CN106636909A - 一种耐腐蚀软磁铁素体不锈钢 - Google Patents

一种耐腐蚀软磁铁素体不锈钢 Download PDF

Info

Publication number
CN106636909A
CN106636909A CN201710023235.6A CN201710023235A CN106636909A CN 106636909 A CN106636909 A CN 106636909A CN 201710023235 A CN201710023235 A CN 201710023235A CN 106636909 A CN106636909 A CN 106636909A
Authority
CN
China
Prior art keywords
steel
stainless steel
corrosion
ferritic stainless
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710023235.6A
Other languages
English (en)
Inventor
杨森
魏园园
冯文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710023235.6A priority Critical patent/CN106636909A/zh
Publication of CN106636909A publication Critical patent/CN106636909A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种用于铁磁性部件的耐腐蚀软磁铁素体不锈钢,以质量分数计,该铁素体不锈钢的化学成分包含:C+N≤0.015%、S:0.01~0.05%、Cr:16~22%、Ti≤0.5%、Mo:1.0~2.5%、Si:0.5~1.5%、Al:0.5~1.5%、Cu:0.5~1.0%、Re≤1.0%,余量为Fe和不可避免的杂质。本发明通过调整合金中铬、硅和铝的含量以及添加适量的铜和稀土元素,采用合理的制备工艺,设计出一种用于铁磁性部件的耐腐蚀软磁铁素体不锈钢。软磁性能指标矫顽力≤105A/m,剩磁≤48A/m,饱和磁化强度达到23600A/m左右。

Description

一种耐腐蚀软磁铁素体不锈钢
技术领域
本发明涉及铁素体不锈钢,具体地说,本发明涉及一种用于铁磁性部件的耐腐蚀软磁铁素体不锈钢。
背景技术
软磁材料是指能够迅速响应外磁场变化,且能低损耗地获得高磁感应强度的材料。它既容易受外加磁场的磁化,又容易退磁。软磁材料由于具有矫顽力较低、既容易受外加磁场磁化又易退磁的特点,被广泛用在电机工程、无线电、通讯、计算机、家用电器和高新技术等领域。现在所应用的软磁材料主要有:电工纯铁、硅钢、坡莫合金、铬铁磁性不锈钢、铁氧体软磁材料和纳米晶软磁材料等。其中,铬铁磁性不锈钢中主要代表有铁素体不锈钢,一般铁素体不锈钢会在铁、铬的基础上再添加钼、钛、铌、硅、铝、钨、钒等元素,其化学成分中主要是铁素体形成元素,使用状态下基体组织为铁素体。铁素体不锈钢具有足够的软磁性能、优良的耐蚀性能和力学性能、以及生产工艺简单和成本低等优点,因此其作为软磁材料的应用十分广泛。
软磁铁素体不锈钢对于许多机电装置的使用很关键,必须为这些装置提供最佳的磁性,从而保证正确的输出信号和响应时间。汽车中这类装置的实例包括燃料喷射器、燃油泵和防抱死制动***的电磁铁;其他重要的用途还有工业电磁铁和控制腐蚀性液体流量的泵;各种类型的铁芯、电枢和继电器,调节腐蚀性化学品流量的阀门。软磁铁素体不锈钢在我国有很广阔的发展前景,我国是一个家电生产大国,而铁素体钢是家电工业的使用大户,如洗衣机的滚筒只能使用铁素体钢;另外,随着国内汽车工业的发展,汽车排气***也是使用铁素体钢的重要领域。
虽然铁素体不锈钢作为软磁材料的使用已经非常普遍,但是其磁性能较使用更加普遍的电工纯铁和铁氧体等软磁材料来说还有不足之处,如铁氧体软磁材料的电阻率较金属软磁材料大很多,涡流损耗小;坡莫合金(铁镍合金)具有较小的矫顽力和剩磁。因此,需要进一步提高铁素体不锈钢的软磁性能,包括提高饱和磁感应强度、降低矫顽力和剩磁等。
常用软磁材料如纯铁和硅钢在加工成元件后为保证其耐蚀性须加以电镀,这既增加了生产成本又污染环境;而且在某些特殊环境下使用时,既要求软磁材料具有良好的磁性能和电性能,又要求优良的耐腐蚀性。因此,研究开发耐腐蚀的软磁铁素体不锈钢非常必要。
近年来已开发了一系列具有优良性能的铁素体不锈钢,如申请号为201310698409.0的一种含铝及稀土的抗氧化铁素体不锈钢,该铁素体不锈钢具有优良的力学、抗氧化、耐蚀和加工性能,但是由于其不含有钼、钛、铜等合金元素,该不锈钢的耐蚀性有待进一步提高。申请号为200710020713.4的软磁不锈钢具有较好的动态磁性能、耐腐蚀性能和良好的机械加工性能,但是其在磁化场H=50KA/m时,矫顽力Hc(342A/m)偏大,不能满足其作为铁磁性部件的要求。若材料的矫顽力较大,交流损耗也较大,磁性部件长期使用后容易产生发热现象,而且会产生一定的剩磁,当切断电源后,由于剩磁的存在,启动电流就需要很多大,这对应用于航空、航天等领域是非常不利的。
影响铁素体不锈钢软磁性能和耐蚀性能的主要因素有合金成分和显微组织,其中合金元素的影响最为显著。本发明通过调整合金中铬、硅和铝的含量以及添加适量的铜和稀土元素,采用合理的制备工艺,设计出一种用于铁磁性部件的耐腐蚀软磁铁素体不锈钢。本发明的目的是进一步提高铁素体不锈钢的软磁性能和耐蚀性能,从而扩大铁素体不锈钢作为软磁材料的应用范围。
发明内容
本发明提供一种用于铁磁性部件的耐腐蚀铁素体不锈钢,该铁素体不锈钢的化学成分(质量分数)包含:C+N≤0.015%、S:0.01~0.05%、Cr:16~22%、Ti≤0.5%、Mo:1.0~2.5%、Si:0.5~1.5%、Al:0.5~1.5%、Cu:0.5~1.0%、Re≤1.0%,余量为Fe。
在一个优选实施方案中:所述铁素体不锈钢的化学成分(质量分数)包含:C+N≤0.015%、S:0.01~0.05%、Cr:18~20%、Ti≤0.5%、Mo:1.0~2.5%、Si:0.5~1.5%、Al:0.5~1.5%、Cu:0.5~1.0%、Re≤1.0%,余量为Fe和不可避免的杂质。
在另一个优选实施方案中:所述铁素体不锈钢中Si的质量百分比含量为0.8~1.0%。
在另一个优选实施方案中:所述铁素体不锈钢中Al的质量百分比含量为0.8~1.2%。
上述不锈钢以高铬钢、纯铁、纯钛、纯铝、纯钼、硅铁、硫铁、纯铜和稀土纯铈为原料,采用感应熔炼的方法连铸成钢坯,钢坯在950~1150℃锻造开坯后,再于950~1150℃热轧成型材,热轧后的型材需进行1000~1100℃固溶处理1~5小时后淬火快冷,随后需进行600~750℃回火处理1~5小时,然后随炉冷却或空冷。
下面对本发明的用于铁磁性部件的耐腐蚀软磁铁素体不锈钢的化学成分作用作详细叙述。
铬:铬铁素体形成元素,与铁可形成连续固溶体,缩小奥氏体相区。当钢中铬含量达到10.5%时,钢的表面形成钝化膜,显著提高钢的耐大气腐蚀性能,若钢中有铬的碳化物析出时,钢的耐腐蚀性能下降。当含铬量不低于12.5%原子时,可使钢的电极电位发生突变,由负电位升到正的电极电位,因而可显著提高钢的耐蚀性。铬是不锈钢中主要的合金元素之一,在化学性能方面不仅能提高钢的耐腐蚀性能,也能提高钢的抗氧化性能。铬能显著提高不锈钢的强度、硬度、耐磨性和电阻,但易形成树枝状偏析,降低钢的塑性。铬含量越高,不锈钢的耐点蚀和缝隙腐蚀的能力就越强,但当铬含量高时,若有σ相析出,则其冲击韧性急剧下降。因此本发明中铬含量一般控制在16~22%,以18~20%范围最佳。
钛:不锈钢加热到450~800℃时,常常由于在晶界析出铬的碳化物而使晶界附近的含铬量下降形成贫铬区,导致晶界附近的电极电位下降,从而引起电化学腐蚀,这种腐蚀叫做晶间腐蚀。而钛是强碳化物形成元素,它与碳的亲和力比铬大得多,钢中加入钛,就能使钢中的碳首先与钛形成碳化物,而不与铬形成碳化物,从而保证晶界附近不致因贫铬而产生晶间腐蚀。因此,钛常用来固定钢中的碳,提高不锈钢抗晶间腐蚀的能力,并改善钢的焊接性能。因此本发明不锈钢中钛含量控制在≤0.5%。
硅:硅和氧的亲和力仅次于铝和钛,强于锰、铬、钒。所以在炼钢过程中,常常用作还原剂和脱氧剂。作为不锈钢中的合金元素,以固溶体形态存在于铁素体中,缩小奥氏体相区,是铁素体形成元素。硅能促进铁素体晶粒粗化,降低它的矫顽力,减小晶体的各项异性,使不锈钢磁化容易,磁阻减小,所以含硅不锈钢的磁滞损耗较低。硅能显著提高钢的弹性极限,屈服点和抗拉强度,并提高疲劳强度和疲劳比。硅能提高不锈钢中固溶体强度和冷加工变形硬化率。不锈钢的比重、导热系数、导电系数均随着硅含量的增加而降低。含硅量增加,会降低钢的焊接性能、塑性和冲击韧性。因此硅含量的最佳范围控制在0.8~1.0%。
铝:铝是钢中常用的强脱氧剂,强烈缩小钢的奥氏体相区。钢中加入少量的铝,可显著细化晶粒,提高冲击韧性,降低冷脆性。铝作为合金元素加入钢中可显著提高不锈钢的抗氧化性和抗腐蚀性能,铝与铬、硅合用,可显著提高不锈钢的高温不起皮性能和耐高温腐蚀的能力。当铝含量达到一定值时,使钢的表面产生钝化现象,使钢在氧化性酸中具有抗蚀性,并提高了对硫化氢的抗蚀性能。铝的价格比较便宜,所以在耐热合金钢中常以铝来代替铬。铝的缺点是影响钢的热加工性能、焊接性能和切削加工性能,铝对钢在氯气及氯化物气氛中的抗蚀性不利。因此硅含量的最佳范围控制在0.8~1.2%。
铜:铜能增加不锈钢在还原性环境中的表面钝性,提高不锈钢对硫酸、醋酸等腐蚀介质的耐蚀能力。铜能提高不锈钢抗全面腐蚀能力是由于沉淀铜附在钢的腐蚀表面抑制了阳极溶解,从而达到抗腐蚀的效果。同时,添加铜元素可以使不锈钢具有抗菌性,也可以提高钢的塑性和冷加工成型性。但是铜元素具有抗磁性,会对软磁性能产生不利影响,所以铜含量控制范围为0.5~1.0%。
稀土:稀土在钢中的作用主要表现在三个方面对钢液的净化作用、变质夹杂和微合金化。稀土对钢液的净化作用是指稀土在钢液里与O、S等有害元素反应生成化合物,并作为夹杂物从钢液中排出,导致钢内杂质因而夹杂含量减少。钢中稀土的变质作用,是指改变或影响杂质、夹杂物或有害相的存在状态或种类、组成与结构、形状、大小、分布等,以致减轻或消除其有害作用、甚至变有害为有利,最终导致钢性能的改善。合适的稀土对样品中的非金属夹杂物有明显的细化、球化作用,而过多的稀土会使夹杂物聚集长大,细化、球化作用减弱,对钢的性能产生不利影响。因此稀土元素的含量需控制≤1.0%。
为了进一步提高合金的耐腐蚀性能,加入了少量的钼元素,但是钼元素是无磁性合金元素且会导致磁性能的降低,因此钼的加入量优选为1.0~2.5%。
与现有技术相比,本发明的有益效果为:
1)本发明通过调整合金中铬、硅和铝的含量以及添加适量的铜和稀土元素,采用合理的制备工艺,设计出一种用于铁磁性部件的耐腐蚀软磁铁素体不锈钢。软磁性能指标矫顽力≤105A/m,剩磁≤48A/m,饱和磁化强度达到23600A/m左右。
2)由于本发明的合金含有一定量的铬、铜等元素,改善了耐蚀性能,在电化学实验中腐蚀电流达到较小值,即合金具有较好的耐蚀性。
具体实施方式
以下通过实施例对本发明作更详细的描述。这些实施例仅仅是对本发明最佳实施方案的描述,并不对本发明的范围有任何限制。
实施例1
按表1所示的化学成分进行冶炼,合金化加入纯钛、硅铁、硫铁等原料,熔炼过程中为保证成分均匀采用高功率搅拌。冶炼后的钢锭按常规方法热轧成适合大小和形状,然后进行1000~1100℃固溶处理1~5小时后淬火水冷,随后需进行600~750℃回火处理1~5小时后随炉冷却或空冷。固溶回火的目的是消除铸件在凝固过程中产生的偏析,使组织均匀化。
实施例2~6
按表1所示的化学成分进行冶炼,实施方式同实施例1。
比较例1~5
按表1所示的化学成分进行冶炼,实施方式同实施例1。
表1 本发明实施例1~6及比较例1~5的软磁铁素体不锈钢的化学成分(wt%)
Cr Ti Mo Al Si C+N S Cu Re Fe
实施例1 19.5 0.42 2.1 0.97 0.89 0.011 0.04 0.74 0.06 余量
实施例2 18.8 0.33 1.4 1.02 0.78 0.008 0.05 0.65 0.12 余量
实施例3 18.4 0.35 1.6 1.20 0.96 0.009 0.02 0.57 0.07 余量
实施例4 19.1 0.27 2.0 1.17 0.87 0.014 0.02 0.71 0.27 余量
实施例5 18.7 0.38 1.5 0.98 0.75 0.011 0.03 0.63 0.10 余量
实施例6 18.5 0.45 1.8 1.24 0.83 0.009 0.02 0.72 0.05 余量
比较例1 16.3 0.40 2.2 0.96 1.02 0.015 0.01 0.72 0.09 余量
比较例2 18.6 0.37 1.5 1.05 0.23 0.004 0.04 0.64 0.16 余量
比较例3 18.5 0.41 1.9 0.62 0.78 0.007 0.03 0.70 0.08 余量
比较例4 17.6 0.25 1.6 1.09 0.66 0.005 0.03 0.22 余量
比较例5 19.7 0.38 1.4 0.86 0.74 0.008 0.02 0.87 余量
试验例1
对本发明实施例1~6及比较例1~5的铁素体不锈钢进行磁性能测试,测试结果见表2。
表2 本发明实施例1~6及比较例1~5的铁素体不锈钢的磁性能
矫顽力(A/m) 剩磁(A/m) 磁化强度(103A/m)
实施例1 89 45 24.12
实施例2 94 48 23.78
实施例3 86 37 24.57
实施例4 105 42 23.64
实施例5 90 45 22.43
实施例6 87 41 21.84
比较例1 147 58 23.19
比较例2 96 64 23.54
比较例3 142 59 22.49
比较例4 97 54 20.55
比较例5 138 63 18.73
由表2可以看出,本发明的用于铁磁性部件的铁素体不锈钢具有良好的软磁性能,满足矫顽力≤105A/m,剩磁≤48A/m,饱和磁化强度达到23600 A/m左右。其中对磁性能影响较大的合金元素是稀土元素,由未加稀土元素的比较例5可以看出,其磁性能较差。稀土元素的添加可改善显微组织,从而减少磁化过程中的磁阻作用,提高了软磁性能。
试验例2
对本发明实施例1~6及比较例1~5的铁素体不锈钢进行耐蚀性测试,测试结果见表3。
表3 发明实施例1~6及比较例1~5的铁素体不锈钢的耐蚀性
腐蚀电位(V) 腐蚀电流密度(10-5A/cm2
实施例1 -0.417 4.31
实施例2 -0.404 1.07
实施例3 -0.412 3.51
实施例4 -0.423 6.45
实施例5 -0.407 4.82
实施例6 -0.418 5.67
比较例1 -0.430 10.38
比较例2 -0.437 11.54
比较例3 -0.429 8.59
比较例4 -0.441 12.77
比较例5 -0.434 10.29
由表3以看出,本发明的用于铁磁性部件的铁素体不锈钢具有良好的耐蚀性能。由比较例2和4可以看出,硅和铜元素对耐蚀性能影响较大,所以需要合理控制其含量。铜之所以能够提高铁素体不锈钢在抗全面腐蚀方面的能力,主要是由于沉淀的铜附着在钢的腐蚀表面,从而抑制了阳极溶解的发生,促使不锈钢达到抗腐蚀的效果。适量硅的加入可提高钢基体的电极电位,从而提高抗电化学腐蚀的能力。

Claims (5)

1.一种用于铁磁性部件的耐腐蚀铁素体不锈钢,其特征在于,以质量分数计,该铁素体不锈钢的化学成分包含:C+N≤0.015%、S:0.01~0.05%、Cr:16~22%、Ti≤0.5%、Mo:1.0~2.5%、Si:0.5~1.5%、Al:0.5~1.5%、Cu:0.5~1.0%、Re≤1.0%,余量为Fe和不可避免的杂质。
2.如权利要求1所述的不锈钢,其特征在于,以质量分数计,该铁素体不锈钢的化学成分包含:C+N≤0.015%、S:0.01~0.05%、Cr:18~20%、Ti≤0.5%、Mo:1.0~2.5%、Si:0.5~1.5%、Al:0.5~1.5%、Cu:0.5~1.0%、Re≤1.0%,余量为Fe和不可避免的杂质。
3.如权利要求1或2所述的不锈钢,其特征在于,所述铁素体不锈钢中Si的质量百分比含量为0.8~1.0%。
4.如权利要求1或2所述的不锈钢,其特征在于,所述铁素体不锈钢中Al的质量百分比含量为0.8~1.2%。
5.如权利要求1或2所述的不锈钢的制备方法,其特征在于,以高铬钢、纯铁、纯钛、纯铝、纯钼、硅铁、硫铁、纯铜和稀土纯铈为原料,采用感应熔炼的方法连铸成钢坯,钢坯在950~1150℃锻造开坯后,再于950~1150℃热轧成型材,热轧后的型材于1000~1100℃下固溶处理1~5小时后淬火快冷,随后于600~750℃下回火处理1~5小时,然后随炉冷却或空冷。
CN201710023235.6A 2017-01-13 2017-01-13 一种耐腐蚀软磁铁素体不锈钢 Pending CN106636909A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710023235.6A CN106636909A (zh) 2017-01-13 2017-01-13 一种耐腐蚀软磁铁素体不锈钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710023235.6A CN106636909A (zh) 2017-01-13 2017-01-13 一种耐腐蚀软磁铁素体不锈钢

Publications (1)

Publication Number Publication Date
CN106636909A true CN106636909A (zh) 2017-05-10

Family

ID=58844122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710023235.6A Pending CN106636909A (zh) 2017-01-13 2017-01-13 一种耐腐蚀软磁铁素体不锈钢

Country Status (1)

Country Link
CN (1) CN106636909A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111471918A (zh) * 2020-03-30 2020-07-31 山西太钢不锈钢股份有限公司 软磁不锈钢及用于制造软磁不锈钢线材的方法
CN114606440A (zh) * 2022-02-28 2022-06-10 浙江青山钢铁有限公司 一种高性能软磁不锈钢及其制备方法
CN114746569A (zh) * 2019-12-20 2022-07-12 株式会社Posco 具有改善的磁化强度的铁素体不锈钢及其制造方法
CN115287544A (zh) * 2022-08-24 2022-11-04 浙江青山钢铁有限公司 一种具有优异焊接性能的软磁不锈钢盘条及其制造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233452A (ja) * 1993-12-27 1995-09-05 Sumitomo Metal Ind Ltd 磁気特性に優れたフェライト系ステンレス鋼
JP2004099926A (ja) * 2002-09-05 2004-04-02 Nisshin Steel Co Ltd 高強度軟磁性ステンレス鋼およびその製造方法
CN1807672A (zh) * 2006-02-17 2006-07-26 太原钢铁(集团)有限公司 中铬含铜铁素体抗菌抗皱不锈钢板带及其制造方法
CN101381845A (zh) * 2007-09-04 2009-03-11 宝山钢铁股份有限公司 一种高纯铁素体不锈钢材料及其制造方法
CN101925686A (zh) * 2008-02-07 2010-12-22 新日铁住金不锈钢株式会社 铁素体系不锈钢制柔性管
JP2013185183A (ja) * 2012-03-07 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp 軟磁性ステンレス鋼細線およびその製造方法
CN103608479A (zh) * 2011-06-16 2014-02-26 新日铁住金不锈钢株式会社 抗皱性优良的铁素体系不锈钢板及其制造方法
CN104046917A (zh) * 2013-03-13 2014-09-17 香港城市大学 富Cu纳米团簇强化的超高强度铁素体钢及其制造方法
CN105074035A (zh) * 2013-03-27 2015-11-18 新日铁住金不锈钢株式会社 研磨后的表面耐蚀性优异的铁素体系不锈钢及其制造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233452A (ja) * 1993-12-27 1995-09-05 Sumitomo Metal Ind Ltd 磁気特性に優れたフェライト系ステンレス鋼
JP2004099926A (ja) * 2002-09-05 2004-04-02 Nisshin Steel Co Ltd 高強度軟磁性ステンレス鋼およびその製造方法
CN1807672A (zh) * 2006-02-17 2006-07-26 太原钢铁(集团)有限公司 中铬含铜铁素体抗菌抗皱不锈钢板带及其制造方法
CN101381845A (zh) * 2007-09-04 2009-03-11 宝山钢铁股份有限公司 一种高纯铁素体不锈钢材料及其制造方法
CN101925686A (zh) * 2008-02-07 2010-12-22 新日铁住金不锈钢株式会社 铁素体系不锈钢制柔性管
CN103608479A (zh) * 2011-06-16 2014-02-26 新日铁住金不锈钢株式会社 抗皱性优良的铁素体系不锈钢板及其制造方法
JP2013185183A (ja) * 2012-03-07 2013-09-19 Nippon Steel & Sumikin Stainless Steel Corp 軟磁性ステンレス鋼細線およびその製造方法
CN104046917A (zh) * 2013-03-13 2014-09-17 香港城市大学 富Cu纳米团簇强化的超高强度铁素体钢及其制造方法
CN105074035A (zh) * 2013-03-27 2015-11-18 新日铁住金不锈钢株式会社 研磨后的表面耐蚀性优异的铁素体系不锈钢及其制造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114746569A (zh) * 2019-12-20 2022-07-12 株式会社Posco 具有改善的磁化强度的铁素体不锈钢及其制造方法
CN114746569B (zh) * 2019-12-20 2023-11-07 株式会社Posco 具有改善的磁化强度的铁素体不锈钢及其制造方法
CN111471918A (zh) * 2020-03-30 2020-07-31 山西太钢不锈钢股份有限公司 软磁不锈钢及用于制造软磁不锈钢线材的方法
CN111471918B (zh) * 2020-03-30 2021-08-27 山西太钢不锈钢股份有限公司 软磁不锈钢及用于制造软磁不锈钢线材的方法
CN114606440A (zh) * 2022-02-28 2022-06-10 浙江青山钢铁有限公司 一种高性能软磁不锈钢及其制备方法
CN115287544A (zh) * 2022-08-24 2022-11-04 浙江青山钢铁有限公司 一种具有优异焊接性能的软磁不锈钢盘条及其制造方法
CN115287544B (zh) * 2022-08-24 2023-10-31 浙江青山钢铁有限公司 一种具有优异焊接性能的软磁不锈钢盘条及其制造方法

Similar Documents

Publication Publication Date Title
CN104711493B (zh) 节镍型含稀土及钡双相不锈钢合金材料及其制备方法
CN104018083B (zh) 含氮不锈轴承钢及制备方法
CN103741066B (zh) 一种精密电子用无磁硬态奥氏体不锈钢及其制造方法
CN106636909A (zh) 一种耐腐蚀软磁铁素体不锈钢
CN108642409A (zh) 一种耐腐蚀超级奥氏体不锈钢及其制造工艺
EP3202940A1 (en) Ferritic stainless steel material, separator for solid polymer fuel cells which uses same, and solid polymer fuel cell
CN104451350B (zh) 耐海水腐蚀高饱和磁感应强度软磁合金的制备方法
CN101768702B (zh) 高成形性耐酸性腐蚀汽车用中铬铁素体不锈钢及制造方法
CN101413091B (zh) 新型易切削不锈钢303b及其制造方法
CN105063507A (zh) 一种牌号为j75的高强度耐氢脆奥氏体合金及制备方法
CN113462984A (zh) 高耐腐蚀超易切削的软磁铁素体不锈钢盘条及其制备方法
CN106868423A (zh) 一种高锰高氮低镍无磁不锈钢的制造方法及其产物
CN107904520A (zh) 一种双相不锈钢合金材料及其制造方法
CN101492792A (zh) 一种用于铁磁性部件的易切削铁素体不锈钢
CN103540863A (zh) 一种耐腐蚀性能优良的低成本奥氏体不锈钢
CN101892440A (zh) 一种电磁阀用高电阻易切削耐蚀软磁合金
CN100535167C (zh) 一种高韧性无镍铁素体不锈钢的制造方法
CN108570629A (zh) 一种高强、耐酸腐蚀的双相不锈钢及其制备方法
CN115161556A (zh) 一种铁镍软磁合金及其制备方法
CN110396647B (zh) 一种高电磁性能及高强度低合金钢及其生产工艺与用途
JPH08269564A (ja) 非磁性ステンレス厚鋼板の製造方法
CN114875318A (zh) 一种弥散δ相强化的低密度高强韧钢及其制造方法
CN110093561B (zh) 一种铸态无磁奥氏体不锈钢及其制备方法
CN1015002B (zh) 无磁不锈钢
CN111519092A (zh) 一种铸态无磁奥氏体不锈钢及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication