CN106198477A - 用于原子荧光光谱仪的氢化物发生装置以及发生方法 - Google Patents

用于原子荧光光谱仪的氢化物发生装置以及发生方法 Download PDF

Info

Publication number
CN106198477A
CN106198477A CN201610616132.6A CN201610616132A CN106198477A CN 106198477 A CN106198477 A CN 106198477A CN 201610616132 A CN201610616132 A CN 201610616132A CN 106198477 A CN106198477 A CN 106198477A
Authority
CN
China
Prior art keywords
valve
hydride
testing sample
standard
generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610616132.6A
Other languages
English (en)
Inventor
郑逢喜
叶建平
赵萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Baode Instrument Co Ltd
Original Assignee
Beijing Baode Instrument Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Baode Instrument Co Ltd filed Critical Beijing Baode Instrument Co Ltd
Priority to CN201610616132.6A priority Critical patent/CN106198477A/zh
Publication of CN106198477A publication Critical patent/CN106198477A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • G01N21/6404Atomic fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明的用于原子荧光光谱仪的氢化物发生装置以及发生方法,其中氢化物发生装置,包括:容器、混合线圈、进样泵、还原剂管路、混合反应块、第一阀、第二阀、第三阀分别用于控制加入容器内的标准溶液、稀释液、待测样品的量。本发明的用于原子荧光光谱仪的氢化物发生方法,包括:在混合反应块中产生包含被测元素的氢化物气体,氢化物气体被送入原子化器进行原子化,产生的被测元素原子经特征光源的照射后产生荧光;绘制标准曲线,从标准曲线与横坐标的交叉点推算出待测样品的含量。本发明的技术方案能够全自动配置含待测样品的不同浓度的系列标准溶液,大大简化了标准加入法的测试过程,缩短了检测时间,降低了试剂消耗。

Description

用于原子荧光光谱仪的氢化物发生装置以及发生方法
技术领域
本发明涉及分析化学领域,特别是涉及一种用于原子荧光光谱仪的氢化物发生装置以及发生方法。
背景技术
原子荧光光谱法(Atomic Fluorescence Spectrometry,AFS)是基于测量分析物气态自由原子吸收辐射被激发后去激发所发射的特征谱线强度进行定量分析的痕量元素分析方法[3]。氢化物发生(Hydride Generation,HG)—原子荧光光谱法(HG-AFS)是氢化物发生法和原子荧光光谱法的联用技术。该技术具有高灵敏度、低检出限,谱线简单、选择性好,分析曲线线性范围宽,可实现多元素同时测定,易于自动化,仪器结构简单,价格适宜,便于推广等许多优点。经过国内众多科学工作者的不断努力,目前氢化物发生—原子荧光光谱仪在我国已经得到基本普及,成为分析实验室常规分析仪器之一。
如图1所示,氢化物发生工作原理如下:待测样品(酸性溶液)与还原剂(碱性溶液)由进样泵10泵入混合反应块20中,在混合反应块20混合反应产生被测元素的氢化物气体,氢化物气体进气液分离器30进行气液分离后,氢化物气体被送入原子化器进行原子化,产生的被测元素原子经特征光源的照射后产生荧光,荧光经光电转换后其电信号由检测***检出,由测得的荧光信号通过预先测得的标准曲线反算出被测元素的含量。
在用现有的氢化物发生-原子荧光仪器检测大批量样品时,一般采用的都是氢化物发生-标准曲线法。用标准曲线法来测定未知样品的含量,一方面要求标准系列与未知样品的基体必须要进行精确的匹配,另一方面,标准曲线法还要求未知样品和标准样品在“同样条件”下测量。而在实际测量中,特别是在大批量样品的测试过程中,很难做到真正的“同样条件”。如现有的氢化物发生-原子荧光仪器中,影响仪器稳定性的因素很多,除了仪器本身的条件如空心阴极灯灯电流、光电倍增管负高压、载气流量、屏蔽气流量、原子化器温度和高度等外,还有氢化反应***中还原剂浓度和流量、样品的酸度和进样量以及其它如光源的波动和漂移、环境温度对氢化反应速度的影响等不可控因素,造成了仪器长期稳定性不甚理想。如何提高现有原子荧光的长期稳定性是原子荧光发展的重要课题之一。
标准加入法是化学分析中经常使用的一种分析方法,该方法可以自动进行基体匹配,补偿样品基体的物理和化学干扰,提高测定的准确度,因此能有效地解决上述现有氢化物发生—原子荧光仪器中存在的许多不稳定因素。然而与标准曲线法相比,传统的标准加入法需要先人工配置多份加入等量待测样品溶液的不同浓度的标准溶液,然后再分别逐个测试这系列溶液,耗时费力,不适用于大批量样品的测量。
发明内容
本发明要解决的技术问题是提供一种效率较高、试剂消耗显著降低的用于原子荧光光谱仪的氢化物发生装置以及发生方法。
本发明的用于原子荧光光谱仪的氢化物发生装置,包括:
用于容纳待检溶液的容器,所述容器的进口分别通过第一阀与标准溶液的第一输入管连通,通过第二阀与稀释液的第二输入管连通,通过第三阀与待测样品的第三输入管连通;
混合线圈,与所述容器通过管路连接,用于混合从所述容器流入混合线圈的液体;
进样泵,与所述混合线圈通过管路连接;
还原剂管路,与进样泵通过管路连接;
混合反应块,与进样泵通过管路连接,所述进样泵用于分别将所述混合线圈与还原剂管路内的液体泵进混合反应块并在混合反应块内反应,混合反应块用于与气液分离器通过管路连接;
所述第一阀、第二阀、第三阀分别用于控制加入所述容器内的标准溶液、稀释液、待测样品的量。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,还包括控制器,所述控制器分别与所述第一阀、第二阀、第三阀连接,所述控制器用于控制第一阀、第二阀、第三阀的开启时间,以此控制加入所述容器内的标准溶液、稀释液、待测样品的量。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,所述第一阀、第二阀、第三阀为电磁阀或比例稀释阀。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,所述进样泵为蠕动泵或注射泵或柱塞泵或液相色谱泵。
本发明的用于原子荧光光谱仪的氢化物发生方法,包括:
将第一输入管的管口放置在标准溶液中,将第二输入管的管口放置在稀释液中,将第三输入管的管口放置在待测样品中;
利用第一阀、第二阀、第三阀控制加入所述容器内的标准溶液、稀释液、待测样品的量,使所述容器内分别得到多种不同浓度但体积相同的含等量待测样品的溶液;
将多种不同浓度但体积相同的含等量待测样品的溶液分别与还原剂由进样泵泵入混合反应块中,在混合反应块中产生多种包含被测元素的氢化物气体,氢化物气体进气液分离器进行气液分离后,氢化物气体被送入原子化器进行原子化,产生的被测元素原子经特征光源的照射后产生荧光;
绘制以所述荧光的强度为纵坐标,溶液的浓度为横坐标的标准曲线,从标准曲线与横坐标的交叉点推算出待测样品的含量。
本发明的技术方案能够全自动配置含待测样品的不同浓度的系列标准溶液,大大简化了标准加入法的测试过程,缩短了检测时间,降低了试剂消耗。本发明的用于原子荧光光谱仪的氢化物发生装置可用于传统的氢化物发生-标准曲线法测量,非常灵活方便。
附图说明
图1为现有的用于原子荧光光谱仪的氢化物发生装置的结构示意图;
图2为本发明的用于原子荧光光谱仪的氢化物发生装置的结构示意图;
图3为本发明的用于原子荧光光谱仪的氢化物发生方法的具体实施例中进样阀的控制脉冲时序图;
图4为本发明的用于原子荧光光谱仪的氢化物发生方法的具体实施例的信号和校正曲线示意图。
具体实施方式
如图2所示,本发明的用于原子荧光光谱仪的氢化物发生装置,包括:
用于容纳待检溶液的容器1,容器1的进口分别通过第一阀11与标准溶液的第一输入管21连通,通过第二阀12与稀释液的第二输入管22连通,通过第三阀13与待测样品的第三输入管23连通;
混合线圈2,与容器1通过管路连接,用于混合从容器流入混合线圈的液体;
进样泵3,与混合线圈2通过管路连接;
还原剂管路4,与进样泵3通过管路连接;
混合反应块5,与进样泵3通过管路连接,进样泵3用于分别将混合线圈2与还原剂管路4内的液体泵进混合反应块5并在混合反应块5内反应,混合反应块用于与气液分离器通过管路连接;
第一阀11、第二阀12、第三阀13分别用于控制加入容器内的标准溶液、稀释液、待测样品的量。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,还包括控制器6,控制器6分别与第一阀11、第二阀12、第三阀13连接,控制器6用于控制第一阀11、第二阀12、第三阀13的开启时间,以此控制加入容器1内的标准溶液、稀释液、待测样品的量。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,第一阀11、第二阀12、第三阀13为电磁阀或比例稀释阀。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,进样泵3为蠕动泵或注射泵或柱塞泵或液相色谱泵。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,控制器6可以为电脑或PLC,即可编程逻辑控制器。
本发明的用于原子荧光光谱仪的氢化物发生装置,其中,第一阀11、第二阀12、第三阀13统称进样阀。第一阀11、第二阀12、第三阀13包括但不限于一个或多个比例稀释阀、电磁阀等;进样泵3包括但不限于一个或多个蠕动泵、注射泵、气压泵等。
本发明的用于原子荧光光谱仪的氢化物发生装置,只要关断第一阀和第二阀,让第三阀常开,即进行传统的氢化物发生-标准曲线法测量,也即该装置既可以进行全自动在线氢化物发生-快速标准加入法测量,也可以快速方便地进行常规的氢化物发生-标准曲线法测量,非常灵活方便。
本发明的用于原子荧光光谱仪的氢化物发生方法,包括:
将第一输入管的管口放置在标准溶液中,将第二输入管的管口放置在稀释液中,将第三输入管的管口放置在待测样品中;
利用第一阀、第二阀、第三阀控制加入所述容器内的标准溶液、稀释液、待测样品的量,使所述容器内分别得到多种不同浓度但体积相同的含等量待测样品的溶液;
将多种不同浓度但体积相同的含等量待测样品的溶液分别与还原剂由进样泵泵入混合反应块中,在混合反应块中产生多种包含被测元素的氢化物气体,氢化物气体进气液分离器进行气液分离后,氢化物气体被送入原子化器进行原子化,产生的被测元素原子经特征光源的照射后产生荧光;
绘制以所述荧光的强度为纵坐标,溶液的浓度为横坐标的标准曲线,从标准曲线与横坐标的交叉点推算出待测样品的含量。
本发明的技术方案能够全自动配置含待测样品的不同浓度的系列标准溶液,大大简化了标准加入法的测试过程,缩短了检测时间,降低了试剂消耗。本发明的用于原子荧光光谱仪的氢化物发生装置可用于传统的氢化物发生-标准曲线法测量,非常灵活方便。
本发明的用于原子荧光光谱仪的氢化物发生方法的具体实施例如下:
将第一输入管的管口放置在标准溶液中,将第二输入管的管口放置在稀释液中,将第三输入管的管口放置在待测样品中;
保证进样泵输出混合样流速保持恒定;
利用第一阀、第二阀、第三阀控制加入所述容器内的标准溶液、稀释液、待测样品的量,使所述容器内分别得到多种不同浓度但体积相同的含等量待测样品的溶液;
将多种不同浓度但体积相同的含等量待测样品的溶液分别与还原剂由进样泵泵入混合反应块中,在混合反应块中产生多种包含被测元素的氢化物气体,氢化物气体进气液分离器进行气液分离后,氢化物气体被送入原子化器进行原子化,产生的被测元素原子经特征光源的照射后产生荧光;
绘制以所述荧光的强度为纵坐标,溶液的浓度为横坐标的标准曲线,从标准曲线与横坐标的交叉点推算出待测样品的含量。
具体来说,通过控制第一阀、第二阀、第三阀打开时间的长短来控制三种试剂的混合比例。其控制方式采用脉冲控制,脉冲时序见图3。
其中:TA为第一阀打开时间,TB为第二阀打开时间,TC为第三阀打开时间,T为三个阀的启动周期,周期的长短体现了混样的均匀度。在保证各阀最小启动时间的前提下,T越小混样的均匀性越好。
TA+TB+TC=T,
TA:TB:TC=标准溶液的量:稀释液的量:待测样品的量。
具体流程如下:将第一阀的第一输入管21(进样毛细管)的管口一直放置在标准溶液中,将第二阀的第二输入管22(进样毛细管)的管口一直放置在空白溶液(稀释液)中,将第三阀的第三输入管23(进样毛细管)的管口一直放置在待测未知样品中。还原剂管路4(还原剂毛细管)的管口一直放置在还原剂瓶中,保证进样泵3输出混合样流速保持恒定,在进样泵3输出混合样流速保持恒定的情况下,三个阀的打开时间比即为三种试剂的混合比例。
假设第一阀、第二阀、第三阀三个阀的打开时间比例如下表所示:
在上表的参数下,假设第一输入管21(进样毛细管)的溶液浓度为100μg/L,则对应TA占进样时间比例(%)为0、5、10、20、40的溶液浓度分别为0、5μg/L、10μg/L、20μg/L、40μg/L。测得的连续信号和校正曲线示意图分别见图4的a和b。待测样品的浓度为2CX
本发明技术方案改进传统的标准加入法,使之既具备现有氢化物发生-标准曲线法的测量速度,同时还保留标准加入法的优点,成功地解决了现有氢化物发生-原子荧光光谱仪长期使用稳定性差的难题。
本发明技术方案可以快速配置含待测样品的不同浓度的标准系列溶液,且边配置边进行氢化反应边检测,从而大大降低了样品的检测时间和试剂消耗量。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

1.一种用于原子荧光光谱仪的氢化物发生装置,其特征在于,包括:
用于容纳待检溶液的容器,所述容器的进口分别通过第一阀与标准溶液的第一输入管连通,通过第二阀与稀释液的第二输入管连通,通过第三阀与待测样品的第三输入管连通;
混合线圈,与所述容器通过管路连接,用于混合从所述容器流入混合线圈的液体;
进样泵,与所述混合线圈通过管路连接;
还原剂管路,与进样泵通过管路连接;
混合反应块,与进样泵通过管路连接,所述进样泵用于分别将所述混合线圈与还原剂管路内的液体泵进混合反应块并在混合反应块内反应,混合反应块用于与气液分离器通过管路连接;
所述第一阀、第二阀、第三阀分别用于控制加入所述容器内的标准溶液、稀释液、待测样品的量。
2.如权利要求1所述的利用标准加入法进行测量的测量装置,其特征在于,还包括控制器,所述控制器分别与所述第一阀、第二阀、第三阀连接,所述控制器用于控制第一阀、第二阀、第三阀的开启时间,以此控制加入所述容器内的标准溶液、稀释液、待测样品的量。
3.如权利要求2所述的利用标准加入法进行测量的测量装置,其特征在于,所述第一阀、第二阀、第三阀为电磁阀或比例稀释阀。
4.如权利要求2所述的利用标准加入法进行测量的测量装置,其特征在于,所述进样泵为蠕动泵或注射泵或柱塞泵或液相色谱泵。
5.一种用于原子荧光光谱仪的氢化物发生方法,其特征在于,包括:
将第一输入管的管口放置在标准溶液中,将第二输入管的管口放置在稀释液中,将第三输入管的管口放置在待测样品中;
利用第一阀、第二阀、第三阀控制加入所述容器内的标准溶液、稀释液、待测样品的量,使所述容器内分别得到多种不同浓度但体积相同的含等量待测样品的溶液;
将多种不同浓度但体积相同的含等量待测样品的溶液分别与还原剂由进样泵泵入混合反应块中,在混合反应块中产生多种包含被测元素的氢化物气体,氢化物气体进气液分离器进行气液分离后,氢化物气体被送入原子化器进行原子化,产生的被测元素原子经特征光源的照射后产生荧光;
绘制以所述荧光的强度为纵坐标,溶液的浓度为横坐标的标准曲线,从标准曲线与横坐标的交叉点推算出待测样品的含量。
CN201610616132.6A 2016-07-29 2016-07-29 用于原子荧光光谱仪的氢化物发生装置以及发生方法 Pending CN106198477A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610616132.6A CN106198477A (zh) 2016-07-29 2016-07-29 用于原子荧光光谱仪的氢化物发生装置以及发生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610616132.6A CN106198477A (zh) 2016-07-29 2016-07-29 用于原子荧光光谱仪的氢化物发生装置以及发生方法

Publications (1)

Publication Number Publication Date
CN106198477A true CN106198477A (zh) 2016-12-07

Family

ID=57498278

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610616132.6A Pending CN106198477A (zh) 2016-07-29 2016-07-29 用于原子荧光光谱仪的氢化物发生装置以及发生方法

Country Status (1)

Country Link
CN (1) CN106198477A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979985A (zh) * 2017-05-02 2017-07-25 维科托(北京)科技有限公司 液相色谱原子光谱联用***
CN110346485A (zh) * 2019-08-27 2019-10-18 郑州科技学院 一种反相液相色谱混标加样增量法测定食品中阿斯巴甜和阿力甜的方法
WO2020087894A1 (zh) * 2018-10-29 2020-05-07 重庆民泰新农业科技发展集团有限公司 外管进样的原子荧光分析方法及原子荧光仪
WO2020087891A1 (zh) * 2018-10-29 2020-05-07 重庆民泰新农业科技发展集团有限公司 水载流原子荧光分析装置及原子荧光分析方法
CN111366547A (zh) * 2018-12-26 2020-07-03 贵州中烟工业有限责任公司 一种用连续流动法测定烟草或烟草制品中α-氨基氮的检测方法
CN114354550A (zh) * 2021-11-23 2022-04-15 中国恩菲工程技术有限公司 锑在线还原检测装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2231419Y (zh) * 1994-01-15 1996-07-17 地质矿产部地球物理地球化学勘查研究所实验工厂 气压式自动定量加液装置
US6333199B1 (en) * 1979-03-27 2001-12-25 Laboratory Of Molecular Biophotonics Method of analyzing bisphenols and polyphenols
CN101609046A (zh) * 2009-07-23 2009-12-23 江苏天瑞仪器股份有限公司 一种用于原子荧光光谱仪的进样与氢化物发生工艺及***
CN101769863A (zh) * 2010-01-26 2010-07-07 宇星科技发展(深圳)有限公司 低检测下限总砷在线分析仪及其分析方法
CN101576494B (zh) * 2009-04-09 2010-09-29 广州大学 一种消除氢化物发生原子荧光法测量误差的方法
CN102778383A (zh) * 2012-07-20 2012-11-14 清华大学 一种溶液自动稀释设备
CN204389395U (zh) * 2014-10-22 2015-06-10 廊坊开元高技术开发公司 用于氢火焰原子荧光光谱仪的外供氢气控制装置
CN105806689A (zh) * 2016-03-11 2016-07-27 中国农业科学院农业质量标准与检测技术研究所 一种原子荧光法测砷的装置及方法
CN205958458U (zh) * 2016-07-29 2017-02-15 北京宝德仪器有限公司 用于原子荧光光谱仪的氢化物发生装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333199B1 (en) * 1979-03-27 2001-12-25 Laboratory Of Molecular Biophotonics Method of analyzing bisphenols and polyphenols
CN2231419Y (zh) * 1994-01-15 1996-07-17 地质矿产部地球物理地球化学勘查研究所实验工厂 气压式自动定量加液装置
CN101576494B (zh) * 2009-04-09 2010-09-29 广州大学 一种消除氢化物发生原子荧光法测量误差的方法
CN101609046A (zh) * 2009-07-23 2009-12-23 江苏天瑞仪器股份有限公司 一种用于原子荧光光谱仪的进样与氢化物发生工艺及***
CN101769863A (zh) * 2010-01-26 2010-07-07 宇星科技发展(深圳)有限公司 低检测下限总砷在线分析仪及其分析方法
CN102778383A (zh) * 2012-07-20 2012-11-14 清华大学 一种溶液自动稀释设备
CN204389395U (zh) * 2014-10-22 2015-06-10 廊坊开元高技术开发公司 用于氢火焰原子荧光光谱仪的外供氢气控制装置
CN105806689A (zh) * 2016-03-11 2016-07-27 中国农业科学院农业质量标准与检测技术研究所 一种原子荧光法测砷的装置及方法
CN205958458U (zh) * 2016-07-29 2017-02-15 北京宝德仪器有限公司 用于原子荧光光谱仪的氢化物发生装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106979985A (zh) * 2017-05-02 2017-07-25 维科托(北京)科技有限公司 液相色谱原子光谱联用***
CN106979985B (zh) * 2017-05-02 2020-07-28 维科托(北京)科技有限公司 液相色谱原子光谱联用***
WO2020087894A1 (zh) * 2018-10-29 2020-05-07 重庆民泰新农业科技发展集团有限公司 外管进样的原子荧光分析方法及原子荧光仪
WO2020087891A1 (zh) * 2018-10-29 2020-05-07 重庆民泰新农业科技发展集团有限公司 水载流原子荧光分析装置及原子荧光分析方法
CN111366547A (zh) * 2018-12-26 2020-07-03 贵州中烟工业有限责任公司 一种用连续流动法测定烟草或烟草制品中α-氨基氮的检测方法
CN110346485A (zh) * 2019-08-27 2019-10-18 郑州科技学院 一种反相液相色谱混标加样增量法测定食品中阿斯巴甜和阿力甜的方法
CN114354550A (zh) * 2021-11-23 2022-04-15 中国恩菲工程技术有限公司 锑在线还原检测装置及方法

Similar Documents

Publication Publication Date Title
CN106198477A (zh) 用于原子荧光光谱仪的氢化物发生装置以及发生方法
CN204154649U (zh) 一种铬元素形态分析装置
CN102253108A (zh) 高压消解icp-ms法测定原油中稀土元素含量的方法
CN107976481B (zh) 一种中药材中钪含量的检测方法
CN111103271B (zh) 外管进样的原子荧光分析方法
WO2020087893A1 (zh) 以水为载流的原子荧光分析方法及分析装置
CN101776581A (zh) 一种水样中痕量污染物的光度分析方法和装置
CN204128953U (zh) 自动进样气相分子吸收光谱仪
CN102519922B (zh) 一种多元素同时测定的原子荧光装置及其测定方法
CN106018863A (zh) 利用标准加入法进行测量的测量装置以及测量流程
CN103293175A (zh) 测定液体水玻璃化学成分的方法
CN205958458U (zh) 用于原子荧光光谱仪的氢化物发生装置
CN113960153B (zh) 血清中12种元素的icp-ms检测方法
CN109781684A (zh) 一种海洋沉积物中汞和砷的检测方法
CN205958459U (zh) 全自动液体进样四通道原子荧光光谱仪
CN101187637A (zh) 海水中酚类化合物的自动分析方法
CN203216848U (zh) 一种原子荧光光谱仪进样装置
CN209707381U (zh) 一种用于液体阴极辉光放电原子发射光谱的自动进样***
CN105136831B (zh) 一种稀土冶炼分离过程质量配分量在线监测仪
CN102798695A (zh) 测定高纯及超纯氨中痕量氯含量的方法
Mozzhukhin et al. Stepwise injection analysis as a new method of flow analysis
CN206020441U (zh) 利用标准加入法进行测量的测量装置
CN210322809U (zh) 流动注射分析测定水中氰化物的装置
CN112666160B (zh) 多元素在线滴定方法和装置
CN112362768B (zh) 利用液相色谱串联质谱测定样品中Berol 185含量的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161207

RJ01 Rejection of invention patent application after publication