CN106980336A - 稳压器 - Google Patents

稳压器 Download PDF

Info

Publication number
CN106980336A
CN106980336A CN201710015150.3A CN201710015150A CN106980336A CN 106980336 A CN106980336 A CN 106980336A CN 201710015150 A CN201710015150 A CN 201710015150A CN 106980336 A CN106980336 A CN 106980336A
Authority
CN
China
Prior art keywords
voltage
circuit
transient response
stablizer
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710015150.3A
Other languages
English (en)
Other versions
CN106980336B (zh
Inventor
矶部祯久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN106980336A publication Critical patent/CN106980336A/zh
Application granted granted Critical
Publication of CN106980336B publication Critical patent/CN106980336B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/468Regulating voltage or current wherein the variable actually regulated by the final control device is dc characterised by reference voltage circuitry, e.g. soft start, remote shutdown
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/561Voltage to current converters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/575Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices characterised by the feedback circuit
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/22Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the bipolar type only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

本发明提供一种稳压器,该稳压器的瞬态响应性良好,能够以较低的消耗电流稳定地进行动作。该稳压器采用在瞬态响应改善电路与电压放大电路之间设置延迟电路的结构。

Description

稳压器
技术领域
本发明涉及消耗电流较低且响应性良好的稳压器。
背景技术
利用充电式的电池进行动作的移动电话等电子设备设置有稳压器,使得即使电池的充电状态发生变动,电子设备也稳定地进行动作。并且,虽然稳压器使得即使负载急剧地发生变动,输出电压也不发生变动,而使电子设备稳定地进行动作,但是,有时还设置有用于使稳压器的输出电压更稳定的控制电路。
图3是以往的稳压器30的电路图。基准电压电路31输出基准电压Vref。电阻32和电阻33输出对输出端子的输出电压Vout进行电阻分压而得到的反馈电压VFB。电压放大电路34根据对基准电压Vref和反馈电压VFB进行比较而得到的结果来控制PMOS晶体管35,使得输出电压Vout恒定。瞬态响应改善电路36输入基准电压Vref和电源电压,控制电压放大电路34的动作电流。
瞬态响应改善电路36由检测电源电压的变动的检测部和输出部构成,检测电源电压的变动而控制流过电压放大电路34的动作电流。电压放大电路34根据检测出的电源电压电平而使电流增加,改善电压放大电路34的瞬态响应特性。
图4是以往的瞬态响应改善电路和电压放大电路的电路图。瞬态响应改善电路36由恒流部、检测部以及输出部构成,该恒流部由PMOS晶体管1、2构成,检测部由NMOS晶体管3、4和电容6构成,检测电源电压的变动,该输出部由NMOS晶体管5构成。
瞬态响应改善电路36检测电源电压的变动而控制流过电压放大电路34的电流。电压放大电路34根据检测出的电源电压的减小电平而使动作电流增加,即改善瞬态响应(例如,参照专利文献1)。
专利文献1:日本特开2006-18774号公报
然而,上述的瞬态响应改善电路在检测电源电压的变动而增加了电压放大电路的动作电流之后,无法任意地设定将电压放大电路的动作电流返回到通常时的时机。因此,存在如下的缺点:在瞬态响应的中途电压放大电路的动作电流返回到通常时,无法得到最佳的瞬态响应特性。
此外,上述的瞬态响应改善电路存在如下的缺点:在检测出的电源电压的电压减小电平较大时,使电压放大电路的动作电流过度增加,而使电压放大电路的动作变得不稳定。
发明内容
本发明正是为了解决以上的课题而提出的,实现具有最佳的瞬态响应特性的稳压器。
为了解决以往的课题,本发明的稳压器采用如下的结构。
一种稳压器,其特征在于,该稳压器具有:电压放大电路,其对基准电压和与输出晶体管的输出电压对应的反馈电压进行比较来控制所述输出晶体管;瞬态响应改善电路,其检测电源电压或者所述输出电压的变动;以及延迟电路,其设置于所述瞬态响应改善电路的输出端子,该稳压器根据所述瞬态响应改善电路输出的信号控制所述电压放大电路的动作电流。
根据本发明的稳压器,具有如下的效果:通过在瞬态响应改善电路与电压放大电路之间设置延迟电路,能够使电压放大电路的瞬态响应特性最佳化。
附图说明
图1是本实施方式的稳压器的电路图。
图2是示出本实施方式的稳压器的瞬态响应改善电路、延迟电路以及电压放大电路的一例的电路图。
图3是以往的稳压器的电路图。
图4是以往的瞬态响应改善电路和电压放大电路的电路图。
标号说明
11:基准电压电路;14:电压放大电路;16:瞬态响应改善电路;17:延迟电路;145、147、166、172:恒流源。
具体实施方式
图1是本实施方式的稳压器的电路图。
稳压器10具有基准电压电路11、作为反馈电阻的电阻12、13、电压放大电路14、作为输出晶体管的PMOS晶体管15、瞬态响应改善电路16以及延迟电路17。
基准电压电路11输出基准电压Vref。电阻12和电阻13输出对输出端子的输出电压Vout进行电阻分压而得到的反馈电压VFB。电压放大电路14根据对基准电压Vref和反馈电压VFB进行比较而得到的结果来控制PMOS晶体管15,使得输出电压Vout恒定。瞬态响应改善电路16输入基准电压Vref和输出电压Vout,控制电压放大电路14的动作电流。
图2是示出本实施方式的瞬态响应改善电路、延迟电路以及电压放大电路的一例的电路图。
瞬态响应改善电路16具有检测电源电压的变动的检测部以及向检测部供给恒流的恒流部。
恒流部由电流镜电路构成,该电流镜电路由PMOS晶体管161、162构成。PMOS晶体管161、162借助施加给栅极电极的基准电压Vref而流过规定的恒流,向检测部供给恒流。
检测部由如下部件构成:NMOS晶体管163、164,将其栅极电极彼此连接;电容165,其用于监视与NMOS晶体管163、164的栅极连接的输出端子的输出电压Vout;以及第1反相器,其由NMOS晶体管167和恒流源166构成,该检测部检测输出电压Vout的变动。NMOS晶体管167的漏极成为瞬态响应改善电路16的输出端子。
延迟电路17由第2反相器和电容173构成,该第2反相器由PMOS晶体管171和恒流源172构成,该延迟电路17使从瞬态响应改善电路16输出的信号延迟。
PMOS晶体管171的栅极与瞬态响应改善电路16的输出端子连接,漏极与恒流源172和电容173连接。PMOS晶体管171的漏极成为延迟电路17的输出端子。
电压放大电路14具有:差动放大部,其由构成电流镜电路的PMOS晶体管141、142以及作为差动对的NMOS晶体管143、144构成;以及恒流源145,其向差动放大部供给动作电流。电压放大电路14还具有向差动放大部追加供给动作电流的NMOS晶体管146以及恒流源147。
串联连接的NMOS晶体管146和恒流源147与恒流源145并联连接。NMOS晶体管146的栅极与延迟电路17的输出端子连接。
以下,对本实施方式的稳压器10的动作进行说明。
在输出端子的输出电压Vout不存在变动时,瞬态响应改善电路16的检测部的NMOS晶体管163、164导通,流过恒流部供给的恒定的电流。由于将NMOS晶体管164的源极接地,因此,此时的NMOS晶体管164的漏极电压比NMOS晶体管167的阈值低。因此,NMOS晶体管167截止,借助恒流源166使NMOS晶体管167的漏极(即瞬态响应改善电路16的输出端子)大致成为电源电压。
在延迟电路17中,由于PMOS晶体管171截止,因此借助恒流源172将电容173放电,输出接地电压。
因此,由于NMOS晶体管146截止,因此,电压放大电路14借助恒流源145供给的动作电流进行动作。
在输出端子的输出电压Vout发生变动时,在瞬态响应改善电路16的检测部的电容165中储存与输出电压Vout的变动量和NMOS晶体管163、164的栅极电压对应的电荷。
在输出电压Vout下降的情况下,NMOS晶体管163、164的栅极电压也根据输出电压Vout而下降。当NMOS晶体管163、164的栅极电压变低时,NMOS晶体管163、164截止,因此,NMOS晶体管164的漏极电压上升。因此,NMOS晶体管167导通,而使NMOS晶体管167的漏极(即瞬态响应改善电路16的输出端子)大致成为接地电压。
在延迟电路17中,由于PMOS晶体管171导通,因此对电容173进行充电,因此输出电源电压。
因此,由于NMOS晶体管146导通,因此,电压放大电路14借助恒流源145和恒流源147供给的动作电流而进行动作。即,电压放大电路14的动作电流增加,瞬态响应得到改善。
例如,当NMOS晶体管164由阈值电压0.3V的晶体管构成,NMOS晶体管163由阈值电压0.5V的晶体管构成时,NMOS晶体管163、164的栅极电位为0.5V以上。在该情况下,为了使NMOS晶体管164截止,需要使输出电压Vout的变动电平为大致0.2V。这是因为,如果输出电压Vout的变动电平较小,则不需要增加电压放大电路14的动作电流。
以上说明的NMOS晶体管的阈值电压只是一例,能够根据输出电压Vout的检测电平而适当设定阈值电压、PMOS晶体管161、162各自的电流等。
此外,根据本实施方式,能够通过调整延迟电路17的电容173的电容值、恒流源172的电流值、PMOS晶体管171的大小,任意地设定延迟时间。
并且,由于本实施方式的稳压器10采用通过恒流源147使电压放大电路14的动作电流增加的结构,因此,在输出电压的减小电平较大时等,也能够在不过度增加动作电流的情况下使电压放大电路14稳定动作。
如以上说明的那样,根据本发明的稳压器,具有如下的效果:通过在瞬态响应改善电路16与电压放大电路14之间设置延迟电路17,能够使电压放大电路14的瞬态响应特性最佳化。
另外,在以上的记载中假定检测输出电压Vout的变动进行了说明,但是可知在检测电源电压的变动的情况下也能够得到相同的效果。

Claims (1)

1.一种稳压器,其特征在于,该稳压器具有:
电压放大电路,其对基准电压和与输出晶体管的输出电压对应的反馈电压进行比较来控制所述输出晶体管;
瞬态响应改善电路,其检测电源电压或者所述输出电压的变动;以及
延迟电路,其设置于所述瞬态响应改善电路的输出端子,
该稳压器根据所述瞬态响应改善电路输出的信号控制所述电压放大电路的动作电流。
CN201710015150.3A 2016-01-15 2017-01-10 稳压器 Active CN106980336B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-006486 2016-01-15
JP2016006486A JP2017126285A (ja) 2016-01-15 2016-01-15 ボルテージレギュレータ

Publications (2)

Publication Number Publication Date
CN106980336A true CN106980336A (zh) 2017-07-25
CN106980336B CN106980336B (zh) 2020-07-24

Family

ID=59315039

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710015150.3A Active CN106980336B (zh) 2016-01-15 2017-01-10 稳压器

Country Status (4)

Country Link
US (1) US9933798B2 (zh)
JP (1) JP2017126285A (zh)
CN (1) CN106980336B (zh)
TW (1) TWI694322B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237774B2 (ja) * 2019-08-27 2023-03-13 株式会社東芝 電流検出回路
TWI773018B (zh) * 2019-09-06 2022-08-01 新唐科技股份有限公司 恢復升壓電路、用於電壓調節之電子電路及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101231535A (zh) * 2007-01-25 2008-07-30 美国芯源***股份有限公司 用于校正模拟低压差线性稳压器过冲和下冲的方法及装置
CN101356483A (zh) * 2006-08-31 2009-01-28 株式会社理光 电压调节器
CN102033554A (zh) * 2009-09-29 2011-04-27 精工电子有限公司 稳压器
US8054055B2 (en) * 2005-12-30 2011-11-08 Stmicroelectronics Pvt. Ltd. Fully integrated on-chip low dropout voltage regulator
US20130113447A1 (en) * 2011-11-08 2013-05-09 Petr Kadanka Low dropout voltage regulator including a bias control circuit
US20140354249A1 (en) * 2013-05-31 2014-12-04 Seiko Instruments Inc. Voltage regulator
CN104714586A (zh) * 2013-12-17 2015-06-17 精工电子有限公司 稳压器
CN104808732A (zh) * 2014-01-27 2015-07-29 精工电子有限公司 稳压器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158912A (ja) * 1989-11-17 1991-07-08 Seiko Instr Inc ボルテージ・レギュレーター
JP2003243714A (ja) * 2001-12-11 2003-08-29 Sharp Corp 発光素子の駆動回路、および、それを用いる光通信デバイス
US6933772B1 (en) * 2004-02-02 2005-08-23 Freescale Semiconductor, Inc. Voltage regulator with improved load regulation using adaptive biasing
JP2006018774A (ja) 2004-07-05 2006-01-19 Seiko Instruments Inc ボルテージレギュレータ
JP4527592B2 (ja) * 2005-04-18 2010-08-18 株式会社リコー 定電圧電源回路
JP6038516B2 (ja) * 2011-09-15 2016-12-07 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ
JP6168864B2 (ja) * 2012-09-07 2017-07-26 エスアイアイ・セミコンダクタ株式会社 ボルテージレギュレータ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8054055B2 (en) * 2005-12-30 2011-11-08 Stmicroelectronics Pvt. Ltd. Fully integrated on-chip low dropout voltage regulator
CN101356483A (zh) * 2006-08-31 2009-01-28 株式会社理光 电压调节器
CN101231535A (zh) * 2007-01-25 2008-07-30 美国芯源***股份有限公司 用于校正模拟低压差线性稳压器过冲和下冲的方法及装置
CN102033554A (zh) * 2009-09-29 2011-04-27 精工电子有限公司 稳压器
US20130113447A1 (en) * 2011-11-08 2013-05-09 Petr Kadanka Low dropout voltage regulator including a bias control circuit
US20140354249A1 (en) * 2013-05-31 2014-12-04 Seiko Instruments Inc. Voltage regulator
CN104714586A (zh) * 2013-12-17 2015-06-17 精工电子有限公司 稳压器
CN104808732A (zh) * 2014-01-27 2015-07-29 精工电子有限公司 稳压器

Also Published As

Publication number Publication date
US20170205842A1 (en) 2017-07-20
JP2017126285A (ja) 2017-07-20
TW201743156A (zh) 2017-12-16
US9933798B2 (en) 2018-04-03
TWI694322B (zh) 2020-05-21
CN106980336B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
US8242760B2 (en) Constant-voltage circuit device
KR101017656B1 (ko) 동기 정류형 스위칭 레귤레이터
CN102999075B (zh) 稳压器
CN207490875U (zh) 电压生成器电路
KR100991699B1 (ko) 정전압 회로 및 그 동작 제어 방법
US8981747B2 (en) Regulator
CN101923110B (zh) 一种检测电路异常电流的方法及装置
CN104603710A (zh) 稳压器
CN103412602B (zh) 一种无电容型低压差线性稳压器
CN104750150A (zh) 稳压器及电子设备
CN102981543A (zh) 超低功耗线性稳压器驱动电路
CN104808732A (zh) 稳压器
CN104714586A (zh) 稳压器
CN110275566A (zh) 电压调节器
CN104767378A (zh) 电源电路
CN109388170A (zh) 电压调节器
CN104635824A (zh) 低压降稳压器和相关方法
CN103324237B (zh) 一种基于电压感应的ldo瞬态响应增强电路
CN106980336A (zh) 稳压器
JP2016048490A (ja) 電源制御回路および電源装置
TWI550379B (zh) 漣波控制切換式穩壓器以及漣波控制切換式穩壓方法
CN102097129A (zh) 闪存的擦除电压上升控制电路
CN102736657B (zh) 电压调节器
CN105871181B (zh) 功率变换器及其功率级电路
CN105404344B (zh) 无振铃的电压调节器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB02 Change of applicant information
CB02 Change of applicant information

Address after: Chiba County, Japan

Applicant after: ABLIC Inc.

Address before: Chiba County, Japan

Applicant before: DynaFine Semiconductor Co.,Ltd.

SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: Nagano

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: ABLIC Inc.