CN106449815A - 基于非晶硅薄膜的异质结太阳能电池器件的制备方法 - Google Patents

基于非晶硅薄膜的异质结太阳能电池器件的制备方法 Download PDF

Info

Publication number
CN106449815A
CN106449815A CN201610653541.3A CN201610653541A CN106449815A CN 106449815 A CN106449815 A CN 106449815A CN 201610653541 A CN201610653541 A CN 201610653541A CN 106449815 A CN106449815 A CN 106449815A
Authority
CN
China
Prior art keywords
preparation
layer
amorphous silicon
silicon
conductive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610653541.3A
Other languages
English (en)
Inventor
金琦
黄璐
瞿兴灵
杨煌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201610653541.3A priority Critical patent/CN106449815A/zh
Publication of CN106449815A publication Critical patent/CN106449815A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种基于非晶硅薄膜的异质结太阳能电池器件的制备方法,通过等离子体化学气相沉积法在涂了均匀银浆并退火后的单晶硅表面上沉积两层分别为i型和p型的非晶硅薄膜,然后用磁控溅射的方法制备阳极导电电极层。本发明通过制造的非晶—晶体异质结来有效增强光生载流子的传输与收集,同时通过沉积i型非晶硅薄膜,作为此种异质结薄膜的缓冲薄层,以达到收集载流子、提高光学转换效率的目的。本发明的基于非晶硅薄膜的异质结太阳能电池器件,具有大面积、高效率、低价格、稳定性好的优点,可应用于用于发电的光伏器件上。

Description

基于非晶硅薄膜的异质结太阳能电池器件的制备方法
技术领域
本发明涉及一种太阳能电池器件的制备方法,特别涉及一种非晶—晶体异质结太阳能电池器件的制备方法,应用于无机材料太阳能电池技术领域。
背景技术
受到高纯度的硅原料极度短缺的影响,发展新一代的非晶硅a-Si薄膜太阳电池在当今世界太阳能光伏产业中显得相当重要。非晶薄膜—晶态硅异质结结构是综合非晶硅和晶态硅太阳电池二者的优点的最佳设计。非晶硅薄膜异质结太阳能电池器件的基本结构不是pn结,而是pin结。重掺杂的p、n区在电池内部形成内建电势,以收集电荷。i区是光敏区,它对光子的吸收系数很高,对敏感谱域的光吸收殆尽。所以,p/i/n结构的a-Si电池的厚度取600nm左右,i层厚度约5nm,而作为死光吸收区的p、n层的厚度设计在300nm量级。但现有技术制备的p/i/n结构的a-Si电池的生产成本较高,对光电子的产生和收集能力不够理想,转化效率有待进一步提高,制备工艺较为复杂,不利于生产能力的提升。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种基于非晶硅薄膜的异质结太阳能电池器件的制备方法,本发明制备的基于非晶硅薄膜的异质结太阳能电池器件具有大面积、高效率、低价格、稳定性好的优点,可应用于用于发电的光伏器件上。本发明生产工艺易于形成大规模生产能力,生产可全流程自动化。
为达到上述发明创造目的,本发明采用下述技术方案:
一种基于非晶硅薄膜的异质结太阳能电池器件的制备方法,包括如下步骤:
a. 阴极导电电极层的制备:在硅片表面或玻璃表面均匀涂覆一层电极材料浆,利用真空管式炉对该硅片进行退火,温度范围在800~1000℃,保温时间在10~20min,使电极材料浆层固化形成厚度为5~10 nm阴极导电电极层;制备阴极导电电极层的电极材料浆优选采用银浆;
b. 光学薄膜层非晶硅的制备:采用等离子体增强化学气相沉积法,按照氢气、硅烷和硼烷的比例范围在10:80:(1~3)的比例进行化学气相沉积工艺,控制射频功率范围为40~100W,温度范围为150~250℃,压强为0.4~0.8Torr,气体辉光气压范围为90Pa以下,依次制备n型、i型和p型此各层非晶硅,其具体工艺参数为:
① n型层非晶硅的制备:采用磷烷PH3与硅烷SiH4体积流量比为20%,制备的n型层非晶硅厚度为10~30 nm;
② i型层非晶硅制备:采用硅烷SiH4与氢气H2体积流量比为12.5%,制备的i型层非晶硅厚度为1~3nm;
③ p型层非晶硅的制备:采用硼烷B2H6与硅烷SiH4体积流量比为30%,制备的p型层非晶硅厚度为160~300nm;
c. 阳极导电电极层的制备:使用磁控溅射方法,在所述步骤b的第③步骤中制备的p型层非晶硅上继续制备阳极导电电极层,控制磁控溅射功率在60~100W,磁控溅射时间在40~80min,所制备的阳极导电电极层厚度为200~400nm,完成基于非晶硅薄膜层的p-i-n非晶—晶体异质结太阳能电池器件结构的制备。制备阳极导电电极层优选为掺铝氧化锌导电电极层。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1. 本发明制备的以非晶硅薄膜为基础的异质结太阳电池,比起晶体硅太阳电池有诸多优势,首先成本低廉,a-Si可以沉积在普通玻璃或硅片上,通过100~300℃低温工艺,生产的耗电量小,能量回收时间短;其次本发明制备工艺易于形成大规模生产能力,生产可全流程自动化。尤其是构建了这种非晶薄膜—晶态硅异质结结构,该种结构电池能在<250℃的较低温度下制造,不但节约了资源,且低温环境使非晶硅基薄膜掺杂、禁带宽度、厚度得以较精确的控制,以便优化器件特性;
2. 本发明制备的基于非晶硅薄膜的异质结太阳电池能有效增强光生载流子的传输与收集,提高非晶薄膜—晶态硅异质结太阳电池的性能,同时也大大提高了异质结太阳能电池的光稳定性,本发明制备的非晶薄膜—晶态硅异质结在制造大面积、高效率、低价格、稳定性好的半导体太阳能电池中具有巨大的潜力;
3. 本发明制备工艺成本低,生产的耗电量小,能量回收时间短;
4. 本发明制备的非晶薄膜—晶态硅异质结太阳电池的载流子迁移率高,对光电子的产生和收集能力加强,转换效率提高,电池性能增强。
附图说明
图1为本发明优选实施例基于非晶硅薄膜层的异质结太阳能电池器件结构示意图。
图2为本发明优选实施例制备的p型非晶硅薄膜层的拉曼(Raman)表征图谱。
图3为本发明优选实施例制备的p型非晶硅薄膜层的金相显微镜表面形貌表征图。
图4为本发明中不同功率制备非晶硅薄膜层的异质结太阳能电池电流-电压(I-V)曲线图谱电学性能表征图。
具体实施方式
本发明的优选实施例详述如下:
在本实施例中,参见图1~3,一种基于非晶硅薄膜的异质结太阳能电池器件的制备方法,包括如下步骤:
a. 阴极导电电极层的制备:在硅片表面均匀涂覆一层银浆,利用真空管式炉对该硅片进行退火,温度范围在900℃,保温时间在10min,使银浆层固化形成厚度为5~10 nm阴极导电电极层;
b. 光学薄膜层非晶硅的制备:采用等离子体增强化学气相沉积法,按照氢气、硅烷和硼烷的比例范围在10:80: 3的比例进行化学气相沉积工艺,控制射频功率范围为60W,温度范围为200℃,压强为0.6Torr,气体辉光气压范围为55Pa,依次制备n型、i型和p型此各层非晶硅,其具体工艺参数为:
① n型层非晶硅的制备:采用磷烷PH3与硅烷SiH4体积流量比为20%,制备的n型层非晶硅厚度为10~30nm;
② i型层非晶硅制备:采用硅烷SiH4与氢气H2体积流量比为12.5%,制备的i型层非晶硅厚度为2nm;
③ p型层非晶硅的制备:采用硼烷B2H6与硅烷SiH4体积流量比为30%,制备的p型层非晶硅厚度为300nm;
c. 阳极导电电极层的制备:使用磁控溅射方法制备掺铝氧化锌导电电极层,在所述步骤b的第③步骤中制备的p型层非晶硅上继续制备阳极导电电极层,控制磁控溅射功率在60W,磁控溅射时间在60min,所制备的阳极导电电极层厚度为300nm,完成基于非晶硅薄膜层的p-i-n非晶—晶体异质结太阳能电池器件结构的制备。
本实施例制备的器件结构如图1所示,先在晶体硅背面均匀涂覆一层银浆,并用真空管式炉退火,接着通过PECVD在晶体硅上沉积两层i型和p型非晶硅;接着用磁控溅射仪在非晶硅薄膜表面镀一层AZO导电玻璃层;这样,就得到非晶薄膜-晶态硅异质结太阳能电池。本实施例制得的基于非晶硅薄膜异质结太阳能电池器件完全适合于光电太阳能电池的光电转换效率的要求,可应用于用于发电的光伏器件上,降低加工成本,提高光电转换效率。本发明方法制备太阳能电池器件检测结果表明:
如图2中的 Raman图所示,通过Raman图谱表征光学薄膜层的晶化程度,p型非晶硅薄膜特征峰位在480cm-1左右;如图3所示,金相显微镜表征光学薄膜层的表面形貌,在金相显微镜图中,p型非晶硅表面平整均匀基本无孔洞。
如图4所示, I-V曲线表征太阳能电池器件的光电转换性能,非晶薄膜-晶态硅异质结太阳能电池光电转换效率0.37%。
上述实施例通过等离子体化学气相沉积法(PECVD)在涂了均匀银浆并退火后的单晶硅表面上沉积两层分别为i型和p型的非晶硅(a-Si)薄膜,然后用磁控溅射的方法在表面镀掺铝氧化锌(AZO)导电玻璃作为电极。通过制造非晶—晶体异质结,来有效增强光生载流子的传输与收集,同时通过沉积i型非晶硅薄膜,作为此种异质结薄膜的缓冲薄层,以达到收集载流子、提高光学转换效率的目的。本发明的基于非晶硅薄膜的异质结太阳能电池器件,具有大面积、高效率、低价格、稳定性好的优点,可应用于用于发电的光伏器件上。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明基于非晶硅薄膜的异质结太阳能电池器件的制备方法的技术原理和发明构思,都属于本发明的保护范围。

Claims (3)

1.一种基于非晶硅薄膜的异质结太阳能电池器件的制备方法,其特征在于,包括如下步骤:
a. 阴极导电电极层的制备:在硅片或玻璃表面均匀涂覆一层电极材料浆,利用真空管式炉对该硅片进行退火,温度范围在800~1000℃,保温时间在10~20min,使电极材料浆层固化形成厚度为5~10 nm阴极导电电极层;
b. 光学薄膜层非晶硅的制备:采用等离子体增强化学气相沉积法,按照氢气、硅烷和硼烷的比例范围在10:80:(1~3)的比例进行化学气相沉积工艺,控制射频功率范围为40~100W,温度范围为150~250℃,压强为0.4~0.8Torr,气体辉光气压范围为90Pa以下,依次制备n型、i型和p型此各层非晶硅,其具体工艺参数为:
① n型层非晶硅的制备:采用磷烷PH3与硅烷SiH4体积流量比为20%,制备的n型层非晶硅厚度为10~30nm;
② i型层非晶硅制备:采用硅烷SiH4与氢气H2体积流量比为12.5%,制备的i型层非晶硅厚度为1~3nm;
③ p型层非晶硅的制备:采用硼烷B2H6与硅烷SiH4体积流量比为30%,制备的p型层非晶硅厚度为160~300nm;
c. 阳极导电电极层的制备:使用磁控溅射方法,在所述步骤b的第③步骤中制备的p型层非晶硅上继续制备阳极导电电极层,控制磁控溅射功率在60~100W,磁控溅射时间在40~80min,所制备的阳极导电电极层厚度为200~400nm,完成基于非晶硅薄膜层的p-i-n非晶—晶体异质结太阳能电池器件结构的制备。
2.根据权利要求1所述基于非晶硅薄膜的异质结太阳能电池器件的制备方法,其特征在于:在所述步骤a中,制备阴极导电电极层的电极材料浆采用银浆。
3.根据权利要求1或2所述基于非晶硅薄膜的异质结太阳能电池器件的制备方法,其特征在于:在所述步骤c中,制备阳极导电电极层为掺铝氧化锌导电电极层。
CN201610653541.3A 2016-08-11 2016-08-11 基于非晶硅薄膜的异质结太阳能电池器件的制备方法 Pending CN106449815A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610653541.3A CN106449815A (zh) 2016-08-11 2016-08-11 基于非晶硅薄膜的异质结太阳能电池器件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610653541.3A CN106449815A (zh) 2016-08-11 2016-08-11 基于非晶硅薄膜的异质结太阳能电池器件的制备方法

Publications (1)

Publication Number Publication Date
CN106449815A true CN106449815A (zh) 2017-02-22

Family

ID=58184884

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610653541.3A Pending CN106449815A (zh) 2016-08-11 2016-08-11 基于非晶硅薄膜的异质结太阳能电池器件的制备方法

Country Status (1)

Country Link
CN (1) CN106449815A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417650A (zh) * 2018-04-03 2018-08-17 芜湖孺子牛节能环保技术研发有限公司 一种提高太阳能电池光电转化效率的非晶硅薄膜
CN110416250A (zh) * 2019-09-02 2019-11-05 电子科技大学 基于异质结薄膜光源的光耦、其放大集成电路及制作方法
CN110643971A (zh) * 2019-09-27 2020-01-03 上海理想万里晖薄膜设备有限公司 用于制造异质结太阳能电池的cvd设备及其镀膜方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006180A (en) * 1989-01-21 1991-04-09 Canon Kabushiki Kaisha Pin heterojunction photovoltaic elements with polycrystal GaP (H,F) semiconductor film
US5686734A (en) * 1993-01-22 1997-11-11 Canon Kabushiki Kaisha Thin film semiconductor device and photoelectric conversion device using the thin film semiconductor device
JP2003101048A (ja) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd 光起電力装置の製造方法
JP2003101054A (ja) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd 光起電力装置の製造方法
WO2003105238A1 (en) * 2002-06-11 2003-12-18 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Polycrystalline thin-film solar cells
CN102437226A (zh) * 2011-12-13 2012-05-02 清华大学 一种碳纳米管-硅薄膜叠层太阳能电池及其制备方法
CN104966760A (zh) * 2015-07-07 2015-10-07 遵义师范学院 一种太阳能电池生产工艺
CN105140339A (zh) * 2015-08-05 2015-12-09 辽宁恒华航海电力设备工程有限公司 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006180A (en) * 1989-01-21 1991-04-09 Canon Kabushiki Kaisha Pin heterojunction photovoltaic elements with polycrystal GaP (H,F) semiconductor film
US5686734A (en) * 1993-01-22 1997-11-11 Canon Kabushiki Kaisha Thin film semiconductor device and photoelectric conversion device using the thin film semiconductor device
JP2003101048A (ja) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd 光起電力装置の製造方法
JP2003101054A (ja) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd 光起電力装置の製造方法
WO2003105238A1 (en) * 2002-06-11 2003-12-18 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Polycrystalline thin-film solar cells
CN102437226A (zh) * 2011-12-13 2012-05-02 清华大学 一种碳纳米管-硅薄膜叠层太阳能电池及其制备方法
CN104966760A (zh) * 2015-07-07 2015-10-07 遵义师范学院 一种太阳能电池生产工艺
CN105140339A (zh) * 2015-08-05 2015-12-09 辽宁恒华航海电力设备工程有限公司 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417650A (zh) * 2018-04-03 2018-08-17 芜湖孺子牛节能环保技术研发有限公司 一种提高太阳能电池光电转化效率的非晶硅薄膜
CN110416250A (zh) * 2019-09-02 2019-11-05 电子科技大学 基于异质结薄膜光源的光耦、其放大集成电路及制作方法
CN110416250B (zh) * 2019-09-02 2024-04-16 电子科技大学 基于异质结薄膜光源的光耦、其放大集成电路及制作方法
CN110643971A (zh) * 2019-09-27 2020-01-03 上海理想万里晖薄膜设备有限公司 用于制造异质结太阳能电池的cvd设备及其镀膜方法

Similar Documents

Publication Publication Date Title
Hänni et al. High‐efficiency microcrystalline silicon single‐junction solar cells
CN109004053A (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池及制作方法
CN102110734B (zh) 一种纳米硅/晶体硅异质结光伏电池
CN104733557B (zh) Hit太阳能电池及提高hit电池的短路电流密度的方法
CN103681889B (zh) 一种引入驻极体结构的高效太阳能电池及制备方法
CN109638094A (zh) 高效异质结电池本征非晶硅钝化层结构及其制备方法
CN101882652A (zh) 基于激光刻蚀晶化光学薄膜层的非晶硅薄膜太阳能电池的制备工艺
CN100546050C (zh) 硅基薄膜太阳电池用窗口材料及其制备方法
CN207282509U (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池
CN103219413A (zh) 一种石墨烯径向异质结太阳能电池及其制备方法
CN114335348B (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN106449815A (zh) 基于非晶硅薄膜的异质结太阳能电池器件的制备方法
I Kabir et al. A review on progress of amorphous and microcrystalline silicon thin-film solar cells
CN103078001A (zh) 硅基薄膜叠层太阳能电池的制造方法
CN117059691A (zh) 异质结太阳能电池
CN110416342A (zh) 一种基于金属纳米颗粒的hjt电池及其制备方法
CN110416345A (zh) 双层非晶硅本征层的异质结太阳能电池结构及其制备方法
CN210156406U (zh) 具有双层非晶硅本征层的异质结太阳能电池结构
CN103594535A (zh) 一种硅纳米线量子阱太阳能电池及其制备方法
CN210156405U (zh) 具有氢退火tco导电膜的异质结电池结构
CN203850312U (zh) 具有选择性发射极的异质结太阳能电池
CN103066153A (zh) 硅基薄膜叠层太阳能电池及其制造方法
CN102157594A (zh) nc-Si:H/SiNx超晶格量子阱太阳电池
CN203351631U (zh) N型掺氢晶化硅钝化的异质结太阳能电池器件
CN201360010Y (zh) 薄膜光伏器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170222