CN106674202A - 化合物a的二甲磺酸盐及其晶型和含有该盐的药物组合物 - Google Patents

化合物a的二甲磺酸盐及其晶型和含有该盐的药物组合物 Download PDF

Info

Publication number
CN106674202A
CN106674202A CN201610962661.1A CN201610962661A CN106674202A CN 106674202 A CN106674202 A CN 106674202A CN 201610962661 A CN201610962661 A CN 201610962661A CN 106674202 A CN106674202 A CN 106674202A
Authority
CN
China
Prior art keywords
compound
crystal formation
dimethanesulfonate
dimethanesulfonates
ray diffractogram
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610962661.1A
Other languages
English (en)
Inventor
颜杰
李松
许文杰
华怀杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huizhou Salubris Pharmaceuticals Co Ltd
Original Assignee
Huizhou Salubris Pharmaceuticals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huizhou Salubris Pharmaceuticals Co Ltd filed Critical Huizhou Salubris Pharmaceuticals Co Ltd
Publication of CN106674202A publication Critical patent/CN106674202A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Abstract

本发明提供了一种化合物A的二甲磺酸盐及其晶型。以及所述化合物A二甲磺酸盐在制备预防和/或治疗哺乳动物疾病的药物的应用,所述哺乳动物包括人,所述疾病包括各种癌症,优选非小细胞肺癌,特别是突变的非小细胞肺癌。以及一种含有所述化合物A二甲磺酸盐的药物组合物。。

Description

化合物A的二甲磺酸盐及其晶型和含有该盐的药物组合物
技术领域
本发明属于化学药物制备领域,具体涉及一种EGFR抑制剂化合物A的二甲磺酸盐及其晶型,以及含有该盐的药物组合物。
背景技术
EGFR是erbB受体家族的跨膜蛋白酪氨酸激酶成员。当与生长因子配体(例如表皮生长因子(EGF))结合时,受体可以与附加的EGFR分子发生同源二聚,或者与另一家族成员(例如erbB2(HER2)、erbB3(HER3)、或者erbB4(HER4))发生异源二聚。
ErbB受体的同源二聚和/或异源二聚导致胞内域中关键酪氨酸残基的磷酸化,并且导致对参与细胞增殖和生存的许多细胞内信号传导通路的刺激。erbB家族信号传导的失调促进增殖、侵入、转移、血管生成、和肿瘤细胞生存,并且已在许多(包括肺癌、头颈部癌和乳腺癌的那些)人类癌症中得到描述。
因此,ErbB家族代表抗癌药物开发的合理靶点,靶向EGFR或ErbB2的许多药剂现在是临床上可用的,包括吉非替尼(IRESSATM)、厄洛替尼(TARCEVATM)、拉帕替尼(TYKERBTM,TYVERBTM)。New England Journal of medicine(2008)第358期,1160-74和Biochemicaland Biophysical Research Communications(2004)Vol.319,1-11中提供了对ErbB受体信号传导及其在肿瘤发生中的参与的详细论述。
于2004年有报道(Science[2004]第304期,1497-500和New England Journal ofmedicine[2004]第350期,2129-39)在非小细胞肺癌(NSCLC)中EGFR的激活突变与对吉非替尼治疗的反应有关。最普遍的EGFR激活突变(L858R和delE746_A750)导致相对于野生型(WT)EGFR而言,对小分子酪氨酸激酶抑制剂(例如吉非替尼和厄洛替尼)的亲和力增加、以及对三磷酸腺苷(ATP)亲和力下降。最后,产生对吉非替尼或厄洛替尼治疗的获得性抗性,例如由于看门残基T790M的突变,据报道在50%的临床耐药性患者中检测到该突变。该突变不被认为是在空间上阻碍吉非替尼或厄洛替尼与EGFR的结合,仅将对ATP的亲和力改变到相当于WTEGFR的水平。
鉴于这种突变在靶向EGFR的现有疗法的抗性中的重要性,我们认为可以抑制包含看门基因突变的EGFR的药物在癌症的治疗中特别有用。
相对于激活突变体形式的EGFR(例如L858R EGFR突变体、或者delE746_A750突变体或Exon19缺失EGFR突变体)和/或抗性突变体形式的EGFR(例如T790M EGFR突变体),对于可表现出对WT EGFR的有利效能特性、和/或相对其它酶受体的选择性的化合物仍然存在着需求,所述选择性使得这些化合物特别有希望被开发成治疗剂。就这点而言,对于对某些激活或抗性突变体形式的EGFR显示较高的抑制同时对WT EGFR显示相对较低的抑制的化合物存在需求。由于与野生型EGFR抑制相关的毒理学减小,因而预期此类化合物可以更适于用作治疗剂,特别是用于癌症治疗。已知此类毒理学在人体中表现其为皮疹和/或腹泻。
PCT/GB2012/051783发现相对若干EGFR突变体形式一种2-(2,4,5-取代苯胺)嘧啶化合物具有高效能,同时显示对WT EGFR相对较低的抑制。与其它已知的EGFR/EGFR突变体抑制剂相比,本发明的化合物也可显示有利的物理性质(例如,较高的水溶解度、较高的渗透性、和/或较低的血浆蛋白结合)和/或有利的毒性特征(例如降低的hERG阻断倾向)和/或有利的代谢特征。因此,此类化合物在例如癌症治疗中牵连有EGFR和/或EGFR的激活突变和/或EGFR的抗性突变的疾病状况的治疗中尤其有用,所述化合物具体如下:
(化合物A一甲磺酸盐)。
现有技术未知如何得到化合物A的其他盐以及复数个数的盐。为了改善该化合物的药用性质,还需对其稳定的适合制剂的状态做进一步的研究。
发明内容
鉴于现有技术存在的缺陷,本发明的目的之一在于提供一种溶解性和稳定性优异的EGFR抑制剂化合物A的的二甲磺酸盐及其晶型,以及含有该盐的药物组合物。
化合物A的化学名称为:N-(2-{2-二甲氨基乙基-甲氨基}-4-甲氧基-5-{[4-(1-甲基吲哚-3-基)嘧啶-2-基]氨基}苯基)丙-2-烯酰胺,化合物A的二甲磺酸盐化学结构式为下式(I),
1H-NMR显示在高场出现二甲磺酸的双甲基质子信号峰,显示存在6个氢,说明为二甲磺酸盐。
所述高场是指从0至具***移值的首个明显的多氢峰的位置,具体地,所述二甲磺酸盐的1H-NMR如图2和3所示。
1H-NMR检测仪器:Bruker AVANCE III HD 500超导脉冲傅里叶变换核磁共振谱仪;检测条件:溶剂:MeOD-d4;温度:25℃;检测依据:JY/T 007-1996超导脉冲傅里叶变换核磁共振谱方法通则。
所述二甲磺酸盐进一步包括晶型α。
所述晶型α在X射线衍射图中以2θ角表示在5.62±0.2°处有最强的特征吸收峰。
进一步所述晶型还在6.53°、10.23°、13.51°、19.35°、20.01°、21.10°、22.76°、26.01°和27.36°处有特征峰,误差为±0.2°,相对吸收强度大于50%。
具体的更为详细的,化合物A在X射线衍射图中以2θ角表示还在11.76°、12.61°、14.37°、15.74°、16.10°、16.72°、17.37°、17.91°、18.45°、20.38°、20.87°、22.30°、23.06°、23.50°、24.22°、26.56°、27.36°、27.85°、28.43°、和29.62°有特征峰,误差为±0.2°,相对吸收强度大于10%。
具体地,所述化合物A二甲磺酸盐晶型α的X射线衍射数据如表1所示,误差为±0.2°。具体如图4或图6所示。
所得化合物A二甲磺酸盐晶型α的DSC图谱所述晶型的DSC在261.3℃±2℃—262.1℃±2℃处有最大吸收峰。具体如图5或图7所示。
所述二甲磺酸盐进一步包括化合物A二甲磺酸盐四水合物,其结构式如下式II所示,
其通过卡尔费休(KF法)水份测定和TG检测,分子中含有4分子的结晶水。具体地,TG检测图谱如图8或11所示。
进一步化合物A二甲磺酸盐四水合物包括其晶型β。
所述晶型β在X射线衍射图中以2θ角表示在4.20°、6.67°、7.76°、14.09°、18.35°和22.68°处有特征峰,误差为±0.2°,相对吸收强度大于50%。
具体的更为详细的,化合物A在X射线衍射图中以2θ角表示还在5.51°、6.44°、10.13°、12.52°、15.52°、15.99°、17.82°、19.53°、19.95°、20.86°、23.89°、25.28°、25.96°、27.25°和29.47°处有特征峰,误差为±0.2°,相对吸收强度大于10%。
具体地,所述晶型β的X射线衍射数据如表2所示,误差为±0.2°。具体如图9或12所示。
所述晶型β的DSC图谱在262.9℃±2℃—263.7℃±2℃处有最大吸收峰。具体如图10或13所示。
本发明X射线衍射检测条件:X射线衍射采用锐影(Empyrean)X射线衍射仪,在Cu靶Kα射线,电压:40.0kV,电流:40.0mA,发散狭缝1/32°,防散射狭缝1/16°,防散射狭缝7.5mm,步长0.02°,每步停留时间40s条件下测定2θ范围:3°-50°。
DSC检测条件:仪器NETZSCH DSC 200F3,气氛N2,20ml/min,范围30℃—280℃。
TG检测条件:仪器NETZSCH TG 209F3,气氛N2,20ml/min,范围33℃—400℃(10K/min)。
应注意的是:特定的晶型的不同样品具有同样的主要XRPD峰,但是在粉末图中的小峰可能有变化。此外,当由本领域普通技术人员,采用相应方法得到的同晶型样品采用相同的仪器和检测方法进行检测时,各2θ角误差通常在±0.2°以内(各2θ角误差通常在±0.2°以内的含义指的是大部分特征峰,如超过80%以上的吸收强度大于10%特征峰误差在此范围内,而偶然有个别少数的特征峰的误差超出该范围,均应认为属于相同晶型的XRPD谱图);而且,所述各位移的特征峰为中等强度吸收峰,而其他弱吸收峰可能由于实验操作误差发生明显变化,对于本领域技术人员来说其他吸收峰均是表征本晶型时不必要的吸收峰。
所述化合物A二甲磺酸盐及其晶型α和四水合物晶型β的水溶性好,稳定性高,相对于PCT/GB2012/051783所获得优势一甲磺酸盐优势晶型B具有更好的水溶性和稳定性,更利于化合物A的临床应用,充分保证用药的安全性和有效性。
本发明的另一目的在于提供一种上述化合物A二甲磺酸盐及其晶型α和四水合物晶型β的制备方法,该方法工艺简单,常温条件下即可实现。
其中,化合物A可根据PCT/GB2012/051783公开的方法制备,具体合成路线及主要的反应路线如下:
其中,化合物1(化合物A)及其一甲磺酸盐可以现有技术或商业途径获得。
通过现有技术获得的化合物A的一甲磺酸盐,通过进一步优化制备步骤,得到化合物A的二甲磺酸盐,具体步骤如下:
将12g化合物A一甲磺酸盐加入100~150ml乙醇及20~30ml水中,在50~70℃下搅拌反应0.5~1h,溶清,滴加5~6g的甲磺酸,保温搅拌反应4~6h,再移至15~25℃下搅拌10~18h,析出浅黄色固体,35~50℃烘干3~5h,得到化合物A二甲磺酸盐。
优选地,化合物A二甲磺酸盐晶型α的优选制备方法包括以下步骤:
将10g化合物A二甲磺酸盐加入80~100ml乙腈(或丙酮)中,室温下加入20~30ml的水,在45~65℃下搅拌反应0.5~1h,溶清;20~30℃下补加80~100乙腈(或丙酮),搅拌1~2h,再移至冰浴下再搅拌1~2h,析出浅黄色固体,40~60℃烘干3~5h为二甲磺酸盐α晶型。
优选地,化合物A二甲磺酸盐四水合物晶型β的优选制备方法包括以下步骤:
将15g化合物A二甲磺酸盐加入100~150ml四氢呋喃中,室温(20~30℃)下加入30~40ml水,加热至45~65℃搅拌0.5~1h,溶清;冰浴下再搅拌1~2h,析出固体,抽虑,得到黄色固体,60~80℃烘干5~10h,为二甲磺酸盐四水合物β晶型。
现有技术PCT/GB2012/051783的一甲磺酸盐晶型B产物,虽具有较好纯度,但其水溶性相对于较差。本发明通过大量的实验,通过优化工艺先将合成获得化合物A二甲磺酸盐及其优势晶型α和四水合物晶型β。通过大量的实验发现,通过化合物A的碱直接添加足量的酸,难以得到高纯度的化合物复盐,发明人却偶然的发现,在化合物A一甲磺酸盐的基础上,添加酸然后进一步优化工艺,得到稳定的二甲磺酸盐及其优势晶型α和四水合物晶型β。
本发明的再一目的在于提供一种含有上述的化合物A二甲磺酸盐的药物组合物,使用所述化合物A二甲磺酸盐及其优势晶型α和四水合物晶型β,和一种以上药学上可接受的载体。
所述载体包括各种药用辅料,包材,传递工具等,根据制剂需要进行选择,例如辅料包括填充剂、崩解剂、粘合剂、润滑剂等,可以适用于口服、吸入、非肠胃给药或表面使用;剂型包括但不限于注射剂、溶液制剂、片剂、胶囊剂、颗粒剂等。
所述药物组合物可以用于制备EGFR靶向引起相关疾病、特别是癌症的药物的应用,更为优选非小细胞肺癌,特别是用于突变的非小细胞肺癌。
本发明与现有技术相比具有如下突出的优点及有益效果:
1、现有技术未有得到化合物A的其他盐以及复数个数的盐,且采用两倍以上的酸制盐未有得到复数盐,可见复数盐的制备是有难度的。本发明优选制备工艺得到化合物A二甲磺酸盐。
2、本发明的化合物A二甲磺酸盐及其优势晶型α和四水合物晶型β的纯度高,为质量稳定的固体形态,更易于药物组合物的配置和使用。
3、本发明的化合物A二甲磺酸盐及其优势晶型α和四水合物晶型β相对于PCT/GB2012/051783所获得一甲磺酸盐优势晶型B明显具有更好的水溶性和稳定性,更利于保证化合物A的临床疗效和安全用药。
4、本发明制备化合物A二甲磺酸盐晶型α和四水合物晶型β的方法简单、快捷、在常温条件下即可制备,更易于产业化生产。
附图说明
图1是现有技术化合物A一甲磺酸盐的1H-NMR图谱
图2是本发明实施例2所得化合物A二甲磺酸盐的1H-NMR图谱
图3是本发明实施例4所得化合物A二甲磺酸盐的1H-NMR图谱
图4是本发明实施例3所得化合物A二甲磺酸盐晶型α的X射线衍射图谱
图5是本发明实施例3所得化合物A二甲磺酸盐晶型α的DSC图谱
图6是本发明实施例4所得化合物A二甲磺酸盐晶型α的X射线衍射图谱
图7是本发明实施例4所得化合物A二甲磺酸盐晶型α的DSC图谱
图8是本发明实施例5所得化合物A二甲磺酸盐四水合物晶型β的TG图谱
图9是本发明实施例5所得化合物A二甲磺酸盐四水合物晶型β的X射线衍射图谱
图10是本发明实施例5所得化合物A二甲磺酸盐四水合物晶型β的DSC图谱
图11是本发明实施例6所得化合物A二甲磺酸盐四水合物晶型β的TG图谱
图12是本发明实施例6所得化合物A二甲磺酸盐四水合物晶型β的X射线衍射图谱
图13是本发明实施例6所得化合物A二甲磺酸盐四水合物晶型β的DSC图谱
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但发明的实施方式不限于此。
实施例1化合物A的制备
按照PCT/GB2012/051783说明书实施例28和28A的方法,采用以下技术合成路线制备化合物A一甲磺酸盐及其晶型B:
反应条件及参数为:
于0℃下向N1-(2-二甲氨基乙基)-5-甲氧基-N1-甲基-N4-[4-(1-甲基吲哚-3-基)嘧啶-2-基]苯-1,2,4-三胺(中间体100,10g,21.32mmol)在THF(95mL)和水(9.5mL)中的经搅拌溶液中添加3-氯丙酰氯(3.28g,25.59mmol)。将该混合物于室温下搅拌15分钟,然后添加NaOH(3.48g,85.28mmol)。将所得混合物加热到65℃并维持10小时。然后将该混合物冷却到室温,添加CH3OH(40mL)和水(70mL)。将所得混合物搅拌过夜。通过过滤收集所得固体,用水(25mL)清洗,于50℃下干燥12小时,获得作为固体形式的化合物A(7.0g,94%)。m/z ESI-MH+=500.26。
所述化合物通过核磁测定,1H-NMR测试谱图如图1所示,从图中显示发现,甲磺酸的H在高场出现,具体的位移3.12处显示有3个氢,表示所得产物为一甲磺酸盐。
1H-NMR检测仪器及条件:检测仪器:Bruker AVANCE III HD 500超导脉冲傅里叶变换核磁共振谱仪;检测条件:溶剂:MeOD-d4;温度:25℃;检测依据:JY/T 007-1996超导脉冲傅里叶变换核磁共振谱方法通则。
并依据PCT/GB2012/051783的实施例28A的方法制备得到化合物A甲磺酸盐的晶型B。
于70℃向化合物A,20g,36.63mmol在乙醇(120mL)和EtOAc(80mL)中的经搅拌溶液中添加在EtOAc(40mL)中的甲磺酸(3.59g,36.63mmol)溶液。将所得混合物搅拌1.5小时。通过过滤收集所得固体,于80℃下真空干燥过夜,获得采用固体形式(一盐的多晶型B)的标题盐(20.5g,94%)。
实施例2化合物A二甲磺酸盐的制备
将12g化合物A一甲磺酸盐加入125ml乙醇及25ml水中,在60℃下搅拌反应0.75h,溶清,滴加5.5g的甲磺酸,保温搅拌反应5h,再移至20℃下搅拌14h,析出浅黄色固体,42.5℃烘干3.5h,得到化合物A二甲磺酸盐。
所述化合物通过核磁测定,1H-NMR测试谱图如图2所示,从图中显示发现,在高场出现二甲磺酸的双甲基质子信号峰,显示存在6个氢,表示所得产物为双盐,即二甲磺酸盐。
1H-NMR检测仪器及条件:检测仪器:Bruker AVANCE III HD 500超导脉冲傅里叶变换核磁共振谱仪;检测条件:溶剂:MeOD-d4;温度:25℃;检测依据:JY/T 007-1996超导脉冲傅里叶变换核磁共振谱方法通则。
实施例3化合物A二甲磺酸盐晶型α的制备
将实施例2的10g化合物A二甲磺酸盐加入100ml乙腈中,室温下加入30ml的水,在60℃下搅拌反应0.5h,溶清;30℃下补加100乙腈,搅拌1.5h,再移至冰浴下再搅拌2h,析出浅黄色固体,50℃烘干5h,得到产物,为二甲磺酸盐α晶型。
该固体物质定义为二甲磺酸盐α晶型。
所得化合物A二甲磺酸盐晶型α的X射线衍射图谱如图4所示。具体的特征吸收峰如下表1,误差为±0.2°。
所得化合物A二甲磺酸盐晶型α的DSC图谱如图5所示,在262.1℃±2℃处有最大吸收峰。
实施例4化合物A二甲磺酸盐晶型α的制备
将实施例2的10g化合物A二甲磺酸盐加入90ml丙酮中,室温下加入20ml的水,在50℃下搅拌反应1h,溶清;25℃下补加90ml丙酮,搅拌1.5h,再移至冰浴下再搅拌1.5h,析出浅黄色固体,60℃烘干3h,得到产物,为二甲磺酸盐α晶型。
所述化合物通过核磁测定,1H-NMR显示在高场出现二甲磺酸的双甲基质子信号峰,显示存在6个氢,如图3所示,与实施例2有相同的结果,表示所得产物为双盐,即二甲磺酸盐。
1H-NMR检测仪器及条件:检测仪器:Bruker AVANCE III HD 500超导脉冲傅里叶变换核磁共振谱仪;检测条件:溶剂:MeOD-d4;温度:25℃;检测依据:JY/T 007-1996超导脉冲傅里叶变换核磁共振谱方法通则。
该固体物质定义为二甲磺酸盐α晶型。
所得化合物A二甲磺酸盐晶型α的X射线衍射图谱如图6所示。具体的特征吸收峰如下表1,误差为±0.2°。
所得化合物A二甲磺酸盐晶型α的DSC图谱如图7所示,在261.3℃±2℃处有最大吸收峰。
实施例3和4获得的所得化合物A二甲磺酸盐晶型α的具体的特征吸收峰如下表1,误差为±0.2°:
表1化合物A二甲磺酸盐晶型α的X射线衍射吸收峰数据
其中,No.=序号,Rel.Int.=Relative Intensity,Pos.[°2Th.]=Position[°2Theta],误差为±0.2°。Rel.Int.=Relative Intensity只是表示特征峰强度的大致强度情况,不应作为具体晶型的限定。
X射线衍射检测条件:
X射线衍射采用锐影(Empyrean)X射线衍射仪,在Cu靶Kα射线,电压:40.0kV,电流:40.0mA,发散狭缝1/32°,防散射狭缝1/16°,防散射狭缝7.5mm,步长0.02°,每步停留时间40s条件下测定2θ范围:3°-50°。
DSC检测条件:仪器NETZSCH DSC 200F3,气氛N2,20ml/min,范围30℃—280℃。
总结:根据图4和6的XRD谱图和特征峰数据,以2θ角表示在5.62±0.2°处有最强的特征吸收峰,可以明显代表本晶型。
进一步所述晶型还在6.53°、10.23°、13.51°、19.35°、20.01°、21.10°、22.76°、26.01°和27.36°处有特征峰,误差为±0.2°,相对吸收强度大于50%,可以充分代表本晶型。
具体的更为详细的,化合物A在X射线衍射图中以2θ角表示还在11.76°、12.61°、14.37°、15.74°、16.10°、16.72°、17.37°、17.91°、18.45°、20.38°、20.87°、22.30°、23.06°、23.50°、24.22°、26.56°、27.36°、27.85°、28.43°、和29.62°有特征峰,误差为±0.2°,相对吸收强度大于10%,可以更为详细的区分其他物质代表本晶型。
而其他弱吸收峰可能由于实验操作误差发生明显变化,对于本领域技术人员来说其他吸收峰均是表征本晶型时可以认为不必要的吸收峰。
根据图5和7的DSC谱图和特征峰数据,所述晶型的DSC在261.3℃±2—262.1℃±2℃处有最大吸收峰。
实施例5化合物A二甲磺酸盐四水合物及其晶型β的制备
将实施例2的15g化合物A二甲磺酸盐加入100四氢呋喃中,室温25℃下加入30ml水,加热至50℃搅拌0.5h,溶清;冰浴下再搅拌2h,析出固体,抽虑,得到黄色固体,80℃烘干5h,得到产物。
所得化合物A二甲磺酸盐的TG图谱如图8所示,该物质在80℃烘干至质量无变化后进行卡尔费休(KF法)水份测定和TG测定,KF法水份测定结果为9.89%,TG测定结果显示在室温至70℃的失重比例(9.87%)与KF法水份测定结果一致,且与四水化合物的理论含水量(9.47%)基本一致,说明其为四水化合物。
所以,所得化合物A二甲磺酸盐的应为如下结构式,定义为化合物A二甲磺酸盐四水合物:
所得化合物通过核磁测定,1H-NMR测试显示在高场出现二甲磺酸的双甲基质子信号峰,显示存在6个氢,同实施例2和4的结果,说明为二甲磺酸盐。
所得化合物A二甲磺酸盐四水合物的X射线衍射图谱如图9所示。具体的特征吸收峰如下表2,误差为±0.2°,说明为结晶性物质。
所得化合物A二甲磺酸盐四水化合物的DSC图谱如图10所示,在263.7℃±2℃处有最大吸收峰。
所述化合物A二甲磺酸盐四水合物以晶型形式存在,定义为四水合物晶型β。
实施例6化合物A二甲磺酸盐四水合物及其晶型β的制备
将实施例2的15g化合物A二甲磺酸盐加入150ml四氢呋喃中,室温30℃下加入40ml水,加热至55℃搅拌1h,溶清;冰浴下再搅拌1.5h,析出固体,抽虑,得到黄色固体,70℃烘干10h,得到产物,为二甲磺酸盐四水合物β晶型。
所得化合物A二甲磺酸盐的TG图谱如图11所示,该物质在80℃烘干至质量无变化后进行卡尔费休(KF法)水份测定和TG测定,KF法水份测定结果为9.0%,TG测定结果显示在室温至72℃的失重比例(9.00%)与KF法水份测定结果一致,且与四水化合物的理论含水量(9.47%)基本一致,说明其为四水化合物。
所得四水合物晶型β的X射线衍射图谱如图12所示。具体的特征吸收峰如下表2,误差为±0.2°。
所得化合物A二甲磺酸盐晶型β的DSC图谱如图13所示,在262.9℃±2℃处有最大吸收峰。
表2化合物A二甲磺酸盐四水合物晶型β的X射线衍射吸收峰数据
其中,No.=序号,Rel.Int.=Relative Intensity,Pos.[2Th.]=Position[2Theta],误差为±0.2°。Rel.Int.=Relative Intensity只是表示特征峰强度的大致强度情况,不应作为具体晶型的限定。
X射线衍射检测条件:
TG检测条件:仪器NETZSCH TG 209F3,气氛N2,20ml/min,范围33℃—400℃(10K/min)。
X射线衍射采用锐影(Empyrean)X射线衍射仪,在Cu靶Kα射线,电压:40.0kV,电流:40.0mA,发散狭缝1/32°,防散射狭缝1/16°,防散射狭缝7.5mm,步长0.02°,每步停留时间40s条件下测定2θ范围:3°-50°。
DSC检测条件:仪器NETZSCH DSC 200F3,气氛N2,20ml/min,范围30℃—280℃。
总结:根据图9和12的XRD谱图和特征峰数据,以2θ角表示在4.20°、6.67°、7.76°、14.09°、18.35°和22.68°处有特征峰,误差为±0.2°,相对吸收强度大于50%,可以充分代表本晶型。
具体的更为详细的,化合物A在X射线衍射图中以2θ角表示还在5.51°、6.44°、10.13°、12.52°、15.52°、15.99°、17.82°、19.53°、19.95°、20.86°、23.89°、25.28°、25.96°、27.25°和29.47°有特征峰,误差为±0.2°,相对吸收强度大于10%,可以更为详细的区分其他物质代表本晶型。
而其他弱吸收峰可能由于实验操作误差发生明显变化,对于本领域技术人员来说其他吸收峰均是表征本晶型时可以认为不必要的吸收峰。
根据图10和13的DSC图谱,所述晶型β的DSC图谱在262.9℃±2℃—263.7℃±2℃处有最大吸收峰。
实施例7水溶性实验
根据《中国药典》2010版第二部附录XIXC《原料药于药物制剂的稳定性试验指导原则》的指导,以实施例2、3、4、5和6得到的化合物A二甲磺酸盐及其晶型α和β,与PCT/GB2012/051783公开方法制备得到的一甲磺酸盐晶型B在同等条件下进行水溶性实验,结果如下:
备注:
极易溶解:1g溶质在不到1ml溶剂中溶解;
易容:1g溶质在1~10ml溶剂中溶解;
溶解:1g溶质在10~30ml溶剂中溶解;
略溶:1g溶质在30~100ml溶剂中溶解;
微溶:1g溶质在100~1000ml溶剂中溶解;
极微溶解:1g溶质在1000~10000ml溶剂中溶解;
几乎不溶或不溶指1g溶质在10000ml溶剂中不能完全溶解。
实施例8稳定性实验
参照中国药典2010年版附录XIXC原料药与药物制剂稳定性试验指导原则进行影响因素实验,其中,采用2010年版附录VD的HPLC法测定杂质变化情况,色谱条件为:Waters高效液相色谱仪,粒径1.8μm的C18柱(50mm×2.1mm),用乙腈和1%(v/v)甲酸水溶液作为流动相(流动相B),30min内梯度为10%B至55%B,254nm下检测,其中,单杂含量以除主峰外的最大杂质峰计算,总杂以主峰外的所有杂质峰计算。结果如下:
AZD9291二甲磺酸盐α晶型 单杂变化值% 总杂杂变化值%
光照 0.02 0.01
高温(60℃) -0.01 0.01
AZD9291二甲磺酸盐β晶型/
光照 0.03 0.05
高温(60℃) 0.02 0.03
PCT/GB2012/051783晶型B
光照 0.11 0.16
高温(60℃) 0.14 0.20
结论:本发明的化合物A二甲磺酸盐及其优势晶型α和四水合物晶型β相对于PCT/GB2012/051783所获得一甲磺酸盐优势晶型B明显具有更好的稳定性。
实施例9药物组合物的制备
实施例3化合物A二甲磺酸盐(晶型α,以化合碱计) 40g
糊精 84.00g
按常规方法,将上述物质混合均匀后,分1000等份分别装入普通明胶胶囊,得到1000颗胶囊。
实施例10药物组合物的制备
实施例5化合物A二甲磺酸盐(四水合物晶型β,以化合碱计) 40g
糊精 84.00g
按常规方法,将上述物质混合均匀后,分1000等份分别装入普通明胶胶囊,得到1000颗胶囊。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (11)

1.化合物A的二甲磺酸盐,其特征在于,化学结构式为下式(I),
2.根据权利要求1所述的化合物A的二甲磺酸盐,其特征在于,所述化合物A的二甲磺酸盐1H-NMR显示在高场出现二甲磺酸的双甲基质子信号峰,显示存在6个氢;优选所述化合物A的二甲磺酸盐的1H-NMR如图2或图3所示。
3.一种权利要求1—2任一权利要求所述的化合物A的二甲磺酸盐晶型α,其特征在于,所述晶型α在X射线衍射图中以2θ角表示在5.62±0.2°处有最强的特征吸收峰;优选所述晶型α在X射线衍射图中以2θ角表示,进一步还在6.53°、10.23°、13.51°、19.35°、20.01°、21.10°、22.76°、26.01°和27.36°处有特征峰,误差为±0.2°,相对吸收强度大于50%;更优选所述晶型α在X射线衍射图中以2θ角表示,进一步还在11.76°、12.61°、14.37°、15.74°、16.10°、16.72°、17.37°、17.91°、18.45°、20.38°、20.87°、22.30°、23.06°、23.50°、24.22°、26.56°、27.36°、27.85°、28.43°、和29.62°有特征峰,误差为±0.2°,相对吸收强度大于10%。
4.根据权利要求1—3任一权利要求所述的化合物A的二甲磺酸盐晶型α,其特征在于,所述化合物A二甲磺酸盐晶型α的X射线衍射图如图4或图6所示。
5.根据权利要求1—4任一权利要求所述的化合物A的二甲磺酸盐晶型α,其特征在于,所得化合物A二甲磺酸盐晶型α的DSC图谱所述晶型的DSC在261.3℃±2℃—262.1℃±2℃处有最大吸收峰;优选所得化合物A二甲磺酸盐晶型α的DSC图谱如图5或图7所示。
6.一种权利要求1—2任一权利要求所述的化合物A的二甲磺酸盐四水合物,其特征在于,其结构式如下式II所示,
7.根据权利要6所述化合物A的二甲磺酸盐四水合物,其特征在于,其TG检测图谱如图8或11所示。
8.一种权利要6或7所述化合物A的二甲磺酸盐四水合物的晶型β,其特征在于,所述晶型β在X射线衍射图中以2θ角表示在4.20°、6.67°、7.76°、14.09°、18.35°和22.68°,误差为±0.2°,相对吸收强度大于50%;优选所述晶型α在X射线衍射图中以2θ角表示,进一步还在5.51°、6.44°、10.13°、12.52°、15.52°、15.99°、17.82°、19.53°、19.95°、20.86°、23.89°、25.28°、25.96°、27.25°和29.47°处有特征峰,误差为±0.2°,相对吸收强度大于10%;更优选所述化合物A二甲磺酸盐晶型β的X射线衍射图如图9或图12所示。
9.根据权利要求6—8任一权利要求所述的化合物A的二甲磺酸盐晶型β,其特征在于,所得化合物A二甲磺酸盐晶型β的DSC图谱所述晶型的DSC在262.9℃±2℃—263.7℃±2℃处有最大吸收峰;优选所得化合物A二甲磺酸盐晶型β的DSC图谱如图10或图13所示。
10.权利要求1—9任一权利要求所述的化合物A二甲磺酸盐在制备预防和/或治疗哺乳动物疾病的药物的应用,其特征在于,所述哺乳动物包括人,所述疾病包括各种癌症,优选非小细胞肺癌,特别是突变的非小细胞肺癌。
11.一种药物组合物,其特征在于,包括治疗有效量的权利要求1—9任一权利要求所述的化合物A二甲磺酸盐和一种以上的药学可接受的赋形剂。
CN201610962661.1A 2015-11-05 2016-11-04 化合物a的二甲磺酸盐及其晶型和含有该盐的药物组合物 Pending CN106674202A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015107469452 2015-11-05
CN201510746945 2015-11-05

Publications (1)

Publication Number Publication Date
CN106674202A true CN106674202A (zh) 2017-05-17

Family

ID=58840430

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610962661.1A Pending CN106674202A (zh) 2015-11-05 2016-11-04 化合物a的二甲磺酸盐及其晶型和含有该盐的药物组合物

Country Status (1)

Country Link
CN (1) CN106674202A (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107176954A (zh) * 2017-06-02 2017-09-19 无锡双良生物科技有限公司 一种egfr抑制剂的药用盐及其晶型、制备方法和应用
WO2018214886A1 (zh) * 2017-05-24 2018-11-29 浙江同源康医药股份有限公司 一种氘代azd9291的晶型、制备方法及用途
CN110483486A (zh) * 2019-09-17 2019-11-22 鲁南制药集团股份有限公司 一种奥西替尼酮咯酸盐晶型及其制备方法
US10513509B2 (en) 2016-05-26 2019-12-24 Recurium Ip Holdings, Llc EGFR inhibitor compounds
CN111303124A (zh) * 2020-04-08 2020-06-19 北京赛思源生物医药技术有限公司 一种甲磺酸奥希替尼的新晶体
CN113801101A (zh) * 2020-06-15 2021-12-17 鲁南制药集团股份有限公司 Azd9291-2-酮戊二酸盐及其制备方法
CN113929664A (zh) * 2020-07-13 2022-01-14 鲁南制药集团股份有限公司 Azd9291-3,5-吡啶二羧酸盐及其制备方法
CN113929663A (zh) * 2020-06-29 2022-01-14 鲁南制药集团股份有限公司 Azd9291-2-吲哚甲酸盐及其制备方法
CN113968845A (zh) * 2020-07-24 2022-01-25 鲁南制药集团股份有限公司 Azd9291-没食子酸盐及其制备方法
CN116018141A (zh) * 2020-11-19 2023-04-25 上海翰森生物医药科技有限公司 一种含吲哚类衍生物的盐、晶型及其制备方法和应用

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098030B2 (en) 2016-05-26 2021-08-24 Recurium Ip Holdings, Llc EGFR inhibitor compounds
US10513509B2 (en) 2016-05-26 2019-12-24 Recurium Ip Holdings, Llc EGFR inhibitor compounds
WO2018214886A1 (zh) * 2017-05-24 2018-11-29 浙江同源康医药股份有限公司 一种氘代azd9291的晶型、制备方法及用途
US10882845B2 (en) 2017-05-24 2021-01-05 TYK Medicines Inc. Crystal form of deuterated AZD9291, preparation method therefor, and use thereof
CN107176954A (zh) * 2017-06-02 2017-09-19 无锡双良生物科技有限公司 一种egfr抑制剂的药用盐及其晶型、制备方法和应用
CN110483486A (zh) * 2019-09-17 2019-11-22 鲁南制药集团股份有限公司 一种奥西替尼酮咯酸盐晶型及其制备方法
CN110483486B (zh) * 2019-09-17 2024-01-26 鲁南制药集团股份有限公司 一种奥西替尼酮咯酸盐晶型及其制备方法
CN111303124A (zh) * 2020-04-08 2020-06-19 北京赛思源生物医药技术有限公司 一种甲磺酸奥希替尼的新晶体
CN113801101A (zh) * 2020-06-15 2021-12-17 鲁南制药集团股份有限公司 Azd9291-2-酮戊二酸盐及其制备方法
CN113929663A (zh) * 2020-06-29 2022-01-14 鲁南制药集团股份有限公司 Azd9291-2-吲哚甲酸盐及其制备方法
CN113929664A (zh) * 2020-07-13 2022-01-14 鲁南制药集团股份有限公司 Azd9291-3,5-吡啶二羧酸盐及其制备方法
CN113968845A (zh) * 2020-07-24 2022-01-25 鲁南制药集团股份有限公司 Azd9291-没食子酸盐及其制备方法
CN116018141A (zh) * 2020-11-19 2023-04-25 上海翰森生物医药科技有限公司 一种含吲哚类衍生物的盐、晶型及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN106674202A (zh) 化合物a的二甲磺酸盐及其晶型和含有该盐的药物组合物
CN106699736A (zh) 化合物A甲磺酸盐的晶型γ和含有该晶型的药物组合物
ES2643016T3 (es) Formas cristalinas de 5-cloro-N2-(2-isopropoxi-5-metil-4-piperidin-4-il-fenil)-N4-[2-(propan-2-sulfonil)-fenil]-pirimidin-2,4-diamina
ES2775614T3 (es) Sales de derivado de quinazolina y método de preparación de las mismas
CN112851663B (zh) 一种并杂环化合物及其用途
EP3705480B1 (en) Class of amino-substituted nitrogen-containing fused ring compounds, preparation method therefor, and use thereof
WO2021238827A1 (zh) Egfr抑制剂、其制备方法及用途
CA2788774A1 (en) Crystalline forms of sodium 4-{[9-chloro-7-(2-fluoro-6-methoxyphenyl)-5h-pyrimido[5,4-d][2]benzazepin-2-yl]amino}-2-methoxybenzoate
CN106957315B (zh) N-取代苯磺酰基-氮杂吲哚氧基苯甲酰胺类化合物及其制备药物的用途
WO2015096640A1 (zh) 含噻唑基雷帕霉素类衍生物及其应用
WO2017020869A1 (zh) 2-[(2r)-2-甲基-2-吡咯烷基]-1h-苯并咪唑-7-甲酰胺的晶型b及其制备方法和应用
RU2712169C2 (ru) Новые полиморфные формы икотиниба фосфата и их применения
CN114685532A (zh) 大环类化合物及其医药用途
EP4180434A1 (en) Pb2 inhibitor, and preparation method therefor and use thereof
CN116096372A (zh) 一种egfr抑制剂、其制备方法和在药学上的应用
KR20230008767A (ko) 거대고리형 티로신 키나제 억제제의 결정형 및 그의 제조 방법
BR112017028492B1 (pt) Citrato de (4-((3r,4r)-3-metoxitetra-hidro-piran-4- ilamino)piperidin-1-il) (5- metil-6-(((2r, 6s)-6-(p-tolil) tetra-hidro-2h-piran-2-il)metilamino)pirimidin-4-il) metanona, seu uso e seu método de preparação, e composição farmacêutica
ES2881960T3 (es) Inhibidores de proteina quinasa
CN110167917B (zh) 一种具有抗癌作用的化合物及其制备方法和应用
EP3941472A1 (en) <smallcaps/>? ? ?n? ? ? ? ?crystalline and amorphous forms of-(5-((4-ethylpiperazin-1-yl)methyl)pyridine-2-yl)-5-fluoro-4-(3-isopropyl-2-methyl-2 <ns1:i>h</ns1:i>?-indazol-5-yl)pyrimidin-2-amine and its salts, and preparation methods and therapeutic uses thereof
WO2017215521A1 (zh) Plx3397的盐酸盐晶型及其制备方法和用途
CN113861195B (zh) 一种多稠环egfr抑制剂及其制备方法和应用
TWI828489B (zh) 具有mat2a抑制活性的嘧啶-2(1h)-酮并二環類化合物及其用途
CN113980003B (zh) 一种2-((2-甲氧基苯基)磺酰基)异吲哚啉类化合物及其制备方法
WO2023041061A1 (zh) 一种稠合二环类衍生物的可药用盐、晶型及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170517