CN106945190B - SiC晶片的生成方法 - Google Patents

SiC晶片的生成方法 Download PDF

Info

Publication number
CN106945190B
CN106945190B CN201611183289.0A CN201611183289A CN106945190B CN 106945190 B CN106945190 B CN 106945190B CN 201611183289 A CN201611183289 A CN 201611183289A CN 106945190 B CN106945190 B CN 106945190B
Authority
CN
China
Prior art keywords
wafer
sic
laser beam
modified layer
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611183289.0A
Other languages
English (en)
Other versions
CN106945190A (zh
Inventor
平田和也
森重幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Publication of CN106945190A publication Critical patent/CN106945190A/zh
Application granted granted Critical
Publication of CN106945190B publication Critical patent/CN106945190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D7/00Accessories specially adapted for use with machines or devices of the preceding groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0823Devices involving rotation of the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • B23K26/402Removing material taking account of the properties of the material involved involving non-metallic material, e.g. isolators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02167Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/56Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26 semiconducting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Laser Beam Processing (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

本发明提供SiC晶片的生成方法,能够高效地从SiC晶锭生成SiC晶片。一种SiC晶片的生成方法,具备:分离起点形成步骤,将对于SiC晶锭具有透过性的波长的激光束的聚光点定位在距SiC晶锭的端面相当于要生成的晶片的厚度的深度,并且使该聚光点与该SiC晶锭相对地移动来对该端面照射激光束,形成与该端面平行的改质层和从该改质层起进行伸长的裂痕作为分离起点;和晶片剥离步骤,在实施了该分离起点形成步骤之后,从该分离起点将相当于晶片的厚度的板状物从该SiC晶锭剥离而生成SiC晶片,在该分离起点形成步骤中,将形成聚光点的聚光透镜的数值孔径设定为0.45~0.9,并且将激光束的M2因子实质设定为5~50,将聚光点的直径设定为
Figure DDA0001185574350000011

Description

SiC晶片的生成方法
技术领域
本发明涉及一种SiC晶片的生成方法,将SiC晶锭切片成晶片状。
背景技术
在以硅等作为材料的晶片的正面上层叠功能层,在该功能层上在通过多个分割预定线划分出的区域,IC、LSI等各种器件形成在该区域。然后,通过切削装置、激光加工装置等加工装置对晶片的分割预定线实施加工,将晶片分割成各个器件芯片,分割得到的器件芯片广泛应用于移动电话、个人计算机等各种电子设备。
另外,在以SiC、GaN等SiC作为材料的晶片的正面上层叠有功能层,在所层叠的功能层上通过形成为格子状的多个分割预定线进行划分而形成功率器件或者LED、LD等光器件。
形成器件的晶片通常是利用划片锯对晶锭进行切片而生成的,对切片得到的晶片的正面背面进行研磨而精加工成镜面(参照例如日本特开2000-94221号公报)。
在该划片锯中,将直径约为100~300μm的钢琴丝等一根金属丝缠绕在通常二~四条设置于间隔辅助辊上的多个槽中,按照一定间距彼此平行配置且使金属丝在一定方向或者双向上行进,将晶锭切片成多个晶片。
但是,当利用划片锯将晶锭切断,并对正面背面进行研磨而生成晶片时,会浪费晶锭的70~80%,存在不经济的问题。特别是SiC、GaN等六方晶单晶晶锭的莫氏硬度较高,利用划片锯而进行的切断很困难,花费相当长的时间,生产性较差,在高效地生成晶片方面存在问题。
为了解决这些问题,在日本特开2013-49461号公报中记载了如下技术:将对于SiC具有透过性的波长的激光束的聚光点定位在SiC晶锭的内部来进行照射,在切断预定面上形成改质层和裂痕,并施加外力而沿着形成有改质层和裂痕的切断预定面割断晶片,从SiC晶锭分离晶片。
在该公开公报所记载的技术中,以脉冲激光束的第一照射点和距该第一照射点最近的第二照射点处于规定的位置的方式,沿着切断预定面呈螺旋状照射脉冲激光束的聚光点或者呈直线状照射脉冲激光束的聚光点,在SiC晶锭的切断预定面上形成非常高密度的改质层和裂痕。
现有技术文献
专利文献
专利文献1:日本特开2000-94221号公报
专利文献2:日本特开2013-49461号公报
发明内容
发明所要解决的课题
但是,为了在晶片的内部形成良好的改质层,优选将聚光透镜的数值孔径NA增大至0.45~0.9、将焦点深度设定为5μm以下,其结果,必须使聚光点的直径低至
Figure GDA0002391228250000021
使邻接的聚光点的间隔为10μm左右,在晶锭内部致密地形成改质层,这存在花费时间、生产性差的问题。
另一方面,使聚光透镜的数值孔径NA减小、使聚光点的直径增大时,焦点深度变大,改质层上下浮动,存在难以在同一面上形成改质层的问题。
本发明是鉴于这样的点而完成的,其目的在于提供一种SiC晶片的生成方法,能够高效地从SiC晶锭生成SiC晶片。
用于解决课题的手段
技术方案1的发明是一种SiC晶片的生成方法,该SiC晶片的生成方法的特征在于,具备:分离起点形成步骤,将对于SiC晶锭具有透过性的波长的激光束的聚光点定位在距SiC晶锭的端面相当于要生成的晶片的厚度的深度,并且使该聚光点与SiC晶锭相对地移动来对该端面照射激光束,形成与该端面平行的改质层和从该改质层起进行伸长的裂痕作为分离起点;和晶片剥离步骤,在实施了该分离起点形成步骤之后,从该分离起点将相当于晶片的厚度的板状物从该SiC晶锭剥离而生成SiC晶片,在该分离起点形成步骤中,将形成聚光点的聚光透镜的数值孔径设定为0.45~0.9,并且将激光束的M2因子实质设定为5~50,将聚光点的直径设定为
Figure GDA0002391228250000022
优选将聚光点的功率密度设定为(2~3)×105W/cm2
技术方案3的发明是一种SiC晶片的生成方法,其从SiC晶锭生成SiC晶片,该SiC晶锭具有:第一面和位于该第一面的相反侧的第二面;从该第一面至该第二面的c轴;和与该c轴垂直的c面,该SiC晶片的生成方法的特征在于,具备:分离起点形成步骤,将对于SiC晶锭具有透过性的波长的激光束的聚光点定位在距该第一面相当于要生成的晶片的厚度的深度,并且使该聚光点与该SiC晶锭相对地移动来对该第一面照射该激光束,形成与该第一面平行的改质层和从该改质层起进行伸长的裂痕作为分离起点;和晶片剥离步骤,在实施了该分离起点形成步骤之后,从该分离起点将相当于晶片的厚度的板状物从该SiC晶锭剥离而生成SiC晶片,该分离起点形成步骤包含:改质层形成步骤,该c轴相对于该第一面的垂线倾斜偏离角,使激光束的聚光点沿着与在该第一面和该c面之间形成偏离角的方向垂直的方向相对地移动来形成直线状的改质层;和转位步骤,在该形成偏离角的方向上使该聚光点相对地移动而转位规定的量,在该分离起点形成步骤中,将形成聚光点的聚光透镜的数值孔径设定为0.45~0.9,并且将激光束的M2因子实质设定为5~50,将该聚光点的直径设定为
Figure GDA0002391228250000031
发明效果
根据本发明的SiC晶片的生成方法,在分离起点形成步骤中,将形成聚光点的聚光透镜的数值孔径NA设定为0.45~0.9,并且将激光束的M2因子实质设定为5~50,将聚光点的直径设定为
Figure GDA0002391228250000032
因此即使聚光透镜的焦点深度浅至5μm以下,也能够以大的聚光光斑高效稳定地形成良好的分离起点。此外,能够充分地实现生产性的提高,并且能够充分地减轻所丢弃的晶锭的量。
附图说明
图1是适合实施本发明的SiC晶片的生成方法的激光加工装置的立体图。
图2是激光束产生单元的框图。
图3的(A)是SiC晶锭的立体图,图3的(B)是其主视图。
图4是说明分离起点形成步骤的立体图。
图5是SiC晶锭的俯视图。
图6是说明改质层形成步骤的示意性截面图。
图7是说明改质层形成步骤的示意性俯视图。
图8的(A)是说明转位步骤的示意性俯视图,图8的(B)是说明转位量的示意性俯视图。
图9是说明改质层形成步骤中所照射的激光束的M2因子与聚光透镜的聚光光斑的关系的示意图。
图10是说明本发明实施方式的改质层形成步骤的示意图,其中,通过将M2因子设定为较大的值,能够使用焦点深度较浅的聚光透镜来形成面积较大的改质层。
图11是说明晶片剥离步骤的立体图。
图12是所生成的SiC晶片的立体图。
具体实施方式
以下,参照附图详细地说明本发明的实施方式。参照图1,示出了适合实施本发明的SiC晶片的生成方法的激光加工装置2的立体图。激光加工装置2包含以能够在X轴方向上移动的方式搭载在静止基台4上的第一滑动块6。
第一滑动块6在由滚珠丝杠8和脉冲电动机10构成的加工进给机构12的作用下沿着一对导轨14在加工进给方向移动,即在X轴方向上移动。
第二滑动块16以能够在Y轴方向上移动的方式搭载在第一滑动块6上。即,第二滑动块16在由滚珠丝杠18和脉冲电动机20构成的分度进给机构22的作用下沿着一对导轨24在分度进给方向移动,即在Y轴方向上移动。
在第二滑动块16上搭载有支承工作台26。支承工作台26能够在加工进给机构12和分度进给机构22的作用下在X轴方向和Y轴方向上移动,并且在收纳在第二滑动块16中的电动机的作用下旋转。
在静止基台4上竖立设置有柱28,在该柱28上安装有激光束照射机构(激光束照射构件)30。激光束照射机构30由收纳在外壳32中的图2所示的激光束产生单元34和安装于外壳32的前端的聚光器(激光头)36构成。在外壳32的前端安装有具有显微镜和照相机的摄像单元38,该摄像单元38与聚光器36排列在X轴方向上。
如图2所示,激光束产生单元34包含振荡出YAG激光或者YVO4激光的激光振荡器40、重复频率设定单元42、脉冲宽度调整单元44和功率调整单元46。虽然未特别图示,但激光振荡器40具有布鲁斯特窗,从激光振荡器40射出的激光束是直线偏光的激光束。
利用激光束产生单元34的功率调整单元46调整为规定功率的脉冲激光束被聚光器36的反射镜48反射,进而利用聚光透镜50将聚光点定位在作为固定于支承工作台26的被加工物的SiC晶锭11的内部来进行照射。
参照图3的(A),示出了作为加工对象物的SiC晶锭(以下有时简称为晶锭)11的立体图。图3的(B)是图3的(A)所示的SiC晶锭11的主视图。
晶锭11具有第一面(上表面)11a和与第一面11a相反侧的第二面(下表面)11b。由于晶锭11的上表面11a是激光束的照射面,因此将其研磨成镜面。
晶锭11具有第一定向平面13和与第一定向平面13垂直的第二定向平面15。第一定向平面13的长度形成为比第二定向平面15的长度长。
晶锭11具有c轴19和c面21,该c轴19相对于上表面11a的垂线17向第二定向平面15方向倾斜偏离角α,该c面21与c轴19垂直。c面21相对于晶锭11的上表面11a倾斜偏离角α。通常在SiC晶锭11中,与较短的第二定向平面15的伸长方向垂直的方向是c轴的倾斜方向。
在晶锭11中按照晶锭11的分子级设定有无数个c面21。在本实施方式中,偏离角α被设定为4°。但是,偏离角α不限于4°,能够在例如1°~6°的范围中自由地设定而制造出晶锭11。
再次参照图1,在静止基台4的左侧固定有柱52,在该柱52上经由形成于柱52的开口53以能够在上下方向上移动的方式搭载有按压机构54。
在本实施方式的晶片的生成方法中,如图4所示,例如利用蜡或者粘接剂将晶锭11以晶锭11的第二定向平面15在X轴方向上排列的方式固定在支承工作台26上。
即,如图5所示,使箭头A方向与X轴对齐,将晶锭11固定在支承工作台26上,其中,该A方向即是与形成有偏离角α的方向Y1垂直的方向,换言之,其是与c轴19的与上表面11a的交点19a相对于晶锭11的上表面11a的垂线17所存在的方向垂直的方向。
由此,沿着与形成有偏离角α的方向垂直的方向A扫描激光束。换言之,与形成有偏离角α的方向Y1垂直的A方向成为支承工作台26的加工进给方向。
在本发明的SiC晶片的生成方法中,将从聚光器36射出的激光束的扫描方向设为与晶锭11的形成偏离角α的方向Y1垂直的箭头A方向是很重要的。
即,本发明的SiC晶片的生成方法的特征在于认识到了下述情况:通过将激光束的扫描方向设定为上述那样的方向,从形成于晶锭11的内部的改质层传播的裂痕沿着c面21伸长的非常长。
在本实施方式的SiC晶片的生成方法中,首先,实施分离起点形成步骤,将对于固定于支承工作台26的SiC晶锭11具有透过性的波长(例如1064nm的波长)的激光束的聚光点定位在距第一面(上表面)11a相当于要生成的晶片的厚度的深度,并且使聚光点与SiC晶锭11相对地移动来对上表面11a照射激光束,形成与上表面11a平行的改质层23和从改质层23沿着c面21传播的裂痕25作为分离起点。
该分离起点形成步骤包含:改质层形成步骤,c轴19相对于上表面11a的垂线17倾斜偏离角α,在与在c面21和上表面11a之间形成偏离角α的方向(即图5的箭头Y1方向)垂直的方向(即A方向)上使激光束的聚光点相对地移动来在晶锭11的内部形成改质层23和从改质层23沿着c面21传播的裂痕25;和转位步骤,如图7和图8所示,在形成偏离角的方向(即Y轴方向)上使聚光点相对地移动且转位规定的量。
如图6和图7所示,在X轴方向上将改质层23形成为直线状时,裂痕25从改质层23的两侧沿着c面21传播而形成。在本实施方式的SiC晶片的生成方法中包含转位量设定步骤,对从直线状的改质层23起在c面方向上传播而形成的裂痕25的宽度进行测量,设定聚光点的转位量。
在转位量设定步骤中,如图6所示,在将从直线状的改质层23起在c面方向上传播而形成在改质层23的单侧的裂痕25的宽度设为W1的情况下,将应该进行转位的规定的量W2设定为W1以上2W1以下。
此处,优选的实施方式的改质层形成步骤如下设定。
光源:Nd:YAG脉冲激光
波长:1064nm
重复频率:80kHz
平均输出:3.2W
脉冲宽度:4ns
光斑直径:10μm
聚光透镜的数值孔径(NA):0.45
转位量:400μm
在上述的激光加工条件中,在图6中,将从改质层23沿着c面传播的裂痕25的宽度W1设定为大致250μm,将转位量W2设定为400μm。
但是,激光束的平均输出不限于3.2W,在本实施方式的加工方法中,将平均输出设定为2W~4.5W而得到良好的结果。在平均输出为2W的情况下,裂痕25的宽度W1为大致100μm,在平均输出为4.5W的情况下,裂痕25的宽度W1为大致350μm。
在平均输出小于2W的情况下和大于4.5W的情况下,无法在晶锭11的内部形成良好的改质层23,因此优选照射的激光束的平均输出在2W~4.5W的范围内,在本实施方式中对晶锭11照射平均输出为3.2W的激光束。在图6中,将形成改质层23的聚光点的距上表面11a的深度D1设定为500μm。
参照图8的(A),示出了说明激光束的扫描方向的示意图。利用往路X1和返路X2实施分离起点形成步骤,对于利用往路X1在SiC晶锭11中形成改质层23的激光束的聚光点而言,在转位了规定的量之后,利用返路X2在SiC晶锭11中形成改质层23。
另外,在分离起点形成步骤中,在激光束的聚光点的应该转位的规定的量被设定为W以上2W以下的情况下,激光束的聚光点定位在在SiC晶锭11并且形成最初的改质层23之前的聚光点的转位量设定为W以下。
例如,如图8的(B)所示,在激光束的聚光点应该转位的规定的量为400μm的情况下,以转位量200μm执行多次激光束的扫描直到在晶锭11中形成最初的改质层23为止。
最初的激光束的扫描是空扫,如果判明在晶锭11的内部开始形成了改质层23,则设定为转位量400μm来在晶锭11的内部形成改质层23。
接着,参照图9和图10,对本发明实施方式的改质层形成步骤进行说明,其中,通过在改质层形成步骤中将激光束的M2因子设定为适当的范围,能够使用焦点深度较浅的聚光透镜来形成直径较大的改质层。
此处,M2因子是表示激光束的横模的品质的因子,其是表示与实际的激光束为理想的TEM00的高斯光束相比偏离多少的数值。高斯光束的情况下,M2=1。
将经聚光透镜50聚光的激光束的光斑直径设为d、将激光束的波长设为λ、将聚光透镜的数值孔径设为NA时,具有下述关系:
d=1.22(λ/NA)……(1)
例如,激光束的波长λ=1064nm、聚光透镜50的数值孔径NA=0.45时,d=2.88μm。
在本实施方式的改质层形成步骤中,为了使聚光透镜50的焦点深度较浅,采用数值孔径NA为0.45~0.9的范围内的聚光透镜50。使用这样的聚光透镜50,为了使激光束LB的聚光点62的直径设为15μm~150μm,计算激光束LB的M2因子,结果得到M2=5~50。
这样的具有较大数值的M2因子是偏离理想的高斯光束相当大的M2因子,可以说是激光束LB的品质相当差的激光束。即,可以说在本实施方式的改质层形成步骤中使用的激光束LB是品质相当差的激光束。
在图9所示的实施方式中,在聚光透镜50的近前(上游侧)配设磨砂玻璃60,将激光束LB的M2因子设定为5~50。
将M2因子实质设定为5~50的方法如下所述。
(1)使用M2因子为5~50的激光振荡器。
(2)如图9所示,在聚光透镜50的近前配设磨砂玻璃60,将激光束的M2因子实质设定为5~50。
(3)代替磨砂玻璃60,在聚光透镜50的近前配设相位调制器,将激光束的M2因子实质设定为5~50。
(4)在聚光透镜50的近前配设衍射光栅(DOE),使激光束成为多分支,将激光束的M2因子实质设定为5~50。
(5)使用将激光束的M2因子实质设定为5~50的聚光透镜50。
(6)将激光束入射至多模光纤,将从多模光纤射出的激光束的M2因子设定为5~50。
参照图10,示出了如下形成改质层23时的示意图,使用将聚光透镜50的数值孔径NA设定为0.45~0.9且焦点深度较浅的聚光透镜50,并且将激光束LB的M2因子实质设定为5~50而形成改质层23。聚光点62的直径为
Figure GDA0002391228250000081
因此形成面积较大的改质层23和从改质层23传播的裂痕25。
本实施方式的改质层形成步骤的主要目的在于形成具有较大面积的改质层23,因此对于日本特开2013-49461号公报记载那样的激光束的照射方法也可以应用。
即,不限于下述改质层形成步骤,c轴相对于晶锭11的第一面的垂线倾斜偏离角,使激光束的聚光点沿着与在第一面和c面之间形成偏离角的方向垂直的方向相对地移动的改质层形成步骤,也可以应用至c轴和c面没有任何关系的改质层形成步骤。
在本实施方式的改质层形成步骤中,将聚光透镜50的数值孔径NA设定为0.45~0.9,并且将激光束LB的M2因子实质设定为5~50,因此能够使聚光点的直径为
Figure GDA0002391228250000092
因此,能够形成面积较大的改质层23,因此能够在SiC晶锭11的内部高效地形成包含改质层23和裂痕25的分离起点。
此处,对于最适的聚光点62的功率密度进行考察。将聚光点62的直径为
Figure GDA0002391228250000093
激光束的平均功率为3W、重复频率为80kHz的激光束的聚光点定位在距晶锭11的上表面11a深度为500μm处来照射激光束,使聚光点以40mm/s的进给速度移动而形成改质层23,对该改质层23的轨迹进行分析。
最初的改质层23形成在深度500μm的位置,但改质层23如绘制抛物线那样上升,在100脉冲,于深度400μm的位置,改质层23稳定且成为水平。对此进行如下推测。
即认为,最初以功率密度最高的聚光点形成改质层23,在改质层23的上部析出的碳(C)吸收连续照射的激光束,连锁性地,改质层23一边形成在碳的区域一边上升。然后,在形成改质层23的临界点的功率密度下开始稳定。
临界点的聚光光斑62的直径为
Figure GDA0002391228250000091
功率密度为2.2×105W/cm2。进行重复实验,结果判明在功率密度为(2~3)×105W/cm2的范围内形成稳定的改质层23。因此,在本实施方式的改质层形成步骤中,将聚光点的功率密度设定为(2~3)×105W/cm2
在晶锭11的整个区域的深度D1的位置上,多个改质层23和从改质层23沿着c面延伸的裂痕25的形成结束后,实施晶片剥离步骤,施加外力而从包含改质层23和裂痕25的分离起点将相当于应该形成的晶片的厚度的板状物从SiC晶锭11分离,生成SiC晶片27。
例如通过如图11所示的按压机构54实施该晶片剥离步骤。按压机构54包含:头56,其利用内设于柱52内的移动机构而在上下方向上移动;和按压部件58,其相对于头56如图11的(B)所示那样在箭头R方向上旋转。
如图11的(A)所示,将按压机构54定位在固定于支承工作台26的晶锭11的上方,如图11的(B)所示,使头56下降直到按压部件58压接于晶锭11的上表面11a为止。
在将按压部件58压接于晶锭11的上表面11a的状态下使按压部件58在箭头R方向上旋转时,在晶锭11上产生扭转应力,晶锭11从形成有改质层23和裂痕25的分离起点断裂,能够将图12所示的SiC晶片27从SiC晶锭11分离。
优选在从晶锭11分离SiC晶片27之后,对SiC晶片27的分离面和晶锭11的分离面进行研磨而加工成镜面。
符号说明
2 激光加工装置
11 SiC晶锭
11a 第一面(上表面)
11b 第二面(下表面)
13 第一定向平面
15 第二定向平面
17 第一面的垂线
19 c轴
21 c面
23 改质层
25 裂痕
26 支承工作台
30 激光束照射单元
36 聚光器(激光头)
50 聚光透镜
54 按压机构
56 头
58 按压部件
60 磨砂玻璃
62 聚光点

Claims (3)

1.一种SiC晶片的生成方法,该SiC晶片的生成方法的特征在于,具备:
分离起点形成步骤,将对于SiC晶锭具有透过性的波长的激光束的聚光点定位在距SiC晶锭的端面相当于要生成的晶片的厚度的深度,并且使该聚光点与该SiC晶锭相对地移动来对该端面照射激光束,形成与该端面平行的改质层和从该改质层起进行伸长的裂痕作为分离起点;和
晶片剥离步骤,在实施了该分离起点形成步骤之后,从该分离起点将相当于晶片的厚度的板状物从该SiC晶锭剥离而生成SiC晶片,
在该分离起点形成步骤中,将形成聚光点的聚光透镜的数值孔径设定为0.45~0.9,并且将激光束的M2因子设定为5~50,将聚光点的直径设定为
Figure FDA0002391228240000011
2.如权利要求1所述的SiC晶片的生成方法,其中,该聚光点的功率密度为2×105W/cm2~3×105W/cm2
3.一种SiC晶片的生成方法,其从SiC晶锭生成SiC晶片,该SiC晶锭具有:第一面和位于该第一面的相反侧的第二面;从该第一面至该第二面的c轴;和与该c轴垂直的c面,该SiC晶片的生成方法的特征在于,具备:
分离起点形成步骤,将对于SiC晶锭具有透过性的波长的激光束的聚光点定位在距该第一面相当于要生成的晶片的厚度的深度,并且使该聚光点与该SiC晶锭相对地移动来对该第一面照射该激光束,形成与该第一面平行的改质层和从该改质层起进行伸长的裂痕作为分离起点;和
晶片剥离步骤,在实施了该分离起点形成步骤之后,从该分离起点将相当于晶片的厚度的板状物从该SiC晶锭剥离而生成SiC晶片,
该分离起点形成步骤包含:改质层形成步骤,该c轴相对于该第一面的垂线倾斜偏离角,使激光束的聚光点沿着与在该第一面和该c面之间形成偏离角的方向垂直的方向相对地移动来形成直线状的改质层;和
转位步骤,在该形成偏离角的方向上使该聚光点相对地移动而转位规定的量,
在该分离起点形成步骤中,将形成聚光点的聚光透镜的数值孔径设定为0.45~0.9,并且将激光束的M2因子设定为5~50,将该聚光点的直径设定为
Figure FDA0002391228240000012
CN201611183289.0A 2016-01-07 2016-12-20 SiC晶片的生成方法 Active CN106945190B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016001941A JP6602207B2 (ja) 2016-01-07 2016-01-07 SiCウエーハの生成方法
JP2016-001941 2016-01-07

Publications (2)

Publication Number Publication Date
CN106945190A CN106945190A (zh) 2017-07-14
CN106945190B true CN106945190B (zh) 2020-06-30

Family

ID=59118929

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611183289.0A Active CN106945190B (zh) 2016-01-07 2016-12-20 SiC晶片的生成方法

Country Status (8)

Country Link
US (1) US9878397B2 (zh)
JP (1) JP6602207B2 (zh)
KR (1) KR102484045B1 (zh)
CN (1) CN106945190B (zh)
DE (1) DE102017200030B4 (zh)
MY (1) MY183680A (zh)
SG (1) SG10201610962SA (zh)
TW (1) TWI723087B (zh)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6395633B2 (ja) 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6395632B2 (ja) 2015-02-09 2018-09-26 株式会社ディスコ ウエーハの生成方法
JP6494382B2 (ja) * 2015-04-06 2019-04-03 株式会社ディスコ ウエーハの生成方法
JP6429715B2 (ja) 2015-04-06 2018-11-28 株式会社ディスコ ウエーハの生成方法
JP6425606B2 (ja) 2015-04-06 2018-11-21 株式会社ディスコ ウエーハの生成方法
JP6472333B2 (ja) 2015-06-02 2019-02-20 株式会社ディスコ ウエーハの生成方法
JP6478821B2 (ja) * 2015-06-05 2019-03-06 株式会社ディスコ ウエーハの生成方法
JP6482423B2 (ja) 2015-07-16 2019-03-13 株式会社ディスコ ウエーハの生成方法
JP6482425B2 (ja) 2015-07-21 2019-03-13 株式会社ディスコ ウエーハの薄化方法
JP6472347B2 (ja) 2015-07-21 2019-02-20 株式会社ディスコ ウエーハの薄化方法
JP6690983B2 (ja) * 2016-04-11 2020-04-28 株式会社ディスコ ウエーハ生成方法及び実第2のオリエンテーションフラット検出方法
WO2017199784A1 (ja) * 2016-05-17 2017-11-23 エルシード株式会社 加工対象材料の切断方法
JP6723877B2 (ja) * 2016-08-29 2020-07-15 株式会社ディスコ ウエーハ生成方法
JP6858587B2 (ja) 2017-02-16 2021-04-14 株式会社ディスコ ウエーハ生成方法
JP6974133B2 (ja) * 2017-11-22 2021-12-01 株式会社ディスコ SiCインゴットの成型方法
US10388526B1 (en) 2018-04-20 2019-08-20 Semiconductor Components Industries, Llc Semiconductor wafer thinning systems and related methods
US11121035B2 (en) 2018-05-22 2021-09-14 Semiconductor Components Industries, Llc Semiconductor substrate processing methods
US10896815B2 (en) 2018-05-22 2021-01-19 Semiconductor Components Industries, Llc Semiconductor substrate singulation systems and related methods
US20190363018A1 (en) 2018-05-24 2019-11-28 Semiconductor Components Industries, Llc Die cleaning systems and related methods
US10468304B1 (en) 2018-05-31 2019-11-05 Semiconductor Components Industries, Llc Semiconductor substrate production systems and related methods
US11830771B2 (en) 2018-05-31 2023-11-28 Semiconductor Components Industries, Llc Semiconductor substrate production systems and related methods
US10940611B2 (en) 2018-07-26 2021-03-09 Halo Industries, Inc. Incident radiation induced subsurface damage for controlled crack propagation in material cleavage
US10825733B2 (en) 2018-10-25 2020-11-03 United Silicon Carbide, Inc. Reusable wide bandgap semiconductor substrate
US11897056B2 (en) 2018-10-30 2024-02-13 Hamamatsu Photonics K.K. Laser processing device and laser processing method
JP7285067B2 (ja) 2018-10-30 2023-06-01 浜松ホトニクス株式会社 レーザ加工装置及びレーザ加工方法
US20220009039A1 (en) * 2018-10-30 2022-01-13 Hamamatsu Photonics K.K. Laser processing apparatus and laser processing method
US11024501B2 (en) 2018-12-29 2021-06-01 Cree, Inc. Carrier-assisted method for parting crystalline material along laser damage region
US10562130B1 (en) 2018-12-29 2020-02-18 Cree, Inc. Laser-assisted method for parting crystalline material
US10576585B1 (en) 2018-12-29 2020-03-03 Cree, Inc. Laser-assisted method for parting crystalline material
US10611052B1 (en) 2019-05-17 2020-04-07 Cree, Inc. Silicon carbide wafers with relaxed positive bow and related methods
JP2021010936A (ja) * 2019-07-09 2021-02-04 株式会社ディスコ レーザ加工装置
CN112404697B (zh) * 2020-11-09 2022-04-05 松山湖材料实验室 一种晶圆剥离方法及晶圆剥离装置
US11848197B2 (en) 2020-11-30 2023-12-19 Thinsic Inc. Integrated method for low-cost wide band gap semiconductor device manufacturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542787A (zh) * 2003-04-28 2004-11-03 株式会社三协精机制作所 透镜、光学头装置及光学头装置用物镜
CN1906522A (zh) * 2004-04-28 2007-01-31 奥林巴斯株式会社 激光处理装置
CN101165877A (zh) * 2006-10-17 2008-04-23 株式会社迪思科 砷化镓晶片的激光加工方法
CN102107391A (zh) * 2009-12-24 2011-06-29 北京天科合达蓝光半导体有限公司 一种SiC单晶晶片的加工方法
JP2011155069A (ja) * 2010-01-26 2011-08-11 Saitama Univ 基板加工方法
KR101100441B1 (ko) * 2004-11-09 2011-12-29 히다찌 컴퓨터 기끼 가부시끼가이샤 레이저 초기 결정화 장치
CN103715082A (zh) * 2012-10-01 2014-04-09 株式会社迪思科 晶片的加工方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094221A (ja) * 1998-09-24 2000-04-04 Toyo Advanced Technologies Co Ltd 放電式ワイヤソー
TWI261358B (en) * 2002-01-28 2006-09-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
WO2007087354A2 (en) * 2006-01-24 2007-08-02 Baer Stephen C Cleaving wafers from silicon crystals
JP2010021398A (ja) * 2008-07-11 2010-01-28 Disco Abrasive Syst Ltd ウェーハの処理方法
KR20100070159A (ko) * 2008-12-17 2010-06-25 삼성전자주식회사 웨이퍼 가공방법
US8940572B2 (en) * 2009-04-21 2015-01-27 Tetrasun, Inc. Method for forming structures in a solar cell
ITUD20090105A1 (it) * 2009-05-27 2010-11-28 Applied Materials Inc Applicazione laser in fibra per un processo di rimozione della pellicola di bordo in applicazioni di celle solari
JP5537081B2 (ja) * 2009-07-28 2014-07-02 浜松ホトニクス株式会社 加工対象物切断方法
KR20110114972A (ko) * 2010-04-14 2011-10-20 삼성전자주식회사 레이저 빔을 이용한 기판의 가공 방법
WO2012108054A1 (ja) * 2011-02-10 2012-08-16 信越ポリマー株式会社 単結晶基板の製造方法および内部改質層形成単結晶部材の製造方法
JP5917862B2 (ja) * 2011-08-30 2016-05-18 浜松ホトニクス株式会社 加工対象物切断方法
JP6002982B2 (ja) 2011-08-31 2016-10-05 株式会社フジシール パウチ容器
US20140245608A1 (en) * 2011-10-07 2014-09-04 Canon Kabushiki Kaisha Method and apparatus for laser-beam processing and method for manufacturing ink jet head
WO2013126927A2 (en) * 2012-02-26 2013-08-29 Solexel, Inc. Systems and methods for laser splitting and device layer transfer
WO2014179368A1 (en) * 2013-04-29 2014-11-06 Solexel, Inc. Damage free laser patterning of transparent layers for forming doped regions on a solar cell substrate
US9102007B2 (en) 2013-08-02 2015-08-11 Rofin-Sinar Technologies Inc. Method and apparatus for performing laser filamentation within transparent materials
JP6390898B2 (ja) * 2014-08-22 2018-09-19 アイシン精機株式会社 基板の製造方法、加工対象物の切断方法、及び、レーザ加工装置
JP6486240B2 (ja) * 2015-08-18 2019-03-20 株式会社ディスコ ウエーハの加工方法
JP6486239B2 (ja) * 2015-08-18 2019-03-20 株式会社ディスコ ウエーハの加工方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1542787A (zh) * 2003-04-28 2004-11-03 株式会社三协精机制作所 透镜、光学头装置及光学头装置用物镜
CN1906522A (zh) * 2004-04-28 2007-01-31 奥林巴斯株式会社 激光处理装置
KR101100441B1 (ko) * 2004-11-09 2011-12-29 히다찌 컴퓨터 기끼 가부시끼가이샤 레이저 초기 결정화 장치
CN101165877A (zh) * 2006-10-17 2008-04-23 株式会社迪思科 砷化镓晶片的激光加工方法
CN102107391A (zh) * 2009-12-24 2011-06-29 北京天科合达蓝光半导体有限公司 一种SiC单晶晶片的加工方法
JP2011155069A (ja) * 2010-01-26 2011-08-11 Saitama Univ 基板加工方法
CN103715082A (zh) * 2012-10-01 2014-04-09 株式会社迪思科 晶片的加工方法

Also Published As

Publication number Publication date
US20170197277A1 (en) 2017-07-13
CN106945190A (zh) 2017-07-14
SG10201610962SA (en) 2017-08-30
DE102017200030A1 (de) 2017-07-13
DE102017200030B4 (de) 2024-06-20
KR20170082974A (ko) 2017-07-17
JP6602207B2 (ja) 2019-11-06
US9878397B2 (en) 2018-01-30
KR102484045B1 (ko) 2023-01-02
MY183680A (en) 2021-03-08
TW201735143A (zh) 2017-10-01
TWI723087B (zh) 2021-04-01
JP2017123405A (ja) 2017-07-13

Similar Documents

Publication Publication Date Title
CN106945190B (zh) SiC晶片的生成方法
CN106216858B (zh) 晶片的生成方法
KR102459564B1 (ko) 웨이퍼의 생성 방법
KR102361278B1 (ko) 웨이퍼의 생성 방법
CN107262945B (zh) 晶片的生成方法
KR102341602B1 (ko) 웨이퍼의 생성 방법
CN105862135B (zh) 晶片的生成方法
KR102354665B1 (ko) 웨이퍼의 생성 방법
KR102341591B1 (ko) 웨이퍼의 생성 방법
KR102341600B1 (ko) 웨이퍼의 생성 방법
CN105855734B (zh) 晶片的生成方法
KR102341604B1 (ko) 웨이퍼의 생성 방법
KR102354661B1 (ko) 웨이퍼의 생성 방법
KR102341597B1 (ko) 웨이퍼의 생성 방법
KR102341594B1 (ko) 웨이퍼의 생성 방법
JP6355540B2 (ja) ウエーハの生成方法
JP6366485B2 (ja) ウエーハの生成方法
JP6418927B2 (ja) ウエーハの生成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant