CN106643737B - 风力干扰环境下四旋翼飞行器姿态解算方法 - Google Patents

风力干扰环境下四旋翼飞行器姿态解算方法 Download PDF

Info

Publication number
CN106643737B
CN106643737B CN201710067656.9A CN201710067656A CN106643737B CN 106643737 B CN106643737 B CN 106643737B CN 201710067656 A CN201710067656 A CN 201710067656A CN 106643737 B CN106643737 B CN 106643737B
Authority
CN
China
Prior art keywords
coordinate system
attitude
equation
wind
quaternion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710067656.9A
Other languages
English (en)
Other versions
CN106643737A (zh
Inventor
王洪雁
裴炳南
郑佳
房云飞
季科
乔惠娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University
Original Assignee
Dalian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University filed Critical Dalian University
Priority to CN201710067656.9A priority Critical patent/CN106643737B/zh
Publication of CN106643737A publication Critical patent/CN106643737A/zh
Application granted granted Critical
Publication of CN106643737B publication Critical patent/CN106643737B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • G01C21/165Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation combined with non-inertial navigation instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

本发明属于无人机控制领域,针对风力会影响无人机姿态解算,进而干扰无人机飞行控制问题,基于扩展卡尔曼滤波理论,本文提出一种风力干扰环境下无人机姿态解算方法以增强姿态解算的稳健性从而提高无人机控制性能。所提方法通过四元数微分方程和陀螺仪噪声误差建立扩展卡尔曼滤波状态方程,并基于加速度计、磁强计、风力相关数据,得到四元数解算结果。基于实测数据测试结果表明,所提算法可以有效抑制姿态角发散,提高姿态解算精度,改善无人机控制性能。

Description

风力干扰环境下四旋翼飞行器姿态解算方法
技术领域
本发明涉及风力干扰环境下四旋翼飞行器姿态解算方法,属于无人机飞行控制领域。
背景技术
近年来,随着微电子技术,微机电技术,高聚合物新能源技术,先进控制技术的发展,四旋翼飞行器已成为人们研究的热点。无人飞行器的种类繁多,其中四旋翼无人飞行器是一个重要的研究方向。与其他无人飞行器相比,四旋翼飞行器可以实现垂直起降,定点悬停等功能,同时具有体积小,机构简单,成本低,机动性能好,有效载荷能力好,易于穿行狭小空间等优势,因此在环境监测、灾区营救、输电线路巡查和空中航拍等领域得到了广泛的应用。
飞行器的位姿估计是实现无人飞行器(UAV)自主能力飞行的基础。互补滤波最先在无人机姿态解算中得到很好的应用,然而姿态解算的精度还是达不到要求。在过去的几十年里,众多学者致力于研究卡尔曼滤波算法,如:扩展卡尔曼滤波(EKF),无迹卡尔曼滤波(UKF)和粒子滤波。并成功将EKF和UKF运用到无人机姿态解算中去,得到了更高精度的姿态角。万晓凤,康利平,余运俊等基于互补滤波算法进行姿态解算,并取得了较高精度的姿态角。李萧然,陈谋等人基于EKF进行无人机姿态解算,得到了很高精度的姿态角。朱岩,付巍等人基于UKF进行无人机姿态解算,得到了更高精度的姿态角。以上学者皆没有考虑风力估算,针对此问题,A Cho等人提出用一个单天线GPS和流速计对风进行估计。然而,该学者仅仅考虑了风力的估计,而没有深入研究风力对无人机控制的影响。在实际环境下,飞行器飞行时易受风力影响,从而导致飞行器姿态解算误差较大,进而影响到对无人机的有效控制。针对此问题,本发明提出一种风力干扰环境下无人机姿态解算算法。本算法将风力作为观测量,基于四元数微分方程和陀螺仪噪声误差建立卡尔曼滤波状态方程,并利用来自加速度计,磁力计,GPS,空速计等传感器补偿陀螺仪引起的误差,最后利用加速度计,磁力计和风力相关数据进行四元数解算。基于实测数据的测试表明,所提算法可以有效抑制姿态角发散,提高姿态解算精度,改善无人机控制性能。
发明内容
针对风力会影响无人机姿态解算,进而干扰无人机飞行控制问题,基于扩展卡尔曼滤波理论,本发明提出一种风力干扰环境下无人机姿态解算方法以增强姿态解算的稳健性从而提高无人机控制性能。所提方法通过四元数微分方程和陀螺仪噪声误差建立扩展卡尔曼滤波状态方程,并基于加速度计、磁强计、风力相关数据,得到四元数解算结果。基于实测数据测试结果表明,所提算法可以有效抑制姿态角发散,提高姿态解算精度,改善无人机控制性能。实现本发明的基本思路是,首先建立无人机姿态模型,建立扩展卡尔曼滤波状态方程和观测方程,引入风力作为观测量,对状态方程进行线性化,求解最优姿态角。
本发明的具体步骤包含如下:
第一步:坐标系定义以及姿态矩阵
为了描述飞行器的俯仰、偏航、横滚的姿态信息,需要建立相应的坐标系。本专利采用两个不同的三维坐标系,分别为导航坐标系n,定义为东北天坐标系;载体坐标系b,其中xb沿机体横轴指向右,yb沿机体纵轴指向前,zb沿机体竖直指向上,满足右手定则,原点皆为无人机重心。姿态解算在导航坐标系中完成,因而须将无人机上传感器测得的姿态信息经坐标变换矩阵
Figure BDA0001221388700000021
映射至坐标系n。
从导航坐标系到载体坐标系的姿态矩阵
Figure BDA0001221388700000022
可表示为:
Figure BDA0001221388700000023
其方向余弦形式可表述如下:
Figure BDA0001221388700000024
式中,ψ,θ,φ分别表示无人机的航向角,俯仰角,翻滚角。比较姿态矩阵的四元数形式(1)及欧拉角形式(2),可知:
Figure BDA0001221388700000025
至此,可得姿态角的四元数表示形式,基于此形式可对风力干扰条件下基于卡尔曼滤波的姿态计算问题进行深入分析。
第二步:卡尔曼滤波定姿方程,
1.卡尔曼滤波姿态解算的状态方程,
卡尔曼滤波姿态解算的预测方程表示为:
Xk=Φk,k-1Xk-1+Wk-1 (4)
其中Φk,k-1为tk-1时刻到tk时刻的一步转移矩阵,Wk为***噪声序列。
***状态方程可表示为:
Figure BDA0001221388700000031
由于状态估计量为四元数,则状态方程用四元数微分方程可进一步表示为:
Figure BDA0001221388700000032
其中,ωxyz为安装在四旋翼飞行器上陀螺仪的角速度分量。
由于***状态方程是连续的,不易采用数字化方法对其进行求解。针对此问题,目前求解四元数微分方程主要有两种方法:一种是龙格库塔法,另一种是毕卡逼近法。本专利采用四阶毕卡逼近法将其离散化,取q(t)=[q0(t)q1(t)q2(t)q3(t)],将(6)式离散化可得:
q(k+1)=Φk,k-1q(k) (7)
其中:
Figure BDA0001221388700000033
Figure BDA0001221388700000034
2.卡尔曼滤波姿态解算的观测方程
风力干扰环境下,观测量可由以下三种测量值构成:加速度计、磁力计和风力。其观测方程为:
Z(t)=HX(t)+V(t) (8)
其中V(t)是白噪声,下面对测量值进行深入分析。
首先针对观测量加速度计和磁强计进行分析:
参考坐标系下重力向量定义为G=[0 0 1]T,地磁场向量h=[hx hy hz]T。其矩阵形式可分别表示为:
Figure BDA0001221388700000041
Figure BDA0001221388700000042
其中,g,m分别是载体坐标系下加速度计及磁力计的量测值。由式(9)及(10)可得:
Figure BDA0001221388700000043
Figure BDA0001221388700000044
由以上所述,可得加速度计及磁力计量测值的四元数表示形式,下面针对风力进行深入分析。
第三步:风力观测方程,
1.气流坐标系
空气流动用幅值为VT的空速矢量VT表示,其方向由相对机体的两个角来定义,即攻角α和侧滑角β,分别定义为:
Figure BDA0001221388700000045
机体坐标系(b)到气流坐标系(w)的旋转矩阵
Figure BDA0001221388700000046
可表述如下:
由于
Figure BDA0001221388700000047
则:
Figure BDA0001221388700000048
其中A为矢量,由上式可得:
Figure BDA0001221388700000049
其中,
Figure BDA0001221388700000051
基于上述分析,空速矢量可表示为:
Figure BDA0001221388700000052
在机体坐标系中,空速矢量可改写为:
Figure BDA0001221388700000053
至此,气流坐标系已建立,下面将在此坐标系下对风力干扰进行分析。
2.风力干扰
飞机惯性速度v为空速VT及风速W之和,可表示为:
v=VT+W (16)
导航坐标系下,扰动风表示为Wn,机体坐标系飞机速度可表示为:
Figure BDA0001221388700000054
上式可改写为:
Figure BDA0001221388700000055
导航坐标系下,式(18)的矩阵形式可表示为:
Figure BDA0001221388700000056
由***观测过程可知,四元数为关于加速度计磁力计的量测值及风力值的非线性函数。为求解四元数,须基于雅克比矩阵将其线性化。基于式(12)及(14),雅克比矩阵H可表示为:
Figure BDA0001221388700000057
至此,得到了风力观测方程及将其线性化的雅克比矩阵。基于此,即可利用扩展卡尔曼滤波对四元数进行解算。
第四步:基于扩展卡尔曼滤波流程的四元数姿态解算
基于以上讨论可知,基于风力的无人机姿态解算可利用扩展卡尔曼滤波实现。在一个滤波周期内,卡尔曼滤波具有两个明显的更新过程:时间更新过程和量测更新过程。因此,基于以上所述,基于风力的时间更新过程及量测更新过程可表述如下:
1.时间更新过程
状态一步预测:
Figure BDA0001221388700000061
均方误差的一步预测:
Figure BDA0001221388700000062
2.量测更新过程
卡尔曼滤波增益:
Figure BDA0001221388700000063
协方差阵更新:
Pk=(I-KkHk)Pk/k-1 (24)
状态更新:
Figure BDA0001221388700000064
本发明有益效果:
本发明与现有技术相比具有以下优点:
本发明基于扩展卡尔曼滤波,将风力作为观测变量,在风力干扰下可以有效抑制姿态角发散,提高姿态解算精度,改善无人机控制性能。针对风力会影响无人机姿态解算,进而干扰无人机飞行控制问题,基于扩展卡尔曼滤波理论,本发明提出一种风力干扰环境下无人机姿态解算方法以增强姿态解算的稳健性从而提高无人机控制性能。所提方法通过四元数微分方程和陀螺仪噪声误差建立扩展卡尔曼滤波状态方程,并基于加速度计、磁强计、风力相关数据,得到四元数解算结果。基于实测数据测试结果表明,所提算法可以有效抑制姿态角发散,提高姿态解算精度,改善无人机控制性能
附图说明
图1为本发明实现的流程图;
图2为本发明分别在无风,有风时考虑风和有风时不考虑风的翻滚角偏差对比图;
图3为本发明分别在无风,有风时考虑风和有风时不考虑风的俯仰角偏差对比图;
图4位本发明分别在无风,有风时考虑风和有风时不考虑风的偏航角偏差对比图。
具体实施方式
本发明的效果可通过以下仿真进一步说明:
下面结合附图1对本发明的实现步骤做进一步详细描述:
第一步:坐标系定义以及姿态矩阵
为了描述飞行器的俯仰、偏航、横滚的姿态信息,需要建立相应的坐标系。本专利采用两个不同的三维坐标系,分别为导航坐标系n,定义为东北天坐标系;载体坐标系b,其中xb沿机体横轴指向右,yb沿机体纵轴指向前,zb沿机体竖直指向上,满足右手定则,原点皆为无人机重心。姿态解算在导航坐标系中完成,因而须将无人机上传感器测得的姿态信息经坐标变换矩阵
Figure BDA0001221388700000071
映射至坐标系n。
从导航坐标系到载体坐标系的姿态矩阵
Figure BDA0001221388700000072
可表示为:
Figure BDA0001221388700000073
其方向余弦形式可表述如下:
Figure BDA0001221388700000074
式中,ψ,θ,φ分别表示无人机的航向角,俯仰角,翻滚角。比较姿态矩阵的四元数形式(1)及欧拉角形式(2),可知:
Figure BDA0001221388700000075
至此,可得姿态角的四元数表示形式,基于此形式可对风力干扰条件下基于卡尔曼滤波的姿态计算问题进行深入分析。
第二步:卡尔曼滤波定姿方程
1.卡尔曼滤波姿态解算的状态方程
卡尔曼滤波姿态解算的预测方程表示为:
Xk=Φk,k-1Xk-1+Wk-1 (4)
其中Φk,k-1为tk-1时刻到tk时刻的一步转移矩阵,Wk为***噪声序列。
***状态方程可表示为:
Figure BDA0001221388700000081
由于状态估计量为四元数,则状态方程用四元数微分方程可进一步表示为:
Figure BDA0001221388700000082
其中,ωxyz为安装在四旋翼飞行器上陀螺仪的角速度分量。
由于***状态方程是连续的,不易采用数字化方法对其进行求解。针对此问题,目前求解四元数微分方程主要有两种方法:一种是龙格库塔法,另一种是毕卡逼近法。本专利采用四阶毕卡逼近法将其离散化,取q(t)=[q0(t)q1(t)q2(t)q3(t)],将(6)式离散化可得:
q(k+1)=Φk,k-1q(k) (7)
其中:
Figure BDA0001221388700000083
Figure BDA0001221388700000084
2.卡尔曼滤波姿态解算的观测方程
风力干扰环境下,观测量可由以下三种测量值构成:加速度计、磁力计和风力。其观测方程为:
Z(t)=HX(t)+V(t) (8)
其中V(t)是白噪声,下面对测量值进行深入分析。
首先针对观测量加速度计和磁强计进行分析:
参考坐标系下重力向量定义为G=[0 0 1]T,地磁场向量h=[hx hy hz]T。其矩阵形式可分别表示为:
Figure BDA0001221388700000091
Figure BDA0001221388700000092
其中,g,m分别是载体坐标系下加速度计及磁力计的量测值。由式(9)及(10)可得:
Figure BDA0001221388700000093
Figure BDA0001221388700000094
由以上所述,可得加速度计及磁力计量测值的四元数表示形式,下面针对风力进行深入分析。
第三步:风力观测方程
1.气流坐标系
空气流动用幅值为VT的空速矢量VT表示,其方向由相对机体的两个角来定义,即攻角α和侧滑角β,分别定义为:
Figure BDA0001221388700000095
机体坐标系(b)到气流坐标系(w)的旋转矩阵
Figure BDA0001221388700000096
可表述如下:
由于
Figure BDA0001221388700000097
则:
Figure BDA0001221388700000098
其中A为矢量,由上式可得:
Figure BDA0001221388700000099
其中,
Figure BDA0001221388700000101
基于上述分析,空速矢量可表示为:
Figure BDA0001221388700000102
在机体坐标系中,空速矢量可改写为:
Figure BDA0001221388700000103
至此,气流坐标系已建立,下面将在此坐标系下对风力干扰进行分析。
2.风力干扰
飞机惯性速度v为空速VT及风速W之和,可表示为:
v=VT+W (16)
导航坐标系下,扰动风表示为Wn,机体坐标系飞机速度可表示为:
Figure BDA0001221388700000104
上式可改写为:
Figure BDA0001221388700000105
导航坐标系下,式(18)的矩阵形式可表示为:
Figure BDA0001221388700000106
由***观测过程可知,四元数为关于加速度计磁力计的量测值及风力值的非线性函数。为求解四元数,须基于雅克比矩阵将其线性化。基于式(12)及(13),雅克比矩阵H可表示为:
Figure BDA0001221388700000107
至此,得到了风力观测方程及将其线性化的雅克比矩阵。基于此,即可利用扩展卡尔曼滤波对四元数进行解算。
第四步:基于扩展卡尔曼滤波流程的四元数姿态解算
基于以上讨论可知,基于风力的无人机姿态解算可利用扩展卡尔曼滤波实现。在一个滤波周期内,卡尔曼滤波具有两个明显的更新过程:时间更新过程和量测更新过程。因此,基于以上所述,基于风力的时间更新过程及量测更新过程可表述如下:
1.时间更新过程
状态一步预测:
Figure BDA0001221388700000111
均方误差的一步预测:
Figure BDA0001221388700000112
2.量测更新过程
卡尔曼滤波增益:
Figure BDA0001221388700000113
协方差阵更新:
Pk=(I-KkHk)Pk/k-1 (24)
状态更新:
Figure BDA0001221388700000114
卡尔曼滤波是一种递推算法,该算法充分利用陀螺输出的角速率信号,磁强计输出的地磁信号和风力数据,得到状态最优估计,且状态每一次更新估计都是由前一次估计和新的输入数据计算得到,因此只需存储前一次估计,即可以实现实时处理。
本发明的效果可通过以下仿真进一步说明:
仿真条件
本节基于实测数据测试所提出方法的有效性,所得数据由如下传感器输出:陀螺仪,磁强计,GPS和空速管。仿真数据基于以下场景得到:采样频率是100HZ,采样个数是250,取大连为实验地,垂直分量为3.12×10-5,水平分量是3.26×10-5,h=10-5×[0.256 3.263.12]T。卡尔曼滤波初值为q0=[1 0 0 0]T,其对应的均方误差阵为:p0=diag[0.28460.2846 0.2846 0.2846]T。其中α=0,β=0,VT=1,u=0,v=1,w=0。
仿真内容
从图2中可以看出,无风时翻滚角测量值更接近真实值,和有风时相比收敛的更快,有风时考虑风测得的翻滚角与有风时不考虑风测得的翻滚角更准确,同时可以看出有风时考虑风测得的翻滚角波动更大。从图3中可以看出,无风时俯仰角测量值更接近真实值,有风时考虑风测得的俯仰角与有风时不考虑风测得的俯仰角更准确。从图4中可以看出,无风时偏航角测量值更接近真实值,有风时考虑风测得的偏航角与有风时不考虑风测得的偏航角更准确,同时可以看出有风时考虑风测得的偏航角波动更大。综上所述,风力的存在会显著影响姿态解算解结果,进而影响无人机的有效控制,因此将风作为观测量,通过扩展卡尔曼滤波算法进行姿态解算,从而提高无人机姿态解算精度,进而改善无人机控制性能。
结论
针对风力降低无人机姿态解算精度,进而影响无人机飞行有效控制的问题,基于扩展卡尔曼滤波理论,本专利提出一种风力干扰环境下无人机姿态解算方法以增强姿态解算的稳健性,进而提高无人机控制性能。所提方法通过四元数微分方程和陀螺仪噪声误差建立扩展卡尔曼滤波状态方程,并基于加速度计、磁强计、风力相关数据,得到四元数解算结果。基于实测数据的仿真结果表明:与无风场景下的姿态解算方法及有风场景下不考虑风力的姿态解算方法相比,所提方法可有效提高姿态解算的稳健性,从而改善无人机控制性能。

Claims (2)

1.风力干扰环境下四旋翼飞行器姿态解算方法,其特征在于:包括如下步骤:
第一步:坐标系定义以及姿态矩阵,
为了描述飞行器的俯仰、偏航、横滚的姿态信息,需要建立相应的坐标系;本专利采用两个不同的三维坐标系,分别为导航坐标系n,定义为东北天坐标系;载体坐标系b,其中xb沿机体横轴指向右,yb沿机体纵轴指向前,zb沿机体竖直指向上,满足右手定则,原点皆为无人机重心;姿态解算在导航坐标系中完成,因而须将无人机上传感器测得的姿态信息经坐标变换矩阵
Figure FDA0001221388690000014
映射至坐标系n;
从导航坐标系到载体坐标系的姿态矩阵
Figure FDA0001221388690000015
可表示为:
Figure FDA0001221388690000011
其方向余弦形式可表述如下:
Figure FDA0001221388690000012
式中,ψ,θ,φ分别表示无人机的航向角,俯仰角,翻滚角;比较姿态矩阵的四元数形式(1)及欧拉角形式(2),可知:
Figure FDA0001221388690000013
至此,可得姿态角的四元数表示形式,基于此形式可对风力干扰条件下基于卡尔曼滤波的姿态计算问题进行深入分析;
第二步:卡尔曼滤波定姿方程
①卡尔曼滤波姿态解算的状态方程
卡尔曼滤波姿态解算的预测方程表示为:
Xk=Φk,k-1Xk-1+Wk-1 (4)
其中Φk,k-1为tk-1时刻到tk时刻的一步转移矩阵,Wk为***噪声序列;
***状态方程可表示为:
Figure FDA0001221388690000021
由于状态估计量为四元数,则状态方程用四元数微分方程可进一步表示为:
Figure FDA0001221388690000022
其中,ωxyz为安装在四旋翼飞行器上陀螺仪的角速度分量;
由于***状态方程是连续的,不易采用数字化方法对其进行求解;针对此问题,目前求解四元数微分方程主要有两种方法:一种是龙格库塔法,另一种是毕卡逼近法;本专利采用四阶毕卡逼近法将其离散化,取q(t)=[q0(t) q1(t) q2(t) q3(t)],将(6)式离散化可得:
q(k+1)=Φk,k-1q(k) (7)
其中:
Figure FDA0001221388690000023
Figure FDA0001221388690000024
②卡尔曼滤波姿态解算的观测方程
风力干扰环境下,观测量可由以下三种测量值构成:加速度计、磁力计和风力;其观测方程为:
Z(t)=HX(t)+V(t) (8)
其中V(t)是白噪声,下面对测量值进行深入分析;
首先针对观测量加速度计和磁强计进行分析:
参考坐标系下重力向量定义为G=[0 0 1]T,地磁场向量h=[hx hy hz]T;其矩阵形式可分别表示为:
Figure FDA0001221388690000031
Figure FDA0001221388690000032
其中,g,m分别是载体坐标系下加速度计及磁力计的量测值;由式(9)及(10)可得:
Figure FDA0001221388690000033
Figure FDA0001221388690000034
由以上所述,可得加速度计及磁力计量测值的四元数表示形式,下面针对风力进行深入分析;
第三步:风力观测方程
①气流坐标系
空气流动用幅值为VT的空速矢量VT表示,其方向由相对机体的两个角来定义,即攻角α和侧滑角β,分别定义为:
Figure FDA0001221388690000035
机体坐标系(b)到气流坐标系(w)的旋转矩阵
Figure FDA00012213886900000310
可表述如下:
由于
Figure FDA0001221388690000036
则:
Figure FDA0001221388690000037
其中A为矢量,由上式可得:
Figure FDA0001221388690000038
其中,
Figure FDA0001221388690000039
基于上述分析,空速矢量可表示为:
Figure FDA0001221388690000041
在机体坐标系中,空速矢量可改写为:
Figure FDA0001221388690000042
至此,气流坐标系已建立,下面将在此坐标系下对风力干扰进行分析;
②风力干扰
飞机惯性速度v为空速VT及风速W之和,可表示为:
v=VT+W (16)
导航坐标系下,扰动风表示为Wn,机体坐标系飞机速度可表示为:
Figure FDA0001221388690000043
上式可改写为:
Figure FDA0001221388690000044
导航坐标系下,式(18)的矩阵形式可表示为:
Figure FDA0001221388690000045
由***观测过程可知,四元数为关于加速度计磁力计的量测值及风力值的非线性函数;为求解四元数,须基于雅克比矩阵将其线性化;基于式(12)及(13),雅克比矩阵H可表示为:
Figure FDA0001221388690000046
至此,得到了风力观测方程及将其线性化的雅克比矩阵;基于此,即可利用扩展卡尔曼滤波对四元数进行解算;
第四步:基于扩展卡尔曼滤波流程的四元数姿态解算。
2.根据权利要求1所述的风力干扰环境下四旋翼飞行器姿态解算方法,其特征在于:包括如下步骤:
第一步:时间更新过程,
状态一步预测:
Figure FDA0001221388690000051
均方误差的一步预测:
Figure FDA0001221388690000052
第二步:量测更新过程,
卡尔曼滤波增益:
Figure FDA0001221388690000053
协方差阵更新:
Pk=(I-KkHk)Pk/k-1 (24)
状态更新:
Figure FDA0001221388690000054
CN201710067656.9A 2017-02-07 2017-02-07 风力干扰环境下四旋翼飞行器姿态解算方法 Active CN106643737B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710067656.9A CN106643737B (zh) 2017-02-07 2017-02-07 风力干扰环境下四旋翼飞行器姿态解算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710067656.9A CN106643737B (zh) 2017-02-07 2017-02-07 风力干扰环境下四旋翼飞行器姿态解算方法

Publications (2)

Publication Number Publication Date
CN106643737A CN106643737A (zh) 2017-05-10
CN106643737B true CN106643737B (zh) 2020-04-10

Family

ID=58845385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710067656.9A Active CN106643737B (zh) 2017-02-07 2017-02-07 风力干扰环境下四旋翼飞行器姿态解算方法

Country Status (1)

Country Link
CN (1) CN106643737B (zh)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107440627A (zh) * 2017-07-19 2017-12-08 桂林电子科技大学 一种系留式无人机高空墙壁清洁作业***及其工作方法
CN107992072A (zh) * 2017-12-06 2018-05-04 陕西土豆数据科技有限公司 一种多旋翼飞行器的姿态控制误差获取方法
CN108225378B (zh) * 2018-01-25 2021-07-02 土豆数据科技集团有限公司 一种罗盘与加速度计安装误差角的计算方法
CN108645404B (zh) * 2018-03-30 2021-05-11 西安建筑科技大学 一种小型多旋翼无人机姿态解算方法
CN108534772B (zh) * 2018-06-24 2021-07-02 西宁泰里霍利智能科技有限公司 姿态角获取方法及装置
CN108981694A (zh) * 2018-07-18 2018-12-11 兰州交通大学 基于小波神经网络与ekf的姿态解算方法及***
CN109032161B (zh) * 2018-08-02 2021-05-07 哈尔滨工业大学(深圳) 基于四阶龙格库塔方法的小惯量航天器姿态抖动确定方法
CN108827313A (zh) * 2018-08-10 2018-11-16 哈尔滨工业大学 基于扩展卡尔曼滤波器的多模式旋翼飞行器姿态估计方法
CN109506646A (zh) * 2018-11-20 2019-03-22 石家庄铁道大学 一种双控制器的无人机姿态解算方法及***
CN110081878B (zh) * 2019-05-17 2023-01-24 东北大学 一种多旋翼无人机的姿态及位置确定方法
CN110134134B (zh) * 2019-05-24 2022-03-15 南京信息工程大学 一种无人机悬停状态下的测风方法
CN110095118A (zh) * 2019-06-03 2019-08-06 北京理工大学 一种车身姿态角的实时测量方法及***
CN110598370B (zh) * 2019-10-18 2023-04-14 太原理工大学 基于sip和ekf融合的多旋翼无人机鲁棒姿态估计
CN110794857B (zh) * 2019-10-30 2021-03-30 南京航空航天大学 考虑外部风干扰的固定翼无人机鲁棒离散分数阶控制方法
CN110941285A (zh) * 2019-11-29 2020-03-31 云南大学 一种基于双ip核的无人机飞行控制***
CN112630813B (zh) * 2020-11-24 2024-05-03 中国人民解放军国防科技大学 基于捷联惯导和北斗卫星导航***的无人机姿态测量方法
CN112577706B (zh) * 2020-12-25 2022-05-27 中国航天空气动力技术研究院 一种内嵌式风洞自由飞试验模型位姿获取方法
CN112731957B (zh) * 2021-04-06 2021-09-07 北京三快在线科技有限公司 无人机的控制方法、装置、计算机可读存储介质及无人机
CN114877858B (zh) * 2022-05-06 2023-04-14 西安电子科技大学 一种高动态和磁干扰环境下的姿态估计算法
CN114778887B (zh) * 2022-05-09 2024-05-14 中国人民解放军93213部队 一种基于改进三角矢量模型的无人机测风方法和装置
CN115167495A (zh) * 2022-08-10 2022-10-11 青岛理工大学 一种基于32单片机的双闭环串级pid四旋翼飞行器
CN115586793B (zh) * 2022-10-10 2023-05-26 西北工业大学 一种高海况条件下全方位转弯机体指向控制方法
CN116817896B (zh) * 2023-04-03 2024-04-16 盐城数智科技有限公司 一种基于扩展卡尔曼滤波的姿态解算方法
CN117251942B (zh) * 2023-11-17 2024-03-08 成都凯天电子股份有限公司 一种估算飞行器空速、攻角和侧滑角的方法及***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335128A (zh) * 2012-03-30 2015-02-04 鹦鹉股份有限公司 用于用侧风和加速度计偏差估计和补偿来控制多旋翼的旋翼无人机的方法
CN104765375A (zh) * 2015-03-11 2015-07-08 苏州工业职业技术学院 一种飞行控制器及其辅助飞行控制方法
CN105151290A (zh) * 2015-10-22 2015-12-16 朱丽芬 一种高空姿态稳定四旋翼无人机

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104335128A (zh) * 2012-03-30 2015-02-04 鹦鹉股份有限公司 用于用侧风和加速度计偏差估计和补偿来控制多旋翼的旋翼无人机的方法
CN104765375A (zh) * 2015-03-11 2015-07-08 苏州工业职业技术学院 一种飞行控制器及其辅助飞行控制方法
CN105151290A (zh) * 2015-10-22 2015-12-16 朱丽芬 一种高空姿态稳定四旋翼无人机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
四旋翼飞行器在风场扰动下的建模与控制;何勇灵 等;《中国惯性技术学报》;20131031;第21卷(第5期);第624-630页 *

Also Published As

Publication number Publication date
CN106643737A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106643737B (zh) 风力干扰环境下四旋翼飞行器姿态解算方法
CN111351482B (zh) 基于误差状态卡尔曼滤波的多旋翼飞行器组合导航方法
CN102692225B (zh) 一种用于低成本小型无人机的姿态航向参考***
WO2020220729A1 (zh) 基于角加速度计/陀螺/加速度计的惯性导航解算方法
CN106052685B (zh) 一种两级分离融合的姿态和航向估计方法
WO2018028711A1 (zh) 一种对无人机的噪声协方差进行估算的方法
CN111982100B (zh) 一种无人机的航向角解算算法
WO2018214227A1 (zh) 一种无人车实时姿态测量方法
CN108318038A (zh) 一种四元数高斯粒子滤波移动机器人姿态解算方法
CN103712598B (zh) 一种小型无人机姿态确定方法
Wenz et al. Moving horizon estimation of air data parameters for UAVs
CN106885918B (zh) 一种面向多旋翼飞行器的多信息融合实时风速估计方法
CN107101636B (zh) 一种使用卡尔曼滤波器辨识多旋翼动力学模型参数的方法
Wenz et al. Estimation of wind velocities and aerodynamic coefficients for UAVs using standard autopilot sensors and a moving horizon estimator
CN113670314B (zh) 基于pi自适应两级卡尔曼滤波的无人机姿态估计方法
CN111189442A (zh) 基于cepf的无人机多源导航信息状态预测方法
CN112683274A (zh) 一种基于无迹卡尔曼滤波的无人机组合导航方法和***
Brossard et al. Tightly coupled navigation and wind estimation for mini UAVs
Allibert et al. Velocity aided attitude estimation for aerial robotic vehicles using latent rotation scaling
CN109541963B (zh) 一种基于侧滑角信息的无人机测风建模方法
CN108871319B (zh) 一种基于地球重力场与地磁场序贯修正的姿态解算方法
CN107063248A (zh) 基于旋翼转速的动力学模型辅助惯导的导航方法
Emran et al. A cascaded approach for quadrotor's attitude estimation
Crocoll et al. Quadrotor inertial navigation aided by a vehicle dynamics model with in-flight parameter estimation
Michailidis et al. A software in the loop (SIL) Kalman and complementary filter implementation on x-plane for UAVs

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant