CN106169414A - 一种应力可控型硅基薄膜的制备方法 - Google Patents

一种应力可控型硅基薄膜的制备方法 Download PDF

Info

Publication number
CN106169414A
CN106169414A CN201610712335.5A CN201610712335A CN106169414A CN 106169414 A CN106169414 A CN 106169414A CN 201610712335 A CN201610712335 A CN 201610712335A CN 106169414 A CN106169414 A CN 106169414A
Authority
CN
China
Prior art keywords
base film
stress
preparation
silica
controllable type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610712335.5A
Other languages
English (en)
Inventor
周华芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Hiwafer Technology Co Ltd
Original Assignee
Chengdu Hiwafer Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Hiwafer Technology Co Ltd filed Critical Chengdu Hiwafer Technology Co Ltd
Priority to CN201610712335.5A priority Critical patent/CN106169414A/zh
Publication of CN106169414A publication Critical patent/CN106169414A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明公开了一种应力可控型硅基薄膜的制备方法,包括使用单频PECVD设备通过化学气相沉积法使原料气体在衬底材料上沉积、生长,得到硅基薄膜,制备时在原料气体中通入He和N2的过程,本发明过程简单,可控性高,能在单频射频源的PECVD设备中制备得到可在压应力与张应力之间大范围调整的、均匀性好、致密性高、成本低的硅基薄膜。

Description

一种应力可控型硅基薄膜的制备方法
技术领域
本发明涉及硅基薄膜的技术领域。
背景技术
随着传统光学、信息光学、光和无线通讯的不断扩展以及计算机技术、真空技术、光和微电子技术的飞速发展,薄膜光学器件以及薄膜电子器件得到了日益广泛的应用,如在半导体器件中作为表面钝化、金属层隔离介质、电容器介质等材料使用的硅基薄膜。
不同的应用对硅基薄膜性能的要求不同,特别是对薄膜应力的要求不同,薄膜应力的性质和大小直接影响薄膜元器件的性能、成品率、稳定性和可靠性。故制备满足不同应力要求的硅基薄膜对半导体器件而言是关键工艺之一。
目前常用且有效的调节硅基薄膜应力的方法之一是采用同时配置有高低频射频源的PECVD设备制备硅基薄膜,通常情况下高频射频源作用下所沉积的硅基薄膜呈现张应力,低频射频源作用下所沉积的硅基薄膜呈现压应力,通过高低频交替的过程,薄膜的应力由此实现张应力和压应力之间的转换。
目前常用且有效的调节硅基薄膜应力的另一种方法是选择应力性质相反的两种硅基薄膜进行组合,如氮化硅/氧化硅双层膜,取得应力平衡,由此得到与器件相适的薄膜材料。之所以采用双层膜或多层膜组合的方式,而非对单层膜进行厚度或形状调整,是因与宏观尺度材料不同,纳米级范围内的薄膜厚度变化和形状调整对应力大小的影响非常有限,不能得到期望的效果。
发明内容
本发明的目的是提供一种可在单频射频源的PECVD设备中制备得到的、单层膜即可在压应力与张应力之间大范围调整的、均匀性好、致密性高、成本低的硅基薄膜的制备方法。
本发明的技术方案如下:
一种应力可控型硅基薄膜的制备方法,其使用单频PECVD设备通过化学气相沉积法使原料气体在衬底材料上沉积、生长,得到硅基薄膜,制备时在原料气体中通入He和N2
在该技术方案中,He与N2作为调节气体加入,其中He在单频PECVD设备中形成He等离子体,相对于其它常用惰性调节气体而言,其具有更高的热导率,提高了反应腔室直径范围内反应物和生成物热分布的均匀性,同时N2的加入调节了等离子体气氛中的N2 +离子的分布,He的存在也进一步促进了N2 +离子的均匀分布,即两者不仅独立地具有调节硅基薄膜的成型质量的作用,同时相互间存在协同效应,通过共同作用增加了SiNX薄膜中Si-N的结合能力,提高了薄膜的均匀性与致密性。
上述制备方法的一种实施方案为:所述N2与He的流量比为0~10,不包括端点值0。
该实施方案对应硅基薄膜的应力要求,在该实施方案作用下,硅基薄膜的应力可调范围为压应力-1500Mpa~张应力2000Mpa,随着流量比的进一步提高,张应力还可进一步提高。
其进一步的实施方案为:所述N2与He的流量比为0~1,不包括端点值0。
该实施方案对应硅基薄膜的应力要求,在该实施方案作用下,硅基薄膜的应力可调范围为压应力-1500Mpa~张应力500Mpa。
所述应力可控型硅基薄膜的制备方法的另一种实施方案为:所述硅基薄膜为选自SiN薄膜、SiO2薄膜、SiON薄膜中的一种或多种。
其进一步的实施方案为:所述原料气体为选自SiH4、NH3、N2O中的一种或多种。
可以理解的是,因本发明是以制备硅基薄膜为目的,上述原料气体中至少应含有SiH4
所述应力可控型硅基薄膜的制备方法的另一种实施方案为:所述衬底材料为选自硅、砷化镓、GaN、SiC、蓝宝石中一种或多种。
本发明的技术方案在上述实施方案中,针对不同的衬底材料,均可得到在张应力与压应力之间大范围可调控的硅基薄膜,其并不因衬底材料的不同而只能得到单一应力性质的产品。
所述应力可控型硅基薄膜的制备方法的另一种实施方案为:所述硅基薄膜的沉积速率为20~35 nm/min。
在该实施方案中,硅基薄膜的沉积速率相对常规方法制备时更快,但得到的成品片内均匀性和致密性均表现优异。
所述应力可控型硅基薄膜的制备方法的另一种实施方案为::所述单频PECVD设备腔体内部真空压力为500~3000mTorr,腔体***频功率为100~500W,腔体内温度为230~350℃。
所述应力可控型硅基薄膜的制备方法的另一种实施方案为:通入N2的流量为0~5000sccm,通入He的流量为0~5000sccm。
所述应力可控型硅基薄膜的制备方法的另一种实施方案为:所述单频PECVD设备的频率为13.56MHz~2.45GHz。
本发明的有益效果如下:
(1)可在单频射频源的PECVD中制备得到应力可控的硅基薄膜,大幅降低设备成本;
(2)所得硅基薄膜可在单层状态下实现张应力与压应力之间的转换,大幅降低材料成本,提高材料应用范围,提高材料应用率,减少制备成本;
(3)可在较高的沉积速率下制备得到均匀性好、致密性高的硅基薄膜,减少了生产周期,提高了生产效率,降低了生产成本;
(4)当N2与He的流量比在0~10的范围内时,制备得到的硅基薄膜的应力可调范围至少为压应力-1500Mpa~张应力2000Mpa;
(5)针对不同的衬底材料,均可制备得到能够在压应力与张应力之间转换的硅基薄膜,降低了对衬底材料的选择性,减少了生产成本,提高了生产普适性;
(6)相对于高低频设备制备得到的硅基薄膜,本发明制备得到的硅基薄膜BOE蚀刻率平均降低50%以上,说明其致密性明显更好;
(7)本发明制备得到硅基薄膜在较高的沉积速率下,片内均匀性在4%以内,可满足高质量、大规模工业生产;
(8)本发明操作简单、可控性高。
附图说明
图1为使用Si作衬底材料、制备SiN薄膜时,N2/He流量比与薄膜应力变化趋势图;
图2为使用GaAs作衬底材料、制备SiN薄膜时,N2/He流量比与薄膜应力变化趋势图;
图3为使用Si作衬底材料、制备SiO2薄膜时,N2/He流量比与薄膜应力变化趋势图。
具体实施方式
实施例1
在衬底材料Si上制备SiN薄膜:
使用10wt%的HCl去离子水溶液清洗Si基片后放入频率为13.56MHz的单频PECVD设备的腔体内,其后将原料气体SiH4、NH3及N2、He从腔体顶部喷淋小孔均匀通入腔体内,腔体内温度设置为250℃,腔体内压力设置为1500mTorr,制备过程中射频源的功率设置为150W,SiH4流量为400sccm,NH3流量为20sccm,N2流量为0~5000sccm,He流量为0~5000sccm,实际流量根据流量比进行调整,薄膜沉积速率大于20nm/min,沉积时间为3min,从接近0开始调节N2/He的流量比至1,得到如附图1所示的N2/He流量比与薄膜应力变化趋势图,使用的应力测试设备为TOHO公司的应力测试仪,如附图1显示出在N2/He流量比变化的过程中,对应得到的SiN薄膜应力从压应力-1500Mpa变化到张应力500Mpa,即可得到应力可控型硅基薄膜,从制得的应力可控型硅基薄膜中随机选择4批次与由高低频设备制得的SiN 薄膜进行4种不同应力条件下的BOE蚀刻测试,测试结果如下表所示:
可见本发明制备得到的SiN膜致密性均较高低频设备制备的SiN薄膜好;同时,经测试所得SiN薄膜厚度片内均匀性在4%以内。
实施例2:
在衬底材料GaAs上制备SiN薄膜:
使用10wt%的HCl去离子水溶液清洗GaAs基片后放入频率为13.56MHz的单频PECVD设备的腔体内,其后将原料气体SiH4、NH3及N2、He从腔体顶部喷淋小孔均匀通入腔体内,腔体内温度设置为300℃,腔体内压力设置为2000mTorr,制备过程中射频源的功率设置为180W,SiH4流量为700sccm, NH3流量为50sccm,N2流量为0~5000sccm,He流量为0~5000sccm,薄膜沉积速率大于35nm/min,沉积时间为5min,从接近0开始调节N2/He的流量比至1,得到如附图2所示的N2/He流量比与薄膜应力变化趋势图(其中X轴为N2/He流量比,Y轴为应力)使用的应力测试设备为TOHO公司的应力测试仪,如附图2显示出在N2/He流量比变化的过程中,对应得到的SiN薄膜应力从压应力-800Mpa变化到张应力200Mpa,即得到应力可控型硅基薄膜;从制得的应力可控型硅基薄膜中随机选择4批次与由高低频设备制得的SiN 薄膜进行4种不同应力条件下的BOE蚀刻测试,测试结果如下表所示:
可见本发明制备得到的SiN膜致密性均较高低频设备制备的SiN薄膜好;同时,经测试所得SiN薄膜厚度片内均匀性在4%以内。
实施例3
在衬底材料SiC上制备SiN薄膜:
使用10wt%的HCl去离子水溶液清洗SiC基片后放入频率为2.45GHz的平板单频PECVD设备的腔体内,其后将原料气体SiH4、NH3及N2、He从腔体顶部喷淋小孔均匀通入腔体内,腔体内温度设置为350℃,腔体内压力设置为3000mTorr,制备过程中射频源的功率设置为500W,SiH4流量为700sccm, NH3流量为50sccm,N2流量为0~5000sccm,He流量为0~5000sccm,薄膜沉积速率大于30nm/min,沉积时间为4min,从接近0开始调节N2/He的流量比至10,在调节过程中,使用的应力测试设备测试得到的不同SiN薄膜应力,测试使用TOHO公司的应力测试仪,测试中可观察到随N2/He流量比从0增大到10,SiN的应力从压应力-1500Mpa连续变化至张应力2000Mpa,即通过本实施方案可得到应力可控型硅基薄膜,所得SiN薄膜厚度片内均匀性在4%以内。
实施例4
在衬底材料Si上制备SiO2薄膜:
使用10wt%的HCl去离子水溶液清洗Si基片后放入频率为13.56MHz的单频PECVD设备的腔体内,其后将原料气体SiH4、N2O及N2、He从腔体顶部喷淋小孔均匀通入腔体内,腔体内温度设置为300℃,腔体内压力设置为1000mTorr,制备过程中射频源的功率设置为100W,SiH4流量为1100sccm,N2O流量为4400sccm,N2流量为50~100sccm,He流量为2000~4500sccm,薄膜沉积速率大于25nm/min,沉积时间为3min,从接近0开始调节N2/He的流量比至2,得到如附图3所示的N2/He流量比与薄膜应力变化趋势图,使用的应力测试设备为TOHO公司的应力测试仪,如附图3显示出在N2/He流量比变化的过程中,对应得到的SiO2薄膜应力从压应力-350Mpa变化到张应力50Mpa,即可得到应力可控型硅基薄膜,所得SiO2薄膜厚度片内均匀性在4%以内。
实施例5
在衬底材料GaAs上制备SiO2薄膜:
使用10wt%的HCl去离子水溶液清洗GaAs基片后放入频率为13.56MHz的单频PECVD设备的腔体内,其后将原料气体SiH4、N2O及N2、He从腔体顶部喷淋小孔均匀通入腔体内,腔体内温度设置为350℃,腔体内压力设置为1000mTorr,制备过程中射频源的功率设置为150W,SiH4流量为1200sccm,N2O流量为4500sccm,N2流量为50~100sccm,He流量为2000~4500sccm,薄膜沉积速率大于30nm/min,沉积时间为4min,从接近0开始调节N2/He的流量比至5,在调节过程中使用的应力测试设备测试得到的不同SiO2薄膜应力,测试使用TOHO公司的应力测试仪,测试中可观察到随N2/He流量比从0增大到5的过程中对应得到的SiO2薄膜应力从压应力-450Mpa变化到张应力100Mpa,即可得到应力可控型硅基薄膜,所得SiO2薄膜厚度片内均匀性在4%以内。
实施例6
在衬底材料蓝宝石上制备SiO2薄膜:
使用10wt%的HCl去离子水溶液清洗蓝宝石基片后放入频率为2.45GHz的平板单频PECVD设备的腔体内,其后将原料气体SiH4、N2O及N2、He从腔体顶部喷淋小孔均匀通入腔体内,腔体内温度设置为300℃,腔体内压力设置为500mTorr,制备过程中射频源的功率设置为500W,SiH4流量为1200sccm,N2O流量为4500sccm,N2流量为50~100sccm,He流量为2000~4500sccm,薄膜沉积速率大于35nm/min,沉积时间为4min,从接近0开始调节N2/He的流量比至10,在调节过程中,使用的应力测试设备测试得到的不同SiO2薄膜应力,测试使用TOHO公司的应力测试仪,测试中可观察到随N2/He流量比从0增大到10,SiO2的应力从压应力-600Mpa连续变化至张应力1000Mpa,即通过本实施方案可得到应力可控型硅基薄膜,所得SiO2薄膜厚度片内均匀性在4%以内。
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (10)

1.一种应力可控型硅基薄膜的制备方法,其特征在于:使用单频PECVD设备通过化学气相沉积法使原料气体在衬底材料上沉积、生长,得到硅基薄膜,制备时在原料气体中通入He和N2
2.根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:所述N2与He的流量比为0~10,不包括端点值0。
3.根据权利要求2所述的应力可控型硅基薄膜的制备方法,其特征在于:所述N2与He的流量比为0~1,不包括端点值0。
4.根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:所述硅基薄膜为选自SiN薄膜、SiO2薄膜、SiON薄膜中的一种或多种。
5.根据权利要求4所述的应力可控型硅基薄膜的制备方法,其特征在于:所述原料气体为选自SiH4、NH3、N2O中的一种或多种。
6.根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:所述衬底材料为选自硅、砷化镓、GaN、SiC、蓝宝石中一种或多种。
7. 根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:所述硅基薄膜的沉积速率为20~35 nm/min。
8.根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:所述单频PECVD设备腔体内部真空压力为500~3000mTorr,腔体***频功率为100~500W,腔体内温度为230~350℃。
9.根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:通入N2的流量为0~5000sccm,通入He的流量为0~5000sccm。
10.根据权利要求1所述的应力可控型硅基薄膜的制备方法,其特征在于:所述单频PECVD设备的频率为13.56MHz~2.45GHz。
CN201610712335.5A 2016-08-23 2016-08-23 一种应力可控型硅基薄膜的制备方法 Pending CN106169414A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610712335.5A CN106169414A (zh) 2016-08-23 2016-08-23 一种应力可控型硅基薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610712335.5A CN106169414A (zh) 2016-08-23 2016-08-23 一种应力可控型硅基薄膜的制备方法

Publications (1)

Publication Number Publication Date
CN106169414A true CN106169414A (zh) 2016-11-30

Family

ID=57375985

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610712335.5A Pending CN106169414A (zh) 2016-08-23 2016-08-23 一种应力可控型硅基薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106169414A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233970A (zh) * 2020-12-15 2021-01-15 度亘激光技术(苏州)有限公司 砷化镓基半导体器件的制造方法
CN112760615A (zh) * 2020-12-17 2021-05-07 武汉新芯集成电路制造有限公司 一种二氧化硅薄膜及其低温制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335980A (ja) * 2003-05-12 2004-11-25 Sumitomo Electric Ind Ltd シリコン窒化膜を形成する方法及び半導体装置の製造方法
US20040262613A1 (en) * 2003-06-30 2004-12-30 Shinji Maekawa Silicon nitride film, a semiconductor device, a display device and a method for manufacturing a silicon nitride film
CN1837404A (zh) * 2005-03-23 2006-09-27 东京毅力科创株式会社 成膜装置和成膜方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335980A (ja) * 2003-05-12 2004-11-25 Sumitomo Electric Ind Ltd シリコン窒化膜を形成する方法及び半導体装置の製造方法
US20040262613A1 (en) * 2003-06-30 2004-12-30 Shinji Maekawa Silicon nitride film, a semiconductor device, a display device and a method for manufacturing a silicon nitride film
CN1837404A (zh) * 2005-03-23 2006-09-27 东京毅力科创株式会社 成膜装置和成膜方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112233970A (zh) * 2020-12-15 2021-01-15 度亘激光技术(苏州)有限公司 砷化镓基半导体器件的制造方法
CN112760615A (zh) * 2020-12-17 2021-05-07 武汉新芯集成电路制造有限公司 一种二氧化硅薄膜及其低温制备方法

Similar Documents

Publication Publication Date Title
CN109637926A (zh) 超高模量与蚀刻选择性的硼-碳硬掩模膜
CN108893726A (zh) Pecvd微晶硅锗(sige)
CN105679665B (zh) 用于提高氮化硅批间均匀度的非晶硅陈化作用
CN109023311A (zh) 通过脉冲低频射频功率获得高选择性和低应力碳硬膜
CN104220637A (zh) 用于半导体器件应用的氮化硅膜
CN103540908A (zh) 沉积二氧化硅薄膜的方法
TWI742164B (zh) 三氯二矽烷
CN105386002B (zh) 一种非晶碳薄膜材料的低温制备方法
CN106169414A (zh) 一种应力可控型硅基薄膜的制备方法
US20150179437A1 (en) Method for manufacturing a silicon nitride thin film
CN104120404A (zh) 一种超薄氧化硅膜材料及其制备方法
CN104637992B (zh) 具有改善的蚀刻角度的栅极绝缘层及其形成方法
CN104532207B (zh) 一种氮氧化硅膜材料及其制备方法和用途
TWM346902U (en) A slotted electrode with uniform distribution of electric field
CN102011105B (zh) 低压淀积氧化硅工艺方法
CN102820219A (zh) 低温二氧化硅薄膜的形成方法
CN105489478A (zh) 重掺ph衬底薄层外延过渡区的调控方法
CN103334090B (zh) InN/AlN/玻璃结构的制备方法
CN104099579B (zh) 一种超薄氮化硅膜材料及其制备方法
JP2013055231A (ja) エピタキシャルウェーハの製造方法
KR102418092B1 (ko) 실리콘 질화막의 제조 방법 및 실리콘 질화막
CN104617185B (zh) 一种以绒面单晶硅片为基底的含硅量子点薄膜材料的制备方法
CN105070644A (zh) 低应力氮化硅薄膜的成长方法
CN114127892A (zh) 用于显示器的高密度等离子体CVD微晶或非晶Si膜
CN105220144B (zh) 一种TiAlV合金的刻蚀方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161130