) * 2012-07-25 2016-10-19 株式会社ジェイテクト ホイール荷重算出方法、この算出方法を有する車両走行制御装置、およびこの制御装置を有する車両用走行装置
CN105172791A (zh) * 2015-10-30 2015-12-23 东风汽车公司 一种智能自适应巡航控制方法
CN106740769B (zh) * 2016-12-26 2019-03-26 清华大学苏州汽车研究院(相城) 一种路面附着自适应的自主紧急制动控制算法
CN107264523B (zh) * 2017-06-14 2019-06-04 北京新能源汽车股份有限公司 车辆控制方法及***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010072772A (ja) * 2008-09-17 2010-04-02 Hitachi Automotive Systems Ltd 車両運転支援装置
CN103419785A (zh) * 2012-05-23 2013-12-04 现代摩比斯株式会社 车辆停止控制***及方法
WO2016092824A1 (ja) * 2014-12-12 2016-06-16 株式会社デンソー 車両制御装置
CN105235681A (zh) * 2015-11-11 2016-01-13 吉林大学 一种基于路面条件的车辆追尾防碰撞***与方法

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018227933A1 (zh) * 2017-06-14 2018-12-20 北京新能源汽车股份有限公司 车辆控制方法及***
CN107963081B (zh) * 2017-11-27 2019-11-15 财团法人车辆研究测试中心 自适应车速控制方法及其自适应车速控制装置
CN107963081A (zh) * 2017-11-27 2018-04-27 财团法人车辆研究测试中心 自适应车速控制方法及其自适应车速控制装置
CN111373457A (zh) * 2017-11-30 2020-07-03 本田技研工业株式会社 车辆控制装置、车辆以及车辆控制方法
CN108482351A (zh) * 2018-03-16 2018-09-04 吉林大学 一种自动制动***低速紧急制动控制方法
CN111497843A (zh) * 2019-01-29 2020-08-07 罗伯特·博世有限公司 驾驶辅助***及其制动控制单元和制动控制方法
CN109927720A (zh) * 2019-03-25 2019-06-25 浙江吉利汽车研究院有限公司 一种动态制动辅助控制方法、装置及***
CN110182215A (zh) * 2019-05-23 2019-08-30 南京航空航天大学 一种汽车经济性巡航控制方法及装置
CN110335504A (zh) * 2019-07-04 2019-10-15 北京交通大学 车辆跟驰状态下基于车路协同的避撞预警***及方法
CN110335504B (zh) * 2019-07-04 2021-03-16 北京交通大学 车辆跟驰状态下基于车路协同的避撞预警***及方法
CN110466520A (zh) * 2019-08-01 2019-11-19 武汉理工大学 一种基于路面附着系数识别的自适应巡航方法
CN110667573A (zh) * 2019-09-02 2020-01-10 山西省交通科技研发有限公司 一种汽车行驶状态风险感知预警***及其方法
CN111301420A (zh) * 2020-02-18 2020-06-19 北京汽车集团有限公司 车辆换道控制方法、装置、可读存储介质及车辆
CN114291098A (zh) * 2020-03-03 2022-04-08 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN111301432A (zh) * 2020-03-03 2020-06-19 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN114291098B (zh) * 2020-03-03 2024-05-31 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN114291100B (zh) * 2020-03-03 2024-05-31 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN114291100A (zh) * 2020-03-03 2022-04-08 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN111301432B (zh) * 2020-03-03 2022-02-11 北京百度网讯科技有限公司 用于自动驾驶车辆的停车方法和装置
CN111469837B (zh) * 2020-04-13 2024-04-19 中国联合网络通信集团有限公司 车辆碰撞预测方法及装置
CN111469837A (zh) * 2020-04-13 2020-07-31 中国联合网络通信集团有限公司 车辆碰撞预测方法及装置
CN111539371A (zh) * 2020-05-06 2020-08-14 腾讯科技(深圳)有限公司 一种车辆控制的方法、装置、设备及存储介质
CN111516687B (zh) * 2020-05-11 2021-08-24 上海汽车集团股份有限公司 一种跟车距离的确定方法及装置
CN111516687A (zh) * 2020-05-11 2020-08-11 上海汽车集团股份有限公司 一种跟车距离的确定方法及装置
CN113085839A (zh) * 2021-04-14 2021-07-09 北京云迹科技有限公司 一种机器人制动方法及相关设备
CN113071489A (zh) * 2021-04-30 2021-07-06 宝能(广州)汽车研究院有限公司 车辆行驶控制方法、装置、车载电子设备及可读存储介质
CN114291050A (zh) * 2021-12-28 2022-04-08 菲格智能科技有限公司 一种车辆控制方法、装置、可读存储介质和车辆
CN114312724B (zh) * 2022-02-14 2023-08-29 北京路凯智行科技有限公司 制动***故障诊断及处理方法
CN114312724A (zh) * 2022-02-14 2022-04-12 北京路凯智行科技有限公司 制动***故障诊断及处理方法
CN114368385B (zh) * 2022-03-21 2022-07-15 北京宏景智驾科技有限公司 巡航控制方法和装置、电子设备和存储介质
CN114368385A (zh) * 2022-03-21 2022-04-19 北京宏景智驾科技有限公司 巡航控制方法和装置、电子设备和存储介质
CN115635958A (zh) * 2022-12-22 2023-01-24 福思(杭州)智能科技有限公司 一种车辆辅助驾驶方法及装置

Also Published As

Publication number Publication date
CN107264523B (zh) 2019-06-04
WO2018227933A1 (zh) 2018-12-20

Similar Documents

Publication Publication Date Title
CN107264523B (zh) 车辆控制方法及***
CN104691545B (zh) 适应性车辆防碰撞方法
CN102745194B (zh) 一种高速公路汽车防追尾前车的自适应报警方法
CN106240458B (zh) 一种基于车载双目相机的车辆前方碰撞预警方法
US9487212B1 (en) Method and system for controlling vehicle with automated driving system
US10414405B2 (en) Method for determining a limit speed for driving
CN109878513A (zh) 防御性驾驶策略生成方法、装置、设备及存储介质
CN107554420A (zh) 一种基于道路环境的安全车距报警***
CN103612599B (zh) 一种车辆报警***
CN110395251A (zh) 一种基于多传感器融合数据的自动紧急制动决策方法
CN105235681A (zh) 一种基于路面条件的车辆追尾防碰撞***与方法
CN110356377A (zh) 一种自动紧急制动的决策方法、车载设备及存储介质
CN105489023B (zh) 低能见度下无信号控制平面交叉口的车辆预警***及方法
CN106828186B (zh) 电动汽车及其的巡航控制***和巡航控制方法
CN104169697A (zh) 用于确定车辆的涉水深度的方法和***
CN103158705A (zh) 用于控制本车的方法和***
CN106205148A (zh) 一种危险货物罐车弯道安全车速获取方法及超速警示***
CN106494399A (zh) 车辆及用于车辆的车道检测方法
CN110723141A (zh) 一种车辆主动避撞***及其避撞方式切换方法
CN104494550A (zh) 一种车辆主动避撞装置及避撞距离的计算方法
CN105324805A (zh) 用于避免可能的随后碰撞或者用于降低碰撞的事故后果的方法和设备
CN107344552A (zh) 动态监测全方位汽车防撞预警***
CN106004862B (zh) 一种基于车联网的交通路口重型货车自动制动控制方法
CN106394524B (zh) 基于vanet无线短程通信的主动刹车方法
CN104085305A (zh) 车辆辅助驾驶主动限速控制***

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20191105

Address after: 100176 building 12, No. 5, Donghuan Middle Road, Beijing Economic and Technological Development Zone

Patentee after: BAIC langu New Energy Technology Co., Ltd

Address before: 102606 Beijing City Economic Development Zone, Daxing District Caiyu mining and Road No. 1

Patentee before: Beijing new-energy automobile Company Limited by Shares