CN106352634B - 基于风机功率的空调换热器脏堵检测方法、***和空调 - Google Patents

基于风机功率的空调换热器脏堵检测方法、***和空调 Download PDF

Info

Publication number
CN106352634B
CN106352634B CN201610793705.2A CN201610793705A CN106352634B CN 106352634 B CN106352634 B CN 106352634B CN 201610793705 A CN201610793705 A CN 201610793705A CN 106352634 B CN106352634 B CN 106352634B
Authority
CN
China
Prior art keywords
fan
power
dirty stifled
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610793705.2A
Other languages
English (en)
Other versions
CN106352634A (zh
Inventor
袁光
苏立志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Guangdong Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Guangdong Midea Refrigeration Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201610793705.2A priority Critical patent/CN106352634B/zh
Publication of CN106352634A publication Critical patent/CN106352634A/zh
Priority to PCT/CN2017/075544 priority patent/WO2018040527A1/zh
Application granted granted Critical
Publication of CN106352634B publication Critical patent/CN106352634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明涉及一种基于风机功率的空调换热器脏堵检测方法、***和空调。方法包括以下步骤:获取第一风机转速下的滤尘网脏堵程度;获取第一风机转速下滤尘网脏堵程度对应的第一风机功率;获取第一风机转速下室内机整体脏堵程度对应的第二风机功率;生成风机功率变化量;获取第一风机转速下,风机功率变化量对应的换热器脏堵等级。本发明不仅检测方法简单、检测结果准确,而且可以同时检测出滤尘网和换热器各自的脏堵情况,从而对空调进行独立控制,比如在不同时刻采取对应的清洁方式分别对滤尘网或换热器进行清洁;还可以根据换热器的不同脏堵等级,对空调采用不同控制方式,丰富了空调的功能,提高了用户使用满意度。

Description

基于风机功率的空调换热器脏堵检测方法、***和空调
技术领域
本发明涉及空调控制领域,特别涉及一种基于风机功率的空调换热器脏堵检测方法、***和空调。
背景技术
换热器是空调的核心部件,在空调制冷制热***中起着至关重要的作用。换热器结构由管路与密布的翅片组成,翅片在管路上串插且密集排布,之间缝隙极小,而为了换热充分,翅片面积也相对较大,因而,在空调运行中,气流穿过其中时,空气中的尘埃和杂物很容易附着在翅片上造成脏堵。换热器脏堵之后的影响相较滤尘网脏堵严重很多,不但会降低空调的出风量从而影响空调的性能,而且由于室内外热量交换依靠翅片进行,其上附着灰尘后会导致换热效率大大下降。空调加装滤尘网的主要目的就是为了避免换热器的脏堵,但随着运行时间的增长以及空调所处环境的不同,换热器不可避免的也会脏堵。而且空调在制冷运行时,翅片上都会凝结冷凝水,这样使得翅片更容易附着灰尘,并且在潮湿的环境下,会滋生很多霉菌,这些霉菌随空调的出风一起散布到室内,会对人体健康造成很大危害,而且使室内带有特殊异味。因而保持室内机换热器的洁净十分重要。
随着空调越来越向健康化、节能化发展,空调新增功能也越来越多的跟健康相关,因而越来越多的空调带有自清洁,换热器清洗等功能,但是针对空调用换热器的脏堵检测技术却几乎空白。已有脏堵检测大多都是针对滤尘网或室内机整体(滤尘网与换热器共同的脏堵情况),因而换热器清洁功能的启动也多为根据室内机的脏堵与否或滤尘网的脏堵与否,或者纯粹根据空调运行时长以及通过手动直接开启。但是,滤尘网与换热器在积灰速率、寄生细菌,清洁方式方面都有所不同:滤尘网积灰速率快,换热器由于有滤尘网的保护积灰速率相对慢一些;滤尘网上主要寄生尘螨及混杂在空气尘埃中的细菌,换热器上除了这些细菌,由于其潮湿的环境还会滋生更多的霉菌等;滤尘网清洁简单,人工清洗或自动毛刷清洗都易于实现,所用时间短,不需消耗很大能源,而换热器由于自身结构原因,清洗十分困难,所需方法耗时长,消耗能源大。针对以上滤尘网与换热器的这些不同特征,空调需要根据两者各自的脏堵状况分开进行处理,所以单独检测出室内机换热器的脏堵技术已十分必要。
发明内容
本发明提供了一种基于风机功率的空调换热器脏堵检测方法、***和空调,解决了以上技术问题。
本发明解决上述技术问题的技术方案如下:
依据本发明的一个方面,提供了一种基于风机功率的空调换热器脏堵检测方法,包括以下步骤:
步骤1,获取第一风机转速下的滤尘网脏堵程度;
步骤2,获取第一风机转速下所述滤尘网脏堵程度对应的第一风机功率;
步骤3,获取第一风机转速下室内机整体脏堵程度对应的第二风机功率;
步骤4,计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
步骤5,获取第一风机转速下,所述风机功率变化量对应的换热器脏堵等级。
依据本发明的另一个方面,还提供了一种基于风机功率的空调换热器脏堵检测***,包括第一获取模块、第二获取模块、第三获取模块、计算模块和第四获取模块,
所述第一获取模块用于获取第一风机转速下的滤尘网脏堵程度;
所述第二获取模块用于获取第一风机转速下所述滤尘网脏堵程度对应的第一风机功率;
所述第三获取模块用于获取第一风机转速下室内机整体脏堵程度对应的第二风机功率;
所述计算模块用于计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
所述第四获取模块用于获取第一风机转速下,所述风机功率变化量对应的换热器脏堵等级。
为了解决本发明的技术问题,本发明还提供了一种空调,包括以上所述的空调换热器脏堵检测***。
本发明的有益效果是:本发明的空调换热器脏堵检测方法和检测***,不仅检测方法简单、检测结果准确,而且可以同时检测出空调室内机、滤尘网和换热器各自的脏堵情况,从而根据各自的脏堵情况对空调进行独立控制,比如在不同时刻采取对应清洁方式分别对滤尘网或换热器进行清洁;同时,根据换热器的不同脏堵等级,对空调采用不同控制方式,丰富了空调的功能,提高了用户使用满意度。
附图说明
图1为实施例1中空调换热器脏堵检测方法的流程示意图;
图2为实施例1中空调换热器脏堵检测***的结构示意图;
图3为实施例1中光电检测单元的结构示意图;
图4为实施例2中光电检测单元的结构示意图;
图5为实施例3中空调换热器脏堵检测方法的流程示意图;
图6为实施例3中空调换热器脏堵检测***的结构示意图;
图7为实施例4一种空调的结构示意图;
上述附图中,各标号具体为:
1、单片机,2、第一开关控制电路,3、红外发光二极管,4、光电二极管,5、供电模块,6、接插件,7、滤尘网,8、检测模块,9、发射接收模块,10、第二开关控制电路。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
分体挂壁式空调的风道设计均为空气在进风端首先经过滤尘网,然后经过换热器,最后进入风轮腔体。基于这种结构,可根据空调室内机的整体脏堵程度,即换热器与滤尘网的整体脏堵程度,以及单独滤尘网的脏堵程度得出换热器单独的脏堵程度。
本发明基于风机功率的空调换热器脏堵检测方法包括以下步骤:
步骤1,获取第一风机转速下的滤尘网脏堵程度;
步骤2,获取第一风机转速下所述滤尘网脏堵程度对应的第一风机功率;
步骤3,获取第一风机转速下室内机整体脏堵程度对应的第二风机功率;
步骤4,计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
步骤5,获取第一风机转速下,所述风机功率变化量对应的换热器脏堵等级。
当风机转速一定时,室内机风机功率变化量与换热器和滤尘网的脏堵程度有关。由于风轮结构的不同导致风阻与功率呈现正相关和负相关的关系,从而风机功率与脏堵也呈现出对应的正相关和负相关关系。同时风机功率还会受到诸如空调供电电压、压缩机运行频率、导风条角度、换热器温度及室内空气湿度等因素的影响,因而对这些因素需要通过修正函数对风机功率加以补偿,从而计算出风机功率与室内机脏堵之间的准确关系。同时在本发明中,上述方案有两种实现方法,一种是保持当前风机转速不变,在当前风机转速下计算换热器的脏堵等级,另一种是将当前风机转速调节到目标风机转速,在目标风机转速下计算换热器的脏堵等级,以下通过两个实施例对上述两种方法分别进行具体说明。
如图1所示,为本实施例1一种基于风机功率的空调换热器脏堵检测方法的流程示意图,包括以下步骤:
步骤1,获取当前风机转速和滤尘网脏堵程度;
步骤2,获取当前风机转速下,所述滤尘网脏堵程度对应的第一风机功率;
步骤3,获取当前风机转速下,室内机整体脏堵程度对应的第二风机功率;
步骤4,计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
步骤5,根据所述风机功率变化量和当前风机转速获取对应的换热器脏堵等级。
本实施例步骤1中,通过风速传感器采集当前风机转速,通过光电检测方法直接获取滤尘网脏堵程度,所述光电检测方法利用光电检测单元进行检测,结构简单、安装方便且成本低廉。在其他实施例中,也可以通过其他方法获取滤尘网脏堵程度,在此不进行详细说明。本实施例中,通过光电检测方法获取滤尘网脏堵程度包括以下步骤:
S101,控制光发射单元照射所述滤尘网;
S102,控制光敏元件接收透过所述滤尘网的透射光;
S103,将所述光敏元件接收的透射光的光照强度转化为用于表示滤尘网脏堵程度的数值,本实施例中,所述数值为与所述光敏元件串联的电阻的电压值。
本实施例中,可以将采集到的电阻两端电压传输给单片机,然后利用单片机内置的模数转换器,即可将电阻两端的模拟电压信号转换成数字信息值,并用此值表示滤尘网的脏堵程度。本实施例1中,电阻两端电压越大,单片机转换成数字信息值越大,说明所透出的光照强度越大,滤尘网脏堵的情况越轻微。在其他实施例中,也可以通过光敏元件采集经过所述滤尘网反射的反射光,并将反射光的光照强度转换为用于表示滤尘网脏堵程度的数值,此时所转换成的数字信息值越大,说明所透出的光照强度越小,滤尘网脏堵的情况越严重。这种方法不仅结构简单、成本低廉而且检测结果准确,能够在空调中直接安装使用,且安装使用过程也非常简单。本实施例中,为了保证所获取的滤尘网脏堵程度数值的准确性,可以连续采集所述电阻两端的电压值,去掉最大值和最小值后,对其他的电压值取均值,得到当前滤尘网脏堵程度,比如连续7次采样所述电阻两端的电压值后,去掉最大值和最小值后,对其他的5个电压值取均值,得到当前滤尘网脏堵程度。
本实施例步骤2中,通过预先建立的不同风机转速下滤尘网脏堵程度与风机功率的第一函数关系式,计算所述滤尘网脏堵程度在当前风机转速下对应的第一风机功率。本实施例中,所述第一函数关系式是在对空调进行数据测试的过程得到的,并在空调出厂前就已经固化在空调运行程序中以方便查询使用。在数据测试过程中,建立所述第一函数关系式包括以下步骤:
S201,将风机可运行转速范围按照预设的转速跨度划分为多个转速区间;所述转速跨度取值范围为30~120为宜,取值太小所测压力值没有变化,取值太大会影响最后脏堵检测结果的准确性,本实施例中优选的选择50r/min;
S202,获取空调第一次使用时,即滤尘网和换热器都是全新的时,每个转速区间中点处转速值对应的滤尘网脏堵程度和风机功率,设为第一组数值;
S203,经过预设时间,比如经过一年且滤尘网一直未清洗时,将所述换热器更换为全新换热器后,再次获取每个转速区间中点处转速值对应的滤尘网脏堵程度和风机功率,设为第二组数值;
S204,根据所述第一组数值和第二组数值,建立每个转速区间下,滤尘网脏堵程度和风机功率的线性函数。通过建立所述线性函数,可以在滤尘网相同脏堵程度下,将电压值与风机功率一一对应,保证对滤尘网脏堵程度标示的一致性。通过当前风机转速选择对应的第一函数关系式,然后带入步骤1获取的滤尘网脏堵程度,即可以得到当前风机转速下的第一风机功率Pv。
本实施例的步骤3中,通过算法直接计算室内机整体脏堵程度对应的第二风机功率,方法简单且成本低廉。具体包括以下步骤:
S301,获取当前风机转速下的实时电压和实时电流,计算风机实时功率Pa;
S302,获取空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度,计算风机功率补偿量Pb;
S303,对风机实时功率和风机功率补偿量求和,生成当前风机转速下室内机整体脏堵程度对应的第二风机功率Pc,Pc=Pa+Pb。
本实施例的步骤4中,计算所述第二风机功率Pc和第一风机功率Pv的差值,即可得到风机功率变化量△P。基于分体挂壁式空调的风道结构,第一风机功率Pv是空气流经单独滤尘网对应的风机功率,第二风机功率是空气依次流经滤尘网和换热器对应的风机功率,因此第二风机功率和第一风机功率的差值,即风机功率变化率△P可以表示空气流经单独换热器对应的风机功率,从而通过风机功率变化率△P来衡量换热器的脏堵等级。
通过查询预先建立的换热器脏堵等级和风机转速、风机功率变化量的第一对应关系表,即可获取所述风机功率变化量△P在当前风机转速下对应的换热器脏堵等级。本实施例中,所述第一对应关系表是在对空调进行数据测试的过程得到的,并在空调出厂前就已经固化在空调运行程序中以方便查询使用。在数据测试过程中,建立所述第一对应关系表包括以下步骤:
S401,将风机可运行转速范围按照预设的转速跨度划分为多个转速区间;所述转速跨度取值范围为30~120为宜,取值太小所测压力值没有变化,取值太大会影响最后脏堵检测结果的准确性,本实施例中优选的选择50r/min;
S402,获取空调第一次使用时,即滤尘网和换热器都是全新时,每个转速区间中点处转速值对应的风机功率变化量,设为第一数值;
S403,经过预设时间,比如经过八年且换热器一直未清洗并将滤尘网更换为全新滤尘网后,再次获取每个转速区间中点处转速值对应的风机功率变化量,并将所述风机功率变化量设为第二数值;所述第一数值和第二数值形成该转速区间对应的风机功率变化量的取值范围;
S404,将所述风机功率变化量的取值范围按照预设的脏堵等级个数进行均分,获取该转速区间下,每个换热器脏堵等级对应的风机功率变化量范围。本实施例中,均分个数根据需要可任意选取,只需满足每个脏堵等级中风机功率变化量有一定跨度即可,比如本实施例中将所述风机功率变化量等分为4个小范围,每个小范围对应一个滤尘网脏堵等级,即将滤尘网脏堵等级分为4级。
通过本发明的脏堵检测方法获得了换热器的脏堵等级后,可以根据不同的换热器脏堵等级对空调采取不同的控制方式,比如本实施例中:
当换热器脏堵等级为z1级时,通过显示板显示脏堵等级;
当换热器脏堵等级为z2级时,通过显示板显示脏堵等级,同时开机时采用蜂鸣器进行语音提示;
当换热器脏堵等级为z3级时,通过显示板显示脏堵等级,同时采用蜂鸣器在空调开机和/或运行时以短时多次鸣响的方式进行蜂鸣提示或者智能语音提示,驱动清洁装置采用对应的清洁方式进行自动清洁;
当换热器脏堵等级为z4级时,通过显示板显示脏堵等级,采用蜂鸣器在空调开机和/或运行时以短时多次鸣响的方式进行蜂鸣提示或者智能语音提示,并控制空调停止运行;所述控制方式中,脏堵等级越高,换热器脏堵越严重。在具体实施例中,可以将蜂鸣提示或者智能语音提示时间设置在非睡眠时间,保证用户了睡眠质量。
在其他实施例中,还可以根据滤尘网脏堵程度和换热器脏堵等级,在不同或者相同时间,采取对应的清洁方式分别对滤尘网和/或换热器进行清洁。
如图2所示,本与实施例1的方法对应的空调换热器脏堵检测***的结构示意图,包括第一获取模块、第二获取模块、第三获取模块、计算模块和第四获取模块,
所述第一获取模块用于获取当前风机转速和滤尘网脏堵程度;
所述第二获取模块用于获取当前风机转速下,所述滤尘网脏堵程度对应的第一风机功率;
所述第三获取模块用于获取当前风机转速下,室内机整体脏堵程度对应的第二风机功率;
所述计算模块用于计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
所述第四获取模块用于根据所述风机功率变化量和当前风机转速获取对应的换热器脏堵等级。
本实施例中,还包括控制模块,所述控制模块用于根据不同的换热器脏堵等级对空调采取不同的控制方式;和/或根据滤尘网脏堵程度和换热器脏堵等级,采取对应清洁方式分别对滤尘网和/或换热器进行清洁。
本实施例中,所述第一获取模块包括用于采集风机转速的风速采集单元和用于获取滤尘网脏堵程度的滤尘网脏堵检测单元。如图3所示,为本实施例中所述滤尘网脏堵检测单元的结构示意图,所述滤尘网脏堵检测单元包括通过接插件6连接的发射接收模块9和检测模块8,所述检测模块8包括用于向滤尘网7发射光线的光发射单元3和用于接收透过滤尘网7的透射光的光敏元件4,所述发射接收模块9用于控制所述光发射单元3发光以及用于将所述光敏元件4接收的透射光的光照强度转化为用于表示滤尘网7脏堵程度的数值。本实施例中,所述光发射单元3为红外发光二极管;光敏元件4为光电二极管,在其他实施例中,光敏元件4还可以是光电三极管。本实施例中,所述发射接收模块9包括单片机1、第一开关控制电路2和用于将光电二极管的光电流转换为电压的转换电路,所述单片机1的第一IO端口连接第一开关控制电路2,第一开关控制电路2通过接插件6连接所述红外发光二极管,所述转换电路连接单片机1的模拟输入端口。所述转换电路包括与所述光敏元件串联的电阻R4,电阻R4与所述光敏元件的串联端同时连接所述单片机1的模拟输入端口,电阻R4另一端接地。
本实施例中,所述第一开关控制电路中的三极管Q1的基极经电阻R1连接到单片机的第一IO端口,集电极经电阻R3连接到所述光发射单元,发射集接地。所述三极管Q1的基极还串联下拉电阻R2后接地。本实施例采用三极管开关电路,在需要检测时开通发光,在不需要检测时关闭,不仅控制电路简单,而且可以最大程度节约能耗。同时,本实施例中,三极管的集电极经过电阻R3连接到红外发光二极管LED,所述电阻R3为LED限流保护电阻,可以保证LED中流过合适的电流,提高滤尘网脏堵检测单元的效果同时保护红外发光二极管不因电流过大而损坏。
本实施例中,所述滤尘网脏堵检测单元的单片机1的第一IO端口输出高低电平信号,通过高低电平信号控制三极管Q1导通关断从而给红外发光二极管LED通电,LED发出的红外光透过滤尘网,其中一部分光由于滤尘网7附着的灰尘对光的反射、散射、吸收等作用而无法透过滤尘网,从而使透过的光减少,而且附着灰尘越多,透过的光越少。光电二极管4是光敏元件,照射到其上的光越多,通过其的光电流越大,将其与电阻R4串联,利用欧姆定律u=ir即可将光电流转换成电压,通过采集电阻R4两端电压,并传输给单片机,然后利用单片机1内置的模数转换器,即可将模拟电压信号转换成数字信息值,并用此值表示滤尘网的脏堵程度,本实施例中,电阻R4两端电压越大,单片机转换成数字信息值越大,说明所透出的光照强度越大,滤尘网脏堵的情况越轻微。
如图4所示,为实施例2中滤尘网脏堵检测单元的结构示意图,与图3相比,增加了用于控制光敏元件开通和关断的第二开关控制电路10,第二开关控制电路连接单片机的第二IO端口,通过对应IO端口输出的高低电平信号控制第二开关控制电路的开通与关断。在不对滤尘网脏堵进行检测时,可以可靠关断此电路,相对于没有此开关控制电路的单元,避免了在非检测时间环境光照射光敏元件时产生的光电流在发射接收模块上的电能消耗。本实施例中,所述第二开关控制电路10为三极管开关电路,包括三极管Q2、电阻R6和电阻R7,所述三极管Q2的基极经电阻R6连接到单片机的第二IO端口,集电极经电阻R4连接到所述光敏元件和电阻R5的串联端,发射集接地。所述三极管Q1的基极还串联下拉电阻R7后接地。采用三极管开关电路,在需要检测时开通发光,在不需要检测时关闭,不仅控制电路简单,而且可以最大程度节约能耗。
图3和图4对应的实施例中,所述第一开关控制电路、第二开关控制电路和转换电路均集成在主控板中,主控板上还设有供电模块5,所述供电模块5分别连接所述红外发光二极管和光电二极管,用于为所述红外发光二极管和光电二极管供电。所述供电模块为五伏的稳压滤波电源。本发明滤尘网脏堵检测单元的外接器件只包括光发射单元和光敏元件,其余的控制电路部分均布置在主控板上,同时只需两个连接线即可实现信号的发射和接收,再加一根连接供电模块的连接线即可实现整个检测方案,因此减少了连接线,占用空间小,易于实施而且降低了成本。同时光发射单元和光敏元件体积小,大大降低了占用空间,从而降低了外接器件对滤尘网附着灰尘的影响,保证了检测结果的准确性。同时供电模块简单,无需复杂电源,只需主板5v供电即可。通过在供电电源上并联一个接地的电容C1,可以去除直流电的噪声干扰,使供电更加干净,减少噪声。
图3和图4对应的实施例中,所述单片机包含模数转换器,所述转换电路经单片机的模拟输入端口连接到所述模数转换器,利用模数转换器将电压模拟信号转换成数字信号,用以检测得出的光照强度信息,因此可以得到滤尘网的脏堵程度,从而方便信息处理与其他功能对此信息的判断。本实施例中,所述单片机的模数转换器的输出引脚处接一个电阻R5再并联一个接地的电容C2,可以起到限流和去耦的作用。在其他实施例中,还可以通过接收经过滤尘网漫反射的反射光的光照强度来检测滤尘网的脏堵程度,其检测单元的结构与实施例1、实施例2的滤尘网脏堵检测单元基本相同,只需要将所述光电二极管换成用于接收经过所述滤尘网漫反射的反射光的光电二极管或者光电三极管即可。在该实施例中,与光电二极管或者光电三极管串联的电阻两端电压越大,单片机转换成数字信息值越大,说明所反射的光照强度越大,滤尘网上的灰尘等越多,滤尘网的脏堵情况越严重。
如图2所示,本实施例中,所述第二获取模块包括:第一存储单元,用于存储预先建立的不同风机转速下滤尘网脏堵程度与风机功率的第一函数关系式;第一计算单元,用于将所述滤尘网脏堵程度带入到当前风机转速对应的所述第一函数关系式中,生成所述滤尘网脏堵程度在当前风机转速下对应的第一风机功率。
所述第三获取模块包括:参数采集单元,用于采集当前风机转速下的实时电压、实时电流、空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度;第二计算单元,用于根据所述实时电压和实时电流,并计算风机实时功率;第三计算单元,用于根据空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度,计算风机功率补偿量;第四计算单元,用于对风机实时功率和风机功率补偿量求和,生成当前风机转速下室内机整体脏堵程度对应的第二风机功率。
所述第四获取模块包括:第二存储单元,用于存储预先建立的换热器脏堵等级和风机转速、风机功率变化量的第一对应关系表;查询单元,用于查询所述第一对应关系表,获取所述风机功率变化量在当前风机转速下对应的换热器脏堵等级。
本实施例的空调换热器脏堵检测方法和检测***,不仅检测方法简单、检测结果准确,而且可以同时检测出空调室内机、滤尘网和换热器各自的脏堵情况,从而根据各自的脏堵情况对空调进行独立控制,比如在不同时刻采取对应清洁方式分别对滤尘网或换热器进行清洁;同时,根据换热器的不同脏堵等级,对空调采用不同控制方式,丰富了空调的功能,提高了用户使用满意度。
如图5所示,为实施例3中另一种基于风机功率的空调换热器脏堵检测方法的流程示意图,包括以下步骤:
步骤1,将当前风机转速调整为预设的目标风机转速,并获取目标风机转速下的滤尘网脏堵程度;
步骤2,获取目标风机转速下所述滤尘网脏堵程度对应的第一风机功率;
步骤3,获取目标风机转速下室内机整体脏堵程度对应的第二风机功率;
步骤4,计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
步骤5,根据所述风机功率变化量获取对应的换热器脏堵等级。
本步骤1中,同样可以通过光电检测方法直接获取滤尘网脏堵程度,具体方法和实施例1中的方法一样,在此不进行详细说明。本实施例步骤2中,通过预先建立的目标风机转速下滤尘网脏堵程度与风机功率的第二函数关系式,计算所述滤尘网脏堵程度在目标风机转速下对应的第一风机功率。本实施例中,所述第二函数关系式是在对空调进行数据测试的过程得到的,并在空调出厂前就已经固化在空调运行程序中以方便查询使用。在数据测试过程中,建立所述第二函数关系式包括以下步骤:
S201,获取空调第一次使用时,即滤尘网和换热器都是全新的时,目标风机转速对应的滤尘网脏堵程度和风机功率,设为第一组数值;
S202,经过预设时间,比如经过一年且滤尘网一直未清洗时,将所述换热器更换为全新换热器后,再次获取目标风机转速对应的滤尘网脏堵程度和风机功率,设为第二组数值;
S203,根据所述第一组数值和第二组数值,建立目标风机转速下,滤尘网脏堵程度和风机功率的线性函数。通过建立所述线性函数,可以在滤尘网相同脏堵程度下,将电压值与风机功率一一对应,保证对滤尘网脏堵程度标示的一致性。将步骤1获取的滤尘网脏堵程度带入到所述第二函数关系式中,即可以得到目标风机转速下的第一风机功率Pv。
本实施例的步骤3中,通过算法直接计算目标风机转速下,室内机整体脏堵程度对应的第二风机功率,具体过程和实施例1中的过程一样,在此也不进行详细说明。
然后通过查询预先建立的目标风机转速下,换热器脏堵等级和风机功率变化量的第二对应关系表,即可获取所述风机功率变化量△P在目标风机转速下对应的换热器脏堵等级。本实施例中,所述第二对应关系表是在对空调进行数据测试的过程得到的,并在空调出厂前就已经固化在空调运行程序中以方便查询使用。在数据测试过程中,建立所述第二对应关系表包括以下步骤:
S401,获取空调第一次使用时,即滤尘网和换热器都是全新时,目标风机转速对应的风机功率变化量,设为第一数值;
S402,经过预设时间,比如经过八年且换热器一直未清洗并将滤尘网更换为全新滤尘网后,再次获取目标风机转速对应的风机功率变化量,并将所述风机功率变化量设为第二数值;所述第一数值和第二数值形成所述目标风机转速对应的风机功率变化量的取值范围;
S403,将所述风机功率变化量的取值范围按照预设的脏堵等级个数进行均分,获取目标风机转速下,每个换热器脏堵等级对应的风机功率变化量范围。本实施例中,均分个数根据需要可任意选取,只需满足每个脏堵等级中风机功率变化量有一定跨度即可,比如本实施例中将所述风机功率变化量等分为4个小范围,每个小范围对应一个滤尘网脏堵等级,即将滤尘网脏堵等级分为4级。
通过本发明的脏堵检测方法获得了换热器的脏堵等级后,可以根据不同的换热器脏堵等级对空调采取不同的控制方式或者根据滤尘网脏堵程度和换热器脏堵等级,在不同或者相同时间,采取对应的清洁方式分别对滤尘网和/或换热器进行清洁。
本发明的方法,在每次检测时都将风机转速调整为目标风机转速,因此在建立以上函数关系式和对应关系表时,都只需要测量目标风机转速下的数据即可,不仅测量的数据较少,更加容易得到测量数据建立以上和对应关系表;而且检测方式简单,检测时间短,获得的检测结果准确,同时短暂调速也不会影响空调性能,不影响用户正常使用。
本发明实施例中,所述目标风机转速为空调运行过程中最常用的的转速,因此对空调的正常运行影响甚微。在本发明的其他实施例中,也可以预先设定多个目标风机转速,这样在应用本发明的方法时,可以根据当前风机转速选择最接近的目标风机转速,尽可能避免对当前风机转速进行调整,不仅控制过程更加简单,而且可以保证脏堵等级检测结果的准确性。
如图6所示,为与实施例3的方法对应的空调换热器脏堵检测***的结构示意图,包括调整模块、第一获取模块、第二获取模块、第三获取模块、计算模块和第四获取模块,
所述调整模块用于将当前风机转速调整为预设的目标风机转速;
所述第一获取模块用于获取目标风机转速下的滤尘网脏堵程度;
所述第二获取模块用于获取所述滤尘网脏堵程度对应的第一风机功率;
所述第三获取模块用于获取目标风机转速下室内机整体脏堵程度对应的第二风机功率;
所述计算模块用于计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
所述第四获取模块用于根据所述风机功率变化量获取对应的换热器脏堵等级。
本实施例中,还包括控制模块,所述控制模块用于根据不同的换热器脏堵等级对空调采取不同的控制方式;和/或根据滤尘网脏堵程度和换热器脏堵等级,采取对应清洁方式分别对滤尘网和/或换热器进行清洁。
本实施例中,所述第一获取模块包括用于获取滤尘网脏堵程度的滤尘网脏堵检测单元,具体结构如附图3和附图4对应的实施例所示,在此不进行具体说明。所述第二获取模块包括:第一存储单元,用于存储预先建立的目标风机转速下滤尘网脏堵程度与风机功率的第二函数关系式;第一计算单元,用于将所述滤尘网脏堵程度带入到所述第二函数关系式中,生成所述滤尘网脏堵程度在目标风机转速下对应的第一风机功率。
所述第三获取模块包括:参数采集单元,用于采集当前风机转速下的实时电压、实时电流、空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度;第二计算单元,用于根据所述实时电压和实时电流,计算风机实时功率;第三计算单元,用于根据空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度,计算风机功率补偿量;第四计算单元,用于对风机实时功率和风机功率补偿量求和,生成目标风机转速下室内机整体脏堵程度对应的第二风机功率。
所述第四获取模块包括:第二存储单元,用于存储预先建立的换热器脏堵等级和风机功率变化量的第二对应关系表;查询单元,用于查询所述第二对应关系表,获取所述风机功率变化量在目标风机转速下对应的换热器脏堵等级。
本实施例的空调换热器脏堵检测方法和检测***,不仅检测方法简单、检测结果准确,而且可以同时检测出空调室内机、滤尘网和换热器各自的脏堵情况,从而根据各自的脏堵情况对空调进行独立控制,比如在不同时刻采取对应清洁方式分别对滤尘网或换热器进行清洁;同时,根据换热器的不同脏堵等级,对空调采用不同控制方式,丰富了空调的功能,提高了用户使用满意度。
如图7所示,为实施例4一种空调的结构示意图,包括以上所述的基于风机功率的空调换热器脏堵检测***。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (17)

1.一种基于风机功率的空调换热器脏堵检测方法,其特征在于,包括以下步骤:
步骤1,获取第一风机转速下的滤尘网脏堵程度;
步骤2,获取第一风机转速下所述滤尘网脏堵程度对应的第一风机功率;
步骤3,获取第一风机转速下室内机整体脏堵程度对应的第二风机功率,其中,所述室内机整体脏堵程度是指换热器与滤尘网的整体脏堵程度;
步骤4,计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
步骤5,获取第一风机转速下,所述风机功率变化量对应的换热器脏堵等级。
2.根据权利要求1所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,还包括步骤6,具体为:根据不同的换热器脏堵等级对空调采取不同的控制方式;和/或根据滤尘网脏堵程度和换热器脏堵等级,采取对应的清洁方式分别对滤尘网和/或换热器进行清洁。
3.根据权利要求2所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,所述步骤1中,采用光电检测方法获取滤尘网脏堵程度,具体包括以下步骤:
控制光发射单元照射所述滤尘网;
控制光敏元件接收透过所述滤尘网的透射光或者接收经过滤尘网漫反射的反射光;
将所述光敏元件接收的透射光或者反射光的光照强度转化为用于表示滤尘网脏堵程度的数值;所述数值为与所述光敏元件串联的电阻的电压值。
4.根据权利要求2所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,所述步骤3具体为:
获取第一风机转速下的实时电压和实时电流,计算风机实时功率;
获取空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度,计算风机功率补偿量;
对风机实时功率和风机功率补偿量求和,生成第一风机转速下室内机整体脏堵程度对应的第二风机功率。
5.根据权利要求1~4任一所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,所述第一风机转速为当前风机转速或预设的目标风机转速。
6.根据权利要求5所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,当第一风机转速为当前风机转速时,步骤2中,通过预先建立的不同风机转速下滤尘网脏堵程度与风机功率的第一函数关系式,计算所述滤尘网脏堵程度在当前风机转速下对应的第一风机功率,其中建立所述第一函数关系式包括以下步骤:
将风机可运行转速范围按照预设的转速跨度划分为多个转速区间;所述转速跨度为30~120r/min;
获取空调第一次使用时,每个转速区间中点处转速值对应的滤尘网脏堵程度和风机功率,设为第一组数值;
经过预设时间并将空调换热器更换为全新换热器后,再次获取每个转速区间中点处转速值对应的滤尘网脏堵程度和风机功率,设为第二组数值;
根据所述第一组数值和第二组数值,建立每个转速区间下,滤尘网脏堵程度和风机功率的线性函数。
7.根据权利要求6所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,步骤5中,通过查询预先建立的换热器脏堵等级和不同风机转速、风机功率变化量的第一对应关系表,获取所述风机功率变化量在当前风机转速下对应的换热器脏堵等级,其中建立所述第一对应关系表包括以下步骤:
将风机可运行转速范围按照预设的转速跨度划分为多个转速区间;所述转速跨度为30~120r/min;
获取空调第一次使用时,每个转速区间中点处转速值对应的风机功率变化量,设为第一数值;
经过预设时间并将滤尘网更换为全新滤尘网后,再次获取每个转速区间中点处转速值对应的风机功率变化量,并设为第二数值;所述第一数值和第二数值形成该转速区间对应的风机功率变化量的取值范围;
将所述风机功率变化量的取值范围按照预设的脏堵等级个数进行均分,获取该转速区间下,每个换热器脏堵等级对应的风机功率变化量范围。
8.根据权利要求5所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,当第一风机转速为预设的目标风机转速时,步骤2中,通过预先建立的目标风机转速下滤尘网脏堵程度与风机功率的第二函数关系式,计算所述滤尘网脏堵程度在目标风机转速下对应的第一风机功率,其中建立所述第二函数关系式包括以下步骤:
获取空调第一次使用时,目标风机转速对应的滤尘网脏堵程度和风机功率,设为第一组数值;
经过预设时间并将空调换热器更换为全新换热器后,再次获取目标风机转速对应的滤尘网脏堵程度和风机功率,设为第二组数值;
根据所述第一组数值和第二组数值,建立目标风机转速下,滤尘网脏堵程度和风机功率的线性函数。
9.根据权利要求8所述的基于风机功率的空调换热器脏堵检测方法,其特征在于,步骤5中,通过查询预先建立的目标风机转速下换热器脏堵等级和风机功率变化量的第二对应关系表,获取所述风机功率变化量在目标风机转速下对应的换热器脏堵等级,其中建立所述第二对应关系表包括以下步骤:
获取空调第一次使用时,目标风机转速对应的风机功率变化量,设为第一数值;
经过预设时间并将滤尘网更换为全新滤尘网后,再次获取目标风机转速对应的风机功率变化量,并设为第二数值;所述第一数值和第二数值形成目标风机转速对应的风机功率变化量的取值范围;
将所述风机功率变化量的取值范围按照预设的脏堵等级个数进行均分,获取目标风机转速下,每个换热器脏堵等级对应的风机功率变化量范围。
10.一种基于风机功率的空调换热器脏堵检测***,其特征在于,包括第一获取模块、第二获取模块、第三获取模块、计算模块和第四获取模块,
所述第一获取模块用于获取第一风机转速下的滤尘网脏堵程度;
所述第二获取模块用于获取第一风机转速下所述滤尘网脏堵程度对应的第一风机功率;
所述第三获取模块用于获取第一风机转速下室内机整体脏堵程度对应的第二风机功率,其中,所述室内机整体脏堵程度是指换热器与滤尘网的整体脏堵程度;
所述计算模块用于计算第二风机功率和第一风机功率的差值,生成风机功率变化量;
所述第四获取模块用于获取第一风机转速下,所述风机功率变化量对应的换热器脏堵等级。
11.根据权利要求10所述的基于风机功率的空调换热器脏堵检测***,其特征在于,还包括控制模块,所述控制模块用于根据不同的换热器脏堵等级对空调采取不同的控制方式;和/或根据滤尘网脏堵程度和换热器脏堵等级,采取对应的清洁方式分别对滤尘网和/或换热器进行清洁。
12.根据权利要求11所述的基于风机功率的空调换热器脏堵检测***,其特征在于,所述第一获取模块包括用于获取滤尘网脏堵程度的滤尘网脏堵检测单元;所述滤尘网脏堵检测单元包括通过接插件连接的发射接收单元和检测单元,所述检测单元包括用于向滤尘网发射光线的光发射单元和用于接收透过滤尘网的透射光或者经过滤尘网漫反射的反射光的光敏元件,所述发射接收单元用于控制所述光发射单元发光以及用于将所述光敏元件接收的透射光或者反射光的光照强度转化为用于表示滤尘网脏堵程度的数值。
13.根据权利要求10~12任一所述的基于风机功率的空调换热器脏堵检测***,其特征在于,所述第一风机转速为当前风机转速或预设的目标风机转速。
14.根据权利要求13所述的基于风机功率的空调换热器脏堵检测***,其特征在于,所述第二获取模块包括:
第一存储单元,用于存储预先建立的不同风机转速下滤尘网脏堵程度与风机功率的第一函数关系式;和/或用于存储预先建立的目标风机转速下滤尘网脏堵程度与风机功率的第二函数关系式;
第一计算单元,用于将所述滤尘网脏堵程度带入到当前风机转速对应的第一函数关系式中,生成所述滤尘网脏堵程度在当前风机转速下对应的第一风机功率;和/或用于将所述滤尘网脏堵程度带入到目标风机转速对应的第二函数关系式中,生成所述滤尘网脏堵程度在目标风机转速下对应的第一风机功率。
15.根据权利要求14所述的基于风机功率的空调换热器脏堵检测***,其特征在于,所述第三获取模块包括:
参数采集单元,用于采集第一风机转速下的实时电压、实时电流、空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度;
第二计算单元,用于根据所述实时电压和实时电流,计算风机实时功率;
第三计算单元,用于根据空调供电电压、压缩机运行频率、导风条角度、换热器温度和/或室内空气湿度,计算风机功率补偿量;
第四计算单元,用于对风机实时功率和风机功率补偿量求和,生成第一风机转速下室内机整体脏堵程度对应的第二风机功率。
16.根据权利要求15所述的基于风机功率的空调换热器脏堵检测***,其特征在于,所述第四获取模块包括:
第二存储单元,用于存储预先建立的换热器脏堵等级和不同风机转速、风机功率变化量的第一对应关系表;和/或用于存储预先建立的目标风机转速下换热器脏堵等级和风机功率变化量的第二对应关系表;
查询单元,用于查询所述第一对应关系表,获取所述风机功率变化量在当前风机转速下对应的换热器脏堵等级;或者查询所述第二对应关系表,获取所述风机功率变化量在目标风机转速下对应的换热器脏堵等级。
17.一种空调,其特征在于,包括权利要求10~16任一所述的基于风机功率的空调换热器脏堵检测***。
CN201610793705.2A 2016-08-31 2016-08-31 基于风机功率的空调换热器脏堵检测方法、***和空调 Active CN106352634B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610793705.2A CN106352634B (zh) 2016-08-31 2016-08-31 基于风机功率的空调换热器脏堵检测方法、***和空调
PCT/CN2017/075544 WO2018040527A1 (zh) 2016-08-31 2017-03-03 基于风机功率的空调换热器脏堵检测方法、***和空调

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610793705.2A CN106352634B (zh) 2016-08-31 2016-08-31 基于风机功率的空调换热器脏堵检测方法、***和空调

Publications (2)

Publication Number Publication Date
CN106352634A CN106352634A (zh) 2017-01-25
CN106352634B true CN106352634B (zh) 2018-12-28

Family

ID=57857818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610793705.2A Active CN106352634B (zh) 2016-08-31 2016-08-31 基于风机功率的空调换热器脏堵检测方法、***和空调

Country Status (2)

Country Link
CN (1) CN106352634B (zh)
WO (1) WO2018040527A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110469944A (zh) * 2019-08-16 2019-11-19 青岛海尔空调器有限总公司 空调自清洁的方法及装置、空调

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106352634B (zh) * 2016-08-31 2018-12-28 广东美的制冷设备有限公司 基于风机功率的空调换热器脏堵检测方法、***和空调
CN107388632A (zh) * 2017-07-25 2017-11-24 广东美的暖通设备有限公司 空气源热泵的控制方法、控制***以及空气源热泵
CN108397864B (zh) * 2018-01-22 2020-04-24 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108317676B (zh) * 2018-01-22 2020-04-24 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108413577A (zh) * 2018-02-14 2018-08-17 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108489018A (zh) * 2018-02-14 2018-09-04 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108444061A (zh) * 2018-02-14 2018-08-24 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108444060B (zh) * 2018-02-14 2021-04-20 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN108488992B (zh) * 2018-03-30 2021-03-23 Tcl空调器(中山)有限公司 一种空调器过滤网脏堵提示方法、空调器及存储介质
CN108826581B (zh) * 2018-05-03 2023-06-30 珠海格力电器股份有限公司 空调过滤网清洗判断方法
CN110657553B (zh) * 2018-06-28 2021-01-29 青岛海尔空调器有限总公司 空调器过滤网脏堵检测方法及计算机存储介质
CN110873428A (zh) * 2018-09-03 2020-03-10 青岛海尔空调器有限总公司 空调清洁控制方法及装置
CN110873427A (zh) * 2018-09-03 2020-03-10 青岛海尔空调器有限总公司 空调器自清洁方法及装置、空调器、计算机设备、存储介质
CN109373505A (zh) * 2018-10-26 2019-02-22 奥克斯空调股份有限公司 一种空调清洁提醒控制方法及空调器
DE102019105749A1 (de) * 2019-03-07 2020-09-10 Ebm-Papst Landshut Gmbh Verfahren zur Erkennung eines fehlerhaften Betriebs eines über einen Gleichstrommotor angetriebenen Gasgebläses
CN109916050B (zh) * 2019-03-21 2021-04-20 青岛海尔空调器有限总公司 空调器自清洁控制方法
CN112240627B (zh) * 2019-07-16 2022-04-19 青岛海尔空调器有限总公司 空调器控制方法和空调器
CN110469940B (zh) * 2019-07-17 2021-09-21 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110469941B (zh) * 2019-07-17 2021-09-21 青岛海尔空调器有限总公司 用于空调器的自清洁控制方法
CN110470029B (zh) * 2019-07-22 2022-04-19 青岛海尔空调器有限总公司 用于控制空调自清洁的方法及装置、空调
CN110455069A (zh) * 2019-08-01 2019-11-15 珠海格力电器股份有限公司 自清洁烘干机及其控制方法
CN110410932A (zh) * 2019-08-08 2019-11-05 宁波奥克斯电气股份有限公司 空调积尘检测方法、装置、空调器及计算机可读存储介质
CN112440686A (zh) * 2019-08-27 2021-03-05 北汽福田汽车股份有限公司 用于电子设备的恒风量控制方法、装置和车辆
CN110608509B (zh) * 2019-10-08 2020-10-27 宁波奥克斯电气股份有限公司 一种过滤网脏堵检测方法、装置、空调器及存储介质
CN110940054B (zh) * 2019-10-29 2021-05-28 珠海格力电器股份有限公司 一种空调滤网脏堵检测控制方法、计算机可读存储介质及空调
CN110848922B (zh) * 2019-11-29 2021-11-19 广东美的制冷设备有限公司 空调器及其自清洁控制方法和控制装置
CN111578449B (zh) * 2020-05-09 2022-06-24 宁波奥克斯电气股份有限公司 一种空调过滤网脏堵识别方法、装置、空调器及存储介质
CN111912080A (zh) * 2020-05-26 2020-11-10 海信(山东)空调有限公司 一种空调器及自清洁方法
CN111895652A (zh) * 2020-07-06 2020-11-06 华帝股份有限公司 一种燃气热水器及其控制方法
CN111854055A (zh) * 2020-07-27 2020-10-30 广东美的暖通设备有限公司 空调器的自清洁方法、装置、空调器和电子设备
CN112032855B (zh) * 2020-09-02 2022-01-18 青岛海信日立空调***有限公司 空调室外机
CN113091313A (zh) * 2021-03-29 2021-07-09 青岛海尔空调器有限总公司 过滤尘网防拆卸控制方法、***以及暖风机
CN113531778B (zh) * 2021-07-09 2023-04-21 青岛海尔空调器有限总公司 室外换热器的管外自清洁控制方法
CN113639411B (zh) * 2021-07-15 2023-03-21 青岛海尔空调器有限总公司 室外换热器的管外自清洁控制方法
CN113847719A (zh) * 2021-09-26 2021-12-28 佛山市顺德区美的电子科技有限公司 一种送风装置及其控制方法
WO2023045419A1 (zh) * 2021-09-26 2023-03-30 佛山市顺德区美的电子科技有限公司 一种送风装置及其控制方法
CN114112460A (zh) * 2021-11-01 2022-03-01 广东美的制冷设备有限公司 家电设备的脏堵监测方法、装置及家电设备
CN114182513B (zh) * 2021-11-30 2023-03-28 珠海格力电器股份有限公司 一种烘干滤网冲洗控制方法以及热泵洗衣机
DE102023102297A1 (de) 2022-02-01 2023-08-10 Regal Beloit America, Inc. Detektionssystem für blockierte Spule
CN115247861B (zh) * 2022-06-28 2023-09-08 浙江中广电器集团股份有限公司 一种空调器及其除尘控制方法
CN115574860B (zh) * 2022-09-21 2023-04-07 爱优特空气技术(上海)有限公司 一种微静电集尘模块脏堵状况自动识别装置及方法
CN116447633B (zh) * 2023-04-21 2023-09-15 易集康健康科技(杭州)有限公司 一种用于养生睡眠舱的温度调节***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174815A (ja) * 2008-01-25 2009-08-06 Daikin Ind Ltd 空調機の室内ユニット
CN104848505A (zh) * 2015-04-06 2015-08-19 杭州卡丽科技有限公司 新风***过滤装置堵塞判断方法及新风主机和新风***
CN104990205A (zh) * 2015-06-05 2015-10-21 广东美的制冷设备有限公司 空调器检测方法及装置
CN105004013A (zh) * 2015-08-04 2015-10-28 珠海格力电器股份有限公司 空调室内机过滤网脏堵检测方法及空调***控制方法
CN105627518A (zh) * 2016-01-20 2016-06-01 广东美的制冷设备有限公司 空调器的脏堵检测方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104110781B (zh) * 2013-11-21 2017-04-19 广东美的制冷设备有限公司 空调器及其脏堵检测控制方法和装置
CN104990202B (zh) * 2015-05-29 2017-07-18 广东美的制冷设备有限公司 空调器的脏堵控制方法、装置及室内机
CN106352634B (zh) * 2016-08-31 2018-12-28 广东美的制冷设备有限公司 基于风机功率的空调换热器脏堵检测方法、***和空调

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174815A (ja) * 2008-01-25 2009-08-06 Daikin Ind Ltd 空調機の室内ユニット
CN104848505A (zh) * 2015-04-06 2015-08-19 杭州卡丽科技有限公司 新风***过滤装置堵塞判断方法及新风主机和新风***
CN104990205A (zh) * 2015-06-05 2015-10-21 广东美的制冷设备有限公司 空调器检测方法及装置
CN105004013A (zh) * 2015-08-04 2015-10-28 珠海格力电器股份有限公司 空调室内机过滤网脏堵检测方法及空调***控制方法
CN105627518A (zh) * 2016-01-20 2016-06-01 广东美的制冷设备有限公司 空调器的脏堵检测方法及装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110469944A (zh) * 2019-08-16 2019-11-19 青岛海尔空调器有限总公司 空调自清洁的方法及装置、空调

Also Published As

Publication number Publication date
WO2018040527A1 (zh) 2018-03-08
CN106352634A (zh) 2017-01-25

Similar Documents

Publication Publication Date Title
CN106352634B (zh) 基于风机功率的空调换热器脏堵检测方法、***和空调
CN106322678B (zh) 一种空调换热器脏堵检测方法、***和空调
CN106440186B (zh) 基于单个压力传感器的换热器脏堵检测方法、***和空调
CN106091291B (zh) 一种空调风量自补偿控制方法、控制***和空调
CN111520815A (zh) 一种空调及其控制方法
CN106247563B (zh) 基于双侧压差的空调脏堵检测方法、***和空调
CN106422594B (zh) 一种滤尘网漏装检测方法、***和家用电器
CN107514680A (zh) 空调器室内机
CN109916040A (zh) 空调器自清洁控制方法和空调器
WO2018040618A1 (zh) 空调换热器脏堵检测方法、***和空调
CN109489215A (zh) 一种风速自适应控制方法、控制装置和组合式空调机组
WO2018040616A1 (zh) 基于单个压力传感器的空调脏堵检测方法、***和空调器
CN108849114A (zh) 一种大豆种子育苗用检测装置
CN201688865U (zh) 一种体育馆室内环境监测***
CN109916050A (zh) 空调器自清洁控制方法
CN109212135A (zh) 公共场所空气环境监测公示***
CN107272791A (zh) 一种鸡舍综合智能控制***
CN205038459U (zh) 一种禽舍的环境调控***
CN209628038U (zh) 一种农业种子催芽装置
CN208205268U (zh) 一种双风道新风水洗空气净化机
CN205536208U (zh) 基于单片机的分体式空气颗粒物测量和智能过滤装置
CN209514443U (zh) 养殖场禽舍环境控制装置
CN206755499U (zh) 一种空气智能检测控制***
CN104251534B (zh) 空调器以及该空调器的控制方法
CN203364284U (zh) 置换新风***的独立支管控制送风***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant