CN107069035A - 一种二硫化钼/碳微球锂离子电池负极材料的制备方法 - Google Patents

一种二硫化钼/碳微球锂离子电池负极材料的制备方法 Download PDF

Info

Publication number
CN107069035A
CN107069035A CN201710208739.5A CN201710208739A CN107069035A CN 107069035 A CN107069035 A CN 107069035A CN 201710208739 A CN201710208739 A CN 201710208739A CN 107069035 A CN107069035 A CN 107069035A
Authority
CN
China
Prior art keywords
preparation
mixed solution
lithium ion
carbosphere
molybdenum disulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710208739.5A
Other languages
English (en)
Inventor
宋磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Gotion High Tech Power Energy Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201710208739.5A priority Critical patent/CN107069035A/zh
Publication of CN107069035A publication Critical patent/CN107069035A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供一种二硫化钼/碳微球锂离子电池负极材料的制备方法,涉及电池材料技术领域。本发明制备方法为:将聚苯乙烯微球、二水合钼酸钠、硫脲和葡萄糖溶解于去离子水,得到混合溶液,将混合溶液置于反应釜中,在180‑230℃下保温8‑24小时,冷却,将反应后的混合溶液进行离心洗涤、烘干、烧结,即可。本发明提供的制备方法简单,易于工业化生产,而且制备出的二硫化钼/碳微球锂离子电池负极材料中二硫化钼/碳微球能够均匀分布,具有优异的电化学性能。

Description

一种二硫化钼/碳微球锂离子电池负极材料的制备方法
技术领域
本发明涉及电池材料技术领域,涉及一种二硫化钼/碳微球锂离子电池负极材料的制备方法备方法。
背景技术
锂离子电池逐渐被应用于电动汽车和储能设备,然而,商业化石墨的理论容量只有372mAhg-1,严重限制了其在电动汽车和储能设备方面的应用。与石墨具有类似结构的二硫化钼纳米片,由于具有较高的理论容量在锂离子电池中已经受到广泛的关注,理论容量高,主要是由于在二维的片层中能够储存大量的锂离子。但是其导电性差和在电化学过程中体积变化大等缺点,造成作为电极材料的循环性能和倍率性能差。
纳米级别的材料具有量子尺寸效应、小尺寸效应、表面量子效应等新的物理现象,材料的形貌和结构对性能有较大的影响。如具有较小比表面积和良好热稳定性的零维结构(如纳米球、纳米点)材料,能够用来制备的一维结构(如纳米管、纳米线)材料的微米器件;具有大的暴露晶面以及特殊的晶面取向的二维结构(如纳米片)材料,能够由模板材料指导合成或者通过低维材料的自组装制备的三维结构材料。然而对于二维结构,研究发现其具有独特的结构和表面特点,在催化和能源等方面具有潜在的应用价值。形貌和结构对电极材料的电化学性能影响极大,由于活性物质与电解质溶液有良好的接触和足够大的接触面积,保证了锂离子在电解质溶液和活性物质之间的嵌入脱出能够顺利而且快速的进行,从而提高了电池的快速充放电性能。
近年来,中孔结构的金属氧化物/硫化物在功能材料方面的研究引起了人们的很大兴趣。特别的,完好的内部空间和功能化的壳赋予了它们具有能量转化和存储的能力。
现有技术中,孔结构的金属氧化物/硫化物材料的化学制备主要采用模板法和无模板法进行,但是,模板法价格昂贵,过程复杂且产量低,难以工业化生产,而无模板法对反应的条件较为苛刻且材料结构形貌可控制性较差。
发明内容
针对现有技术不足,本发明提供一种二硫化钼/碳微球锂离子电池负极材料的制备方法备方法,解决了现有技术中的技术问题。
为实现以上目的,本发明通过以下技术方案予以实现:
一种二硫化钼/碳微球锂离子电池负极材料的制备方法,包括以下步骤:
S1、将聚苯乙烯微球、二水合钼酸钠、硫脲和葡萄糖溶解于去离子水,得到混合溶液;
S2、将步骤S1制得的混合溶液置入反应釜,在180-230℃反应8-24小时,自然冷却到室温,将反应后的混合溶液进行离心洗涤,烘干,得到粉末物;
S3、将步骤S2制得的粉末物在惰性气氛下烧结,即可。
优选的,所述聚苯乙烯微球占所述混合溶液的质量-体积浓度为1-100mg/mL;所述二水合钼酸钠、硫脲和葡萄糖分别占所述混合溶液的摩尔浓度为5-100mmol/L、20-200mmol/L和5-100mmol/L。
优选的,所述聚苯乙烯微球的直径为200-1000nm。
优选的,所述步骤S2将混合溶液置入反应釜,在200-220℃反应10-24小时。
优选的,步骤S3所述烧结的升温程序为:以升温速率2-10℃/min,升温至100-300℃,保温时间1-5小时,再升温至700-1000℃,保温时间1-10小时。
优选的,所述惰性气氛为氮气、氦气、氩气中的至少一种。
本发明提供一种二硫化钼/碳微球锂离子电池负极材料的制备方法备方法,与现有技术相比优点在于:
本发明制备方法简单,易于工业化生产,所制备得二硫化钼/碳微球锂离子电池负极材料中二硫化钼/碳微球能够均匀分布,外径达到220nm-1200nm,壁厚为10nm-1000nm,本发明二硫化钼/碳微球锂离子电池负极材料制备成锂离子半电池,电性能测试中具有优异的电化学性能和循环性能;
本发明制备的二硫化钼/碳微球锂离子电池负极材料成本低,过程简单条件温和,材料结构形貌可控制,而且产量高,能够实现工业化生产。
附图说明
图1本发明二硫化钼/碳微球锂离子电池负极材料的SEM图。
图2为本发明二硫化钼/碳微球锂离子电池负极材料的TEM图。
图3为本发明二硫化钼/碳微球锂离子电池负极材料的XRD图。
图4为本发明二硫化钼/碳微球锂离子电池负极材料在锂离子半电池中的CV图。
图5为本发明二硫化钼/碳微球锂离子电池负极材料在锂离子半电池中的循环性能图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面结合实施例对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例中,在实施例2二硫化钼/碳微球锂离子电池负极材料所制备的电池恒流充放电测量中,电极的制作方法为:将电极材料、科琴黑,以及聚偏二氟乙烯按照质量比80:10:10于N-甲基吡咯烷酮中混合制浆,并将浆料涂覆在铜箔上、烘干,切片制备工作电极。复合电极材料面密度为1mgcm-2。测试方法:锂离子半电池中锂片作为参比电极,电解液选择1M六氟磷酸锂的碳酸乙烯酯/碳酸二甲酯(质量比1:1)混合液;电池充放电测试在Arbin BT-1电池测试***上进行,电压区间选择0-3V(vs Li+/Li),充放电倍率按照纳米复合材料的质量计算。
实施例1:
本实施例二硫化钼/碳微球锂离子电池负极材料的制备方法为:将0.1g聚苯乙烯微球、0.1g二水合钼酸钠、0.14g硫脲和0.05g葡萄糖溶解于40mL去离子水,得到混合溶液(其中,聚苯乙烯微球的质量-体积浓度为2.5mg/mL,二水合钼酸钠、硫脲和葡萄糖的摩尔浓度分别为10.33mmol/L、45.98mmol/L和6.95mmol/L),将混合溶液置入50mL反应釜,在200℃下反应10小时,自然冷却到室温,反应后的溶液进行离心洗涤,烘干,得到黑色的粉末。
得到的黑色粉末在氮气气氛下进行升温烧结,升温速率为2℃/min,先升温至200℃,保温2小时,再升温至700℃,保温2小时,得到二硫化钼/碳微球锂离子电池负极材料。
聚苯乙烯微球的直径分别采用300nm,500nm,1000nm进行实验。分别在电流为1Ag-1放电时测定放电容量和首次效率,在循环500圈时,再次测定放电容量,显示了良好的循环性能。制备得到的二硫化钼/碳微球锂离子电池负极材料的性能参数如表1所示。
表1锂离子电池负极材料的性能参数
从表中可以看出,聚苯乙烯微球的直径采用500nm时,制备得到的负极材料的放电性能优于其它的聚苯乙烯微球的直径。
实施例2:
将0.1g聚苯乙烯微球(直径500nm)、0.1g二水合钼酸钠、0.14g硫脲和0.1g葡萄糖溶解于40mL去离子水,得到混合溶液(其中,聚苯乙烯微球的质量-体积浓度为2.5mg/mL,二水合钼酸钠、硫脲和葡萄糖的摩尔浓度分别为10.33mmol/L、45.98mmol/L和13.89mmol/L),将混合溶液置入50mL反应釜,在200℃下反应12小时,自然冷却到室温,反应后的溶液进行离心洗涤,烘干,得到黑色的粉末。
得到的黑色粉末在氮气气氛下进行升温烧结,升温速率为2℃/min,先升温至200℃,保温2小时,再升温至800℃,保温2小时;
将实施例2制备的二硫化钼/碳微球锂离子电池负极材料进行SEM、TEM、XRD表征,以及二硫化钼/碳微球锂离子电池负极材料制备的锂离子半电池的CV表征、循环性能测试,结果见图1、图2、图3、图4、图5,图中显示制备得到的负极材料在1Ag-1的电流下首次放电容易是743.4mAh/g,首次效率是59.7%,500个循环之后的放电容量是689.7mAh/g。
实施例3:
实施例3与实施例2不同的是调节聚苯乙烯微球的加入量。称取0.2g聚苯乙烯微球溶解于40mL去离子水。其他步骤与实施例2相同,制备得到的负极材料在1Ag-1的电流下首次放电容易是705.2mAh/g,首次效率是55.6%,500个循环之后的放电容量是648.1mAh/g。
实施例4:
实施例4与实施例2不同的是调节葡萄糖的加入量。分别称取0.05g、0.4g葡萄糖溶解于2份40mL去离子水。其他步骤与实施例2相同,制备得到的负极材料在1Ag-1的电流下首次放电容易分别是695.2mAh/g、629.5mAh/g,首次效率分别是53.4%、55.7%,500个循环之后的放电容量分别是630.4mAh/g、587.9mAh/g。
实施例5:
实施例5与实施例2不同的是调节二水合钼酸钠的加入量。分别称取0.05g、0.3g溶解于2份40mL去离子水。其他步骤与实施例2相同,制备得到的负极材料在1Ag-1的电流下首次放电容易分别是655.2mAh/g、599.8mAh/g,首次效率分别是50.4%、52.7%,500个循环之后的放电容量分别是598.4mAh/g、534.9mAh/g。
实施例6:
实施例6与实施例2不同的是调节混合溶液的反应时间。取2个装有混合溶液的反应釜,分别在220℃下反应10小时、24小时。其他步骤与实施例2相同,制备得到的负极材料在1Ag-1的电流下首次放电容易是730.1mAh/g,首次效率是58.6%,500个循环之后的放电容量是675.8mAh/g。
实施例7:
本实施例二硫化钼/碳微球锂离子电池负极材料的制备方法,包括以下步骤:
S1、将聚苯乙烯微球、二水合钼酸钠、硫脲和葡萄糖溶解于去离子水,得到混合溶液,其中聚苯乙烯微球占所述混合溶液的质量-体积浓度为1mg/mL;二水合钼酸钠、硫脲和葡萄糖分别占所述混合溶液的摩尔浓度为5mmol/L、200mmol/L和100mmol/L;聚苯乙烯微球的直径为200nm;
S2、将步骤S1制得的混合溶液置入反应釜,在180℃反应84小时,自然冷却到室温,将反应后的混合溶液进行离心洗涤,烘干,得到粉末物;
S3、将步骤S2制得的粉末物在氮气、氦气、氩气的混合气氛为中烧结,即可,其中烧结的升温程序为:以升温速率2℃/min,升温至100℃,保温时间1小时,再升温至700℃,保温时间1小时。
实施例8:
本实施例二硫化钼/碳微球锂离子电池负极材料的制备方法,包括以下步骤:
S1、将聚苯乙烯微球、二水合钼酸钠、硫脲和葡萄糖溶解于去离子水,得到混合溶液,其中聚苯乙烯微球占所述混合溶液的质量-体积浓度为100mg/mL;二水合钼酸钠、硫脲和葡萄糖分别占所述混合溶液的摩尔浓度为100mmol/L、20mmol/L和5mmol/L;聚苯乙烯微球的直径为1000nm;
S2、将步骤S1制得的混合溶液置入反应釜,在230℃反应24小时,自然冷却到室温,将反应后的混合溶液进行离心洗涤,烘干,得到粉末物;
S3、将步骤s2制得的粉末物在氮气气氛下烧结,即可,其中烧结的升温程序为:以升温速率10℃/min,升温至300℃,保温时间5小时,再升温至1000℃,保温时间10小时。
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (6)

1.一种二硫化钼/碳微球锂离子电池负极材料的制备方法,其特征在于,包括以下步骤:
S1、将聚苯乙烯微球、二水合钼酸钠、硫脲和葡萄糖溶解于去离子水,得到混合溶液;
S2、将步骤S1制得的混合溶液置入反应釜,在180-230℃反应8-24小时,自然冷却到室温,将反应后的混合溶液进行离心洗涤,烘干,得到粉末物;
S3、将步骤S2制得的粉末物在惰性气氛下烧结,即可。
2.根据权利要求1所述的制备方法,其特征在于:所述聚苯乙烯微球占所述混合溶液的质量-体积浓度为1-100mg/mL;所述二水合钼酸钠、硫脲和葡萄糖分别占所述混合溶液的摩尔浓度为5-100mmol/L、20-200mmol/L和5-100mmol/L。
3.根据权利要求1所述的制备方法,其特征在于:所述聚苯乙烯微球的直径为200-1000nm。
4.根据权利要求1所述的制备方法,其特征在于:所述步骤S2将混合溶液置入反应釜,在200-220℃反应10-24小时。
5.根据权利要求1所述的制备方法,其特征在于:步骤S3所述烧结的升温程序为:以升温速率2-10℃/min,升温至100-300℃,保温时间1-5小时,再升温至700-1000℃,保温时间1-10小时。
6.根据权利要求1所述的制备方法,其特征在于:所述惰性气氛为氮气、氦气、氩气中的至少一种。
CN201710208739.5A 2017-03-31 2017-03-31 一种二硫化钼/碳微球锂离子电池负极材料的制备方法 Pending CN107069035A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710208739.5A CN107069035A (zh) 2017-03-31 2017-03-31 一种二硫化钼/碳微球锂离子电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710208739.5A CN107069035A (zh) 2017-03-31 2017-03-31 一种二硫化钼/碳微球锂离子电池负极材料的制备方法

Publications (1)

Publication Number Publication Date
CN107069035A true CN107069035A (zh) 2017-08-18

Family

ID=59602550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710208739.5A Pending CN107069035A (zh) 2017-03-31 2017-03-31 一种二硫化钼/碳微球锂离子电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN107069035A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133827A (zh) * 2017-12-14 2018-06-08 三峡大学 一种二硫化钼和硫掺杂碳球复合电极的制备方法
CN108417789A (zh) * 2018-01-30 2018-08-17 合肥国轩高科动力能源有限公司 一种用于锂离子电池负极的MoS2/C微球复合材料及其制备方法
CN110844939A (zh) * 2019-11-12 2020-02-28 杭州电子科技大学 一种硫化钼碳纳米球碳纳米纤维复合电极材料及其制备方法
CN113629230A (zh) * 2021-08-05 2021-11-09 合肥国轩电池材料有限公司 一种锂离子电池负极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994896A (zh) * 2006-12-20 2007-07-11 浙江大学 一步水热法合成碳/二硫化钼复合微球的制备方法
US20120052299A1 (en) * 2010-09-01 2012-03-01 Jiang Fan Non-spherical electroactive agglomerated particles, and electrodes and batteries comprising the same
CN105161692A (zh) * 2015-10-23 2015-12-16 西南大学 一种C/MoS2复合材料的制备方法及其产品和电化学应用
CN105470506A (zh) * 2015-11-20 2016-04-06 陕西科技大学 一种MoS2/C锂离子电池负极材料的制备方法
CN105489387A (zh) * 2016-01-13 2016-04-13 宿州学院 一种掺氮碳微球负载MoS2复合物、制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994896A (zh) * 2006-12-20 2007-07-11 浙江大学 一步水热法合成碳/二硫化钼复合微球的制备方法
US20120052299A1 (en) * 2010-09-01 2012-03-01 Jiang Fan Non-spherical electroactive agglomerated particles, and electrodes and batteries comprising the same
CN105161692A (zh) * 2015-10-23 2015-12-16 西南大学 一种C/MoS2复合材料的制备方法及其产品和电化学应用
CN105470506A (zh) * 2015-11-20 2016-04-06 陕西科技大学 一种MoS2/C锂离子电池负极材料的制备方法
CN105489387A (zh) * 2016-01-13 2016-04-13 宿州学院 一种掺氮碳微球负载MoS2复合物、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宋磊: "锂离子电池负极材料的结构调控及电化学性能研究", 《工程科技Ⅱ辑》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133827A (zh) * 2017-12-14 2018-06-08 三峡大学 一种二硫化钼和硫掺杂碳球复合电极的制备方法
CN108417789A (zh) * 2018-01-30 2018-08-17 合肥国轩高科动力能源有限公司 一种用于锂离子电池负极的MoS2/C微球复合材料及其制备方法
CN110844939A (zh) * 2019-11-12 2020-02-28 杭州电子科技大学 一种硫化钼碳纳米球碳纳米纤维复合电极材料及其制备方法
CN110844939B (zh) * 2019-11-12 2022-03-01 杭州电子科技大学 一种硫化钼碳纳米球碳纳米纤维复合电极材料及其制备方法
CN113629230A (zh) * 2021-08-05 2021-11-09 合肥国轩电池材料有限公司 一种锂离子电池负极材料及其制备方法
CN113629230B (zh) * 2021-08-05 2022-12-27 合肥国轩电池材料有限公司 一种锂离子电池负极材料及其制备方法

Similar Documents

Publication Publication Date Title
CN105789584B (zh) 一种硒化钴/碳钠离子电池复合负极材料及其制备方法与应用
Xu et al. Rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles as advanced anode materials for sodium‐ion batteries
CN105914371B (zh) 酚醛树脂基硬碳微球,其制备方法及负极材料和二次电池
CN105762360B (zh) 石墨烯包覆硅复合负极材料及其制备方法和应用
CN113410440B (zh) 一种二硒化钴@多孔氮掺杂碳纳米复合材料、钾离子电池及其制备方法
CN105914374B (zh) 氮掺杂碳包覆硒化钼/石墨烯核壳阵列夹心结构的复合材料及其制备方法和应用
CN111952572B (zh) 一种含有单原子活性位点的钴镍双金属氮掺杂碳复合材料
CN104201366B (zh) 一种高安全性高压实密度镍钴锰酸锂ncm523三元材料的制备方法
Yang et al. Hydrothermal synthesis and electrochemical characterization of α-MnO2 nanorods as cathode material for lithium batteries
CN108059144B (zh) 一种生物质废料甘蔗渣制备的硬碳及其制备方法和应用
CN105470481A (zh) 一维多孔核壳结构氮掺杂碳包覆一氧化锰复合材料及制备方法
CN107069035A (zh) 一种二硫化钼/碳微球锂离子电池负极材料的制备方法
CN107601579B (zh) 一种高性能多孔Co-Mn-O纳米片材料的制备方法及其所得材料和应用
CN104518207B (zh) 一种锂离子电池负极活性材料及制备方法、负极和锂离子电池
CN110010878A (zh) 氮掺杂多孔碳包覆Co3O4复合纳米材料、制备方法及其应用
CN110534738A (zh) 一种双阴离子钴基硒硫化物及其制备方法
CN104409715A (zh) 一种高性能氮掺杂碳包覆的钛酸锂复合锂离子电池负极材料的制备方法
Li et al. Porous double-shelled SnO2@ C hollow spheres as high-performance anode material for lithium ion batteries
CN111952570A (zh) 一种含有单原子活性位点的钴氮碳复合材料及其制备方法和应用
CN106887575A (zh) 一种钴酸锌/石墨烯复合负极材料及其制备方法和锂离子电池
CN109768260A (zh) 一种磷化二钴/碳复合材料及其制备方法和用途
CN110323442A (zh) 一种碳包覆Fe3O4复合材料及其制备方法和应用
CN104124429A (zh) 一种中空结构的锂钒氧/碳纳米管复合材料及其制备方法和应用
CN109888247A (zh) 一种锂离子电池用钛酸锌锂/碳纳米复合负极材料的制备方法
CN107706383A (zh) 一种原位钛掺杂碳包覆氧化亚硅/石墨材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170818