CN106910891A - 一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法 - Google Patents

一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法 Download PDF

Info

Publication number
CN106910891A
CN106910891A CN201710127253.9A CN201710127253A CN106910891A CN 106910891 A CN106910891 A CN 106910891A CN 201710127253 A CN201710127253 A CN 201710127253A CN 106910891 A CN106910891 A CN 106910891A
Authority
CN
China
Prior art keywords
transition metal
nano
carbon
metal fluorides
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710127253.9A
Other languages
English (en)
Inventor
孙大林
宋云
吴飞龙
方方
李永涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN201710127253.9A priority Critical patent/CN106910891A/zh
Publication of CN106910891A publication Critical patent/CN106910891A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/582Halogenides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明属于纳米材料技术领域,具体涉及一种过渡金属氟化物负载硼掺杂纳米碳材料的制备方法。本发明方法以过渡金属氟化物、硼氢化物和纳米碳材料作为原材料,通过球磨和加热,即可制得过渡金属氟化物负载硼掺杂纳米碳复合材料。该方法具有低成本,高效率,经济环保,普适性强等特点。

Description

一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法
技术领域
本发明属于纳米材料技术领域,具体涉及一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法。
背景技术
锂离子电池具有能量密度高、循环寿命长、转换效率高等优点,被广泛应用于电动汽车、智能电网等高效储能***中。目前商业的锂离子电池的正/负极材料均为插嵌型(例如:石墨负极;LiCoO2正极)。这些插嵌型正负极材料的理论比容量较低(石墨负极的理论比容量仅为:375mAh g-1,LiCoO2正极的理论比容量仅为:140mAh g-1),严重制约了锂离子电池的能量密度。[1,2]因此,开发高比容量的正/负极材料是提高锂离子电池能量密度的关键。
近年来,一系列研究表明过渡金属氟化物(例如: FeF3、FeF2、NiF2、CoF3、CoF2、NiF3、MnF2、CuF2、TiF4等)具有比容量大,能量密度高,廉价无污染等特点,是一类很有潜力的锂离子电池正/负极材料。[3-8] 其中,正极材料以FeF3为代表,其理论比容量高达712mAh g-1,平均工作电压为2.74 V,能量密度可达1951 Wh kg-1;[4,8-10] 负极材料以MnF2为代表,其理论比容量高达577mAh g-1,工作电压为0.8 V。[11,12] 然而,过渡金属氟化物在脱/嵌锂过程中存在着导电性差,体积变化大,电压滞后严重等问题,导致其容量迅速衰减,循环稳定性差。[4,11] 研究工作者们针对这些问题进行了一系列的研究工作。在这之中,将过渡金属氟化物预嵌锂转化成过渡金属/氟化锂,并进一步与纳米碳材料复合是目前普遍采用的解决方案,例如:利用球磨热解法制备的Fe/LiF/石墨烯复合材料在180个循环后仍可保持150 mAh g-1的比容量。[13]过渡金属氟化物脱嵌锂性能的提升归因于:首先,构建碳复合体系可有效缓解其循环过程中的体积变化,并增强体系导电性;其次,预嵌锂后FeF3等正极材料可以直接与石墨、硅等无锂负极组成全电池,MnF2等负极材料在预嵌锂后的首次库仑效率也显著提高。构筑过渡金属/氟化锂/纳米碳复合材料具有以上显著的优点,尚存以下不足:
(1)长循环性能仍难以满足实际应用需求,还需要进一步通过引入杂原子掺杂的碳材料提高其循环性能[14];
(2)过渡金属/氟化锂/纳米碳复合材料的制备一般通过喷雾,球磨热解还原,化学沉积,水热等方法实现,制备成本高,效率低,不利于工业化生产,且难同步实现杂原子的均匀掺杂[15,16];
(3)现有制备方法普遍采用先将氟化锂与过渡金属分别负载至纳米碳材料的载体上,导致氟化锂与过渡金属纳米颗粒之间难以紧密结合,增加了在充电过程中离子/原子扩散距离,严重影响脱/嵌锂电化学反应的可逆程度[13]。
因此,开发一种将氟化锂与过渡金属纳米颗粒同步负载至杂原子掺杂的碳材料,且兼具低成本和高效率的制备方法具有非常重要的意义。
参考文献
[1] Croguennec, L.; Palacin, M. R. J. Am. Chem. Soc. 2015,137, 3140.
[2] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010,22, 587.
[3] Li, H.; Richter, G.; Maier, J. Adv. Mater. 2003,15, 736.
[4]Li, H.; Balaya, P.; Maier, J. J. Electrochem. Soc. 2004,151, 1878.
[5]Amatucci, G. G.; Pereira, N. J. Fluorine Chem. 2007,128, 243.
[6]Teng, Y. T.; Pramana, S. S.; Ding, J.; Wu, T.; Yazami, R. Electrochim. Acta 2013,107, 301.
[7]Hua, X.; Robert, R.; Du, L. S.; Wiaderek, K. M.; Leskes, M.; Chapman,K. W.; Chupas, P. J.; Grey, C. P. J. Phys. Chem. C 2014,118, 15169.
[8]Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.;Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R.; Wu, L.; Volkov, V.; Su, D.; Key,B.; Whittingham, M. S.; Grey, C. P.; Amatucci, G. G.; Zhu, Y.; Graetz, J. J. Am. Chem. Soc. 2011,133, 18828.
[9]Liu, P.; Vajo, J. J.; Wang, J. S.; Li, W.; Liu, J. J. Phys. Chem. C 2012,116, 6467.
[10]Ma, D. L.; Cao, Z. Y.; Wang, H. G.; Huang, X. L.; Wang, L. M.; Zhang,X. B. Energy Environ. Sci. 2012,5, 8538.
[11]Rui, K.; Wen, Z.; Lu, Y.; Jin, J.; Shen, C. Adv. Energy Mater. 2015,5, 1401716.
[12]Rui, K.; Wen, Z.; Huang, X.; Lu, Y.; Jin, J.; Shen, C. Phys. Chem. Chem. Phys. 2016,18, 3780.
[13]Ma, R.; Dong, Y.; Xi, L.; Yang, S.; Lu, Z.; Chung, C. ACS Appl. Mater. Interfaces 2013,5, 892.
[14]Kumagae, K.; Okazaki, K.; Matsui, K.; Horino, H.; Hirai, T.; Yamaki,J.; Ogumi, Z. J. Electrochem. Soc. 2016,163, 1633.
[15]Sun, Y.; Liu, N.; Cui, Y. Nature Energy 2016,1, 16071.
[16] Rui, K.; Wen, Z.; Lu, Y.; Shen, C.; Jin, J. ACS Appl. Mater. Interfaces 2016,8, 1819.。
发明内容
本发明的目的在于提供一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法,使过渡金属与氟化锂的纳米颗粒紧密结合地分散在纳米碳材料基体上,且可同步实现硼掺杂。该方法具有成本低,效率高,经济环保,普适性强等特点。
本发明提供的过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法,具体步骤如下:
(1)将过渡金属氟化物、硼氢化物(LiBH4)、纳米碳材料加入到球磨罐中,过渡金属氟化物与LiBH4的摩尔比例为1:1~1:4,纳米碳材料的质量占总体质量比为5wt%~80wt%,在保护气氛下球磨2~48 小时;
优选过渡金属氟化物与LiBH4的摩尔比例为1:1~1:2.5,纳米碳材料的质量占总体质量比为5wt%~40wt%,球磨时间为20~48小时;
(2)将球磨产物在动态真空条件下加热至120~500℃,并保温1~48小时,然后降温至室温,收集产物,即得过渡金属氟化物负载硼掺杂纳米碳复合材料。
优选加热温度为320~400℃,保温时间为30~45小时。
步骤(1)中,所述的过渡金属氟化物为FeF3、FeF2、NiF2、NiF3、CoF3、CoF2、MnF2、CuF2、TiF4、ZnF2中的任意一种,或其中的几种。所述的纳米碳材料为石墨、石墨烯、单壁碳纳米管、多壁碳纳米管、碳纳米棒、碳纤维、碳纳米线、碳纳米棍中的任意一种,或其中的几种。所述的保护气氛为氢气、氮气、氩气、氦气中的任意一种。
步骤(2)中,所述的过渡金属为Fe、Ti、Ni、Co、Cu、Mn、Zn中的任意一种,或其中的几种。
本发明方法的积极效果是:
(1)本方法操作简单,所需的球磨和真空脱气装置,均为工业常见生产设备,所需的最高温度仅为500℃,因此本方法效率高,可应用于大规模工业化生产;
(2)本方法制备过程无废液/物排放,且所需的过渡金属氟化物,硼氢化锂和纳米碳材料均为工业常见原材料,因此本方法经济环保,生产成本低廉;
(3)本方法可制备Mn、Fe、Ti、Ni、Co、Cu、Zn等多种过渡金属氟化物负载硼掺杂纳米碳复合材料,在复合材料中氟化锂和过渡金属均以纳米颗粒形式紧密结合地均匀分散在纳米碳载体上,且掺杂元素硼的含量、形貌和分布等可根据制备条件进一步进行调控。
附图说明
图1是所合成的硼掺杂的Mn/LiF/石墨复合材料的X射线衍射图谱。
图2是所合成的硼掺杂的Mn/LiF/石墨复合材料的高倍透射电子显微镜图像。
图3是所合成的硼掺杂的Mn/LiF/石墨复合材料的循环嵌脱锂性能。
图4是所合成的硼掺杂的Fe/LiF/石墨复合材料的扫描电子显微镜图像。
图5是所合成的硼掺杂的Fe/LiF/石墨复合材料的X射线能量分布图谱。
具体实施方式
以下结合示例与附图对本发明的制备方法进行详细的描述。
实施例1:硼掺杂的Mn/LiF/石墨复合材料的制备及其电化学储锂特性
在惰性气体手套箱内,将0.465g MnF2、0.22 g LiBH4和0.2 g 石墨粉末混合装入球磨罐中,在氢气气氛下球磨24 h,球磨转速为400转/分钟,球料比为30:1。将球磨产物持续抽真空,并逐渐升温至140 ℃,保温12 h后自然降至室温,可得到硼掺杂的Mn/LiF/石墨复合材料。所合成的硼掺杂的Mn/LiF/石墨复合材料的X射线衍射图谱和高倍透射电子显微镜图像分别如图1和2所示。图1表明该方法成功制备了LiF。图2中可见Mn和硼的纳米颗粒分散在无定形石墨层上。结合图1和图2说明该方法既可以制备过渡金属/氟化锂/纳米碳复合材料,又可以同步实现硼掺杂。图3给出了所制备的硼掺杂的Mn/LiF/石墨复合材料的长循环性能。在1 A g-1的电流密度下,经过1500个循环,所合成的硼掺杂的Mn/LiF/石墨复合材料仍可以保持的423 mAh g-1的比容量,说明该方法制备的硼掺杂的Mn/LiF/石墨复合材料具有优良的循环性能。
实施例2:硼掺杂的Fe/LiF/石墨复合材料的制备
在惰性气体手套箱内,将0.47 g FeF2、0.25 g LiBH4和0.15 g石墨粉末混合装入球磨罐中,在氩气气氛下球磨48 h,球磨转速为400转/分钟,球料比为40:1。将球磨产物持续抽真空,并逐渐升温至450 ℃,保温12 h后自然降至室温,可得到硼掺杂的Fe/LiF/石墨复合材料。图4和图5分别给出了所制备的硼掺杂的Fe/LiF/石墨复合材料的扫描电子显微镜及其对应的X射线能量分布图谱。图4中可见所制备的Fe/Li/石墨复合材料的颗粒大小为50nm左右。图5中明显可见B、C、F、Fe元素,说明该方法可制备Fe/LiF/石墨复合材料,并同步实现硼掺杂。
实施例3:硼掺杂的Ni/LiF/石墨烯复合材料的制备
在惰性气体手套箱内,将0.485 g NiF2、0.32 g LiBH4和0.1 g石墨烯粉末混合装入球磨罐中,在氮气气氛下球磨6 h,球磨转速为350转/分钟,球料比为40:1。将球磨产物持续抽真空,并逐渐升温至350℃,保温6 h后自然降至室温,可得到硼掺杂的Ni/LiF/石墨烯复合材料。
实施例4:硼掺杂的Co/LiF/多壁碳纳米管复合材料的制备
在惰性气体手套箱内,将0.485 g CoF2、0.25 g LiBH4和0.2 g多壁碳纳米管粉末混合装入球磨罐中,在氢气气氛下球磨4 h,球磨转速为300转/分钟,球料比为30:1。将球磨产物持续抽真空,并逐渐升温至500℃,保温10 h后自然降至室温,可得到硼掺杂的Co/LiF/多壁碳纳米管复合材料。
实施例5:硼掺杂的Mn/LiF/单壁碳纳米管复合材料的制备
在惰性气体手套箱内,将0.47 g MnF2和0.3 g LiBH4和0.25 g单壁碳纳米管粉末混合装入球磨罐中,在氢气气氛下球磨36 h,球磨转速为300转/分钟,球料比为40:1。将球磨产物持续抽真空,并逐渐升温至280 ℃,保温12 h后自然降至室温,可得到硼掺杂的Mn/LiF/单壁碳纳米管复合材料。

Claims (3)

1.一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法,具体步骤如下:
(1)将过渡金属氟化物、LiBH4、纳米碳材料加入到球磨罐中,过渡金属氟化物与LiBH4的摩尔比例为1:1~1:4,纳米碳材料的质量占总体质量比为5wt%~80wt%,在保护气氛下球磨2~48 小时;
(2)将球磨产物在动态真空条件下加热至120~500℃,并保温1~48小时,然后降温至室温,收集产物,即得过渡金属氟化物负载硼掺杂纳米碳复合材料。
2.根据权利要求所述的制备方法,其特征在于,步骤(1)中,所述的过渡金属氟化物为FeF3、FeF2、NiF2、NiF3、CoF3、CoF2、MnF2、CuF2、TiF4、ZnF2中的任意一种,或其中的几种;所述的纳米碳材料为石墨、石墨烯、单壁碳纳米管、多壁碳纳米管、碳纳米棒、碳纤维、碳纳米线、碳纳米棍中的任意一种,或其中的几种;所述的保护气氛为氢气、氮气、氩气、氦气中的任意一种。
3.根据权利要求所述的制备方法,其特征在于,步骤(2)中,所述的过渡金属为Fe、Ti、Ni、Co、Cu、Mn、Zn中的任意一种,或其中的几种。
CN201710127253.9A 2017-03-06 2017-03-06 一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法 Pending CN106910891A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710127253.9A CN106910891A (zh) 2017-03-06 2017-03-06 一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710127253.9A CN106910891A (zh) 2017-03-06 2017-03-06 一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法

Publications (1)

Publication Number Publication Date
CN106910891A true CN106910891A (zh) 2017-06-30

Family

ID=59186065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710127253.9A Pending CN106910891A (zh) 2017-03-06 2017-03-06 一种过渡金属氟化物负载硼掺杂纳米碳复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106910891A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148831A (zh) * 2018-09-11 2019-01-04 安徽工业大学 一种氟化物钠离子电池电极材料的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100035155A1 (en) * 2006-11-17 2010-02-11 Mitsubishi Heavy Industries, Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
CN102718183A (zh) * 2012-07-13 2012-10-10 常州大学 LiBH4/ RGO高储氢量复合储氢材料及其制备方法
CN103199253A (zh) * 2013-03-31 2013-07-10 马军昌 一种石墨烯-氟化铁复合正极材料的制备方法
CN103855389A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 三氟化铁/碳复合材料及其制备方法和应用
CN104183832A (zh) * 2014-08-13 2014-12-03 东南大学 一种基于碳纳米管-石墨烯复合三维网络的FeF3柔性电极的制备方法与应用
CN105036074A (zh) * 2015-07-03 2015-11-11 中国工程物理研究院材料研究所 一种LiBH4掺杂氟化物的高容量可逆储氢复合材料及其制备方法
US20150325851A1 (en) * 2014-05-12 2015-11-12 Asahi Glass Company, Limited Cathode active material, process for its production, cathode and lithium ion secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100035155A1 (en) * 2006-11-17 2010-02-11 Mitsubishi Heavy Industries, Ltd. Cathode active material for non-aqueous electrolyte secondary battery and manufacturing method of the same
CN102718183A (zh) * 2012-07-13 2012-10-10 常州大学 LiBH4/ RGO高储氢量复合储氢材料及其制备方法
CN103855389A (zh) * 2012-11-30 2014-06-11 海洋王照明科技股份有限公司 三氟化铁/碳复合材料及其制备方法和应用
CN103199253A (zh) * 2013-03-31 2013-07-10 马军昌 一种石墨烯-氟化铁复合正极材料的制备方法
US20150325851A1 (en) * 2014-05-12 2015-11-12 Asahi Glass Company, Limited Cathode active material, process for its production, cathode and lithium ion secondary battery
CN104183832A (zh) * 2014-08-13 2014-12-03 东南大学 一种基于碳纳米管-石墨烯复合三维网络的FeF3柔性电极的制备方法与应用
CN105036074A (zh) * 2015-07-03 2015-11-11 中国工程物理研究院材料研究所 一种LiBH4掺杂氟化物的高容量可逆储氢复合材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148831A (zh) * 2018-09-11 2019-01-04 安徽工业大学 一种氟化物钠离子电池电极材料的制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. Sandwich-like silicon/Ti3C2Tx MXene composite by electrostatic self-assembly for high performance lithium ion battery
Xiong et al. Controllable synthesis of NC@ LiFePO4 nanospheres as advanced cathode of lithium ion batteries
Wang et al. Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries
Xi et al. PSi@ SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries
Tian et al. Micro-sized nano-porous Si/C anodes for lithium ion batteries
CN104091934B (zh) 一种多元复合负极材料、其制备方法及包含其的锂离子电池
Lai et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
CN105098185B (zh) 复合负极材料及其制备方法、锂离子二次电池负极极片和锂离子二次电池
Wu et al. Fabrication of F-doped, C-coated NiCo2O4 nanocomposites and its electrochemical performances for lithium-ion batteries
Hu et al. Sn/SnO2@ C composite nanofibers as advanced anode for lithium-ion batteries
Chu et al. Reduced graphene oxide decorated with FeF3 nanoparticles: Facile synthesis and application as a high capacity cathode material for rechargeable lithium batteries
Du et al. Si/graphene composite prepared by magnesium thermal reduction of SiO2 as anode material for lithium-ion batteries
Li et al. Synthesis of three-dimensional free-standing WSe 2/C hybrid nanofibers as anodes for high-capacity lithium/sodium ion batteries
Zhong et al. Facile synthesis of porous germanium-iron bimetal oxide nanowires as anode materials for lithium-ion batteries
Li et al. Molten-LiCl induced thermochemical prelithiation of SiO x: Regulating the active Si/O ratio for high initial Coulombic efficiency
CN105084366A (zh) 一种以硅灰为原料制备纳米尺寸的硅及硅/碳复合材料的方法及其用途
Li et al. MoC ultrafine nanoparticles confined in porous graphitic carbon as extremely stable anode materials for lithium-and sodium-ion batteries
Song et al. High-performance phosphorus-modified SiO/C anode material for lithium ion batteries
Tu et al. Monodisperse LiFePO4 microspheres embedded with well-dispersed nitrogen-doped carbon nanotubes as high-performance positive electrode material for lithium-ion batteries
Zhang et al. Improving electrochemical properties of spinel lithium titanate by incorporation of titanium nitride via high-energy ball-milling
Wei et al. Ti-doped Fe1− xTixF3· 0.33 H2O/C nanocomposite as an ultrahigh rate capability cathode materials of lithium ion batteries
Hu et al. Scalable synthesis of Fe3O4/C composites with enhanced electrochemical performance as anode materials for lithium-ion batteries
Yang et al. Self-assembled FeF3 nanocrystals clusters confined in carbon nanocages for high-performance Li-ion battery cathode
CN102623705A (zh) 一种锂离子电池正极材料LiFePO4/C及其制备方法和应用
Ding et al. A hollow Co2SiO4 nanosheet Li-ion battery anode with high electrochemical performance and its dynamic lithiation/delithiation using in situ transmission electron microscopy technology

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170630

WD01 Invention patent application deemed withdrawn after publication