CN106147829B - 含分子筛汽油加氢改质催化剂的开工方法 - Google Patents

含分子筛汽油加氢改质催化剂的开工方法 Download PDF

Info

Publication number
CN106147829B
CN106147829B CN201510246528.1A CN201510246528A CN106147829B CN 106147829 B CN106147829 B CN 106147829B CN 201510246528 A CN201510246528 A CN 201510246528A CN 106147829 B CN106147829 B CN 106147829B
Authority
CN
China
Prior art keywords
gasoline
molecular sieve
reactor
containing molecular
hydrogenation modifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510246528.1A
Other languages
English (en)
Other versions
CN106147829A (zh
Inventor
吴杰
常晓昕
翟月琴
王玲玲
王廷海
向永生
姚文君
高源�
李自夏
蔡进军
王晨晨
田力
李景峰
苟尕莲
孟凡芳
田爱珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Natural Gas Co Ltd
Original Assignee
China Petroleum and Natural Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Natural Gas Co Ltd filed Critical China Petroleum and Natural Gas Co Ltd
Priority to CN201510246528.1A priority Critical patent/CN106147829B/zh
Publication of CN106147829A publication Critical patent/CN106147829A/zh
Application granted granted Critical
Publication of CN106147829B publication Critical patent/CN106147829B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种含分子筛汽油加氢改质催化剂的开工方法,汽油加氢改质反应器中装填的硫化态催化剂经活化处理后,降低反应器入口温度,以低烯烃轻质油品与汽油原料的混合物作为钝化剂,通过摆动式阶梯升温,使钝化油中汽油比例与钝化温度相匹配,完成开工过程。本发明采用低烯烃轻质油品稀释的汽油原料作为钝化剂,钝化过程兼具永久性钝化和可逆性钝化,达到稳定开工、提高催化剂活性稳定性的目的。同时,钝化过程中逐步提高催化汽油原料的比例,钝化过程结束同时完成原料油的切入,省略了钝化结束后的原料引入过程。

Description

含分子筛汽油加氢改质催化剂的开工方法
技术领域
本发明涉及含分子筛汽油加氢改质催化剂的开工方法,主要是在硫化态催化剂经活化处理后,通过使用低烯烃含量的原料油品作为钝化剂通过摆动式阶梯升温对加氢改质催化剂进行钝化,达到避免飞温的目的,适用于各种类型含分子筛的汽油加氢改质催化剂的钝化开工过程,特别适用于生产高辛烷值清洁汽油调和组分的加氢改质。
背景技术
催化汽油、焦化汽油等均含有大量硫化物,需要经过加氢脱硫处理才能用作汽油调和组分。其中,催化汽油和焦化汽油烯烃含量在30-50v%,加氢脱硫会造成烯烃部分饱和而降低辛烷值,通过金属与分子筛的复合制备催化剂能够达到加氢脱硫以及异构化、芳构化减少辛烷值损失的目的。其中,活性金属为Co、Mo、Ni等,负载在含有分子筛的氧化铝载体上,主要发生加氢脱硫、异构化和芳构化反应,反应过程中有一定的反应热放出,使用前需要进行还原硫化处理;含分子筛的加氢改质催化剂在加氢脱硫的同时,通过异构和芳构反应能够提高反应产物的辛烷值,但是由于含分子筛的催化剂酸性较强,特别是使用初期,分子筛孔道口暴露的酸性位较多,而且没有孔道限制,一方面对反应物及产物没有吸附脱附选择性,另一方面具有较强的裂解活性及一定的聚合活性。如果在催化剂还原硫化后直接引入原料,由于催化剂初活性过高,造成温升较大,可能造成***飞温,同时裂解会造成产品液收偏低。因此,催化剂硫化或活化结束后,需要进行钝化及原料切换处理后,才能按照设计数据投用原料油。
目前,加氢装置为了解决催化剂初活性过高带来的问题,多数通过调整硫化剂及硫化油的组合以及采用器外硫化的方法降低催化剂的初活性,硫化后,普遍采用低温、惰性石脑油类原料开工,通过在惰性油品中逐渐切入原料的方法,降低开车飞温风险,或者在反应器设计过程中通过入口加入冷氢,达到飞温后反应器快速降温的目的。
CN200510047487.X公开了一种FCC汽油加氢脱硫降烯烃技术的开工方法。在常规湿法硫化过程的基础上,选用重整生成油作为硫化油,硫化结束后,严格控制催化剂床层温度,按比例逐步增加FCC汽油原料。该发明方法可以适用于各种含有分子筛汽油改质催化剂的硫化过程,特别适用于高分子筛含量汽油改质催化剂的硫化过程。缺点是硫化结束按比例切换原料过程需要严格控制催化剂床层温度,防止飞温。
目前对于含有分子筛的催化剂,无水液氨是一种常用的催化剂初活性钝化剂。装置开工过程中,注入一定量的无水液氨,其分解后被催化剂酸性位吸附,随着反应温度的升高和运转时间的延续,吸附位发生解析反应,催化剂活性逐步恢复,从而达到平稳开车的目的。但是由于无水液氨是一种压缩性液化有毒气体,具有易燃易爆的特点,需要特殊储存运输。同时,氨吸附为可逆反应,因此钝化过程可逆,虽然该钝化方法能够确保开工平稳,但是无法去除催化剂上部分较强的活性位,随着催化剂活性的恢复,分子筛催化剂孔道口处较强的活性位因没有孔道限制容易造成副反应的发生,难以保证催化剂的活性稳定性。
CN201110321354.2公开了一种加氢裂化催化剂的开工钝化方法,硫化结束后,在反应***中引入高氮油,通过加氢脱氮反应生成的氨气吸附在催化剂上完成钝化过程。该方法避免了无水液氨的使用,操作简单。
CN201210432673.5公开了一种加氢裂化装置开工方法,在加氢裂化装置反应区内装填硫化型加氢催化剂,开工过程:首先开工活化油通过换热和/或加热达到一定温度通过催化剂床层,继续升温至230±15℃恒温活化,温度至245±15℃引入含氮轻馏分油,温度至290±15℃或以上时,换入含氮重馏分油,温度至320±15℃时,分步换进原料油,转入正常生产。该方法不注入液氮进行钝化,但是在分步切进原料油之前,需要分别引入低烯烃含量的含氮轻、重馏分油作为钝化剂来抑制催化剂的初活性。
CN201110321354.2和CN201210432673.5中的钝化过程均为可逆过程,难以保证催化剂的活性稳定性,并且都使用了初馏点大于200℃的重质油品作为钝化油,因此无法用于终馏点较低的汽油馏分的钝化。
发明内容
本发明的目的在于开发含分子筛汽油加氢改质催化剂的开工方法,催化剂经活化处理后,采用低烯烃轻质油品稀释后的汽油原料作为钝化剂,通过控制汽油原料进料量及采用温度摆动、阶梯式升温的手段来控制加氢反应过程,利用反应过程中产生的焦炭覆盖催化剂上超强活性位、大分子芳烃覆盖催化剂孔道口,达到催化剂钝化的目的。通过控制钝化后的催化剂覆碳量,得到初活性适当、活性稳定性优良的催化剂,以能够保证开工平稳,可用于含有分子筛汽油加氢改质催化剂的开工过程。
本发明所要解决的技术问题是仅使用低烯烃轻质油品稀释的催化汽油原料作为钝化剂,通过对催化剂活性位进行钝化处理,保证开工及运转过程中催化剂活性适当、稳定。
含分子筛汽油加氢改质催化剂的开工方法,其特征在于,汽油加氢改质反应器中装填硫化态催化剂先与氢气、低烯烃轻质油品接触,进行活化处理,之后将加氢改质反应器的入口温度调整至220-270℃,将30-50wt%的汽油原料以及余量的低烯烃轻质油品作为进料引入反应***,按照1-40℃/h的升温速率提高加氢改质反应器的入口温度,当入口温度达到300-320℃时,再将加氢改质反应器的入口温度降低10-30℃;然后将进料中汽油原料的比例提高至50-70wt%,按照1-40℃/h的升温速率逐渐提高加氢改质反应器的入口温度至320-350℃时,再次将加氢改质反应器的入口温度降低10-30℃,然后将进料中汽油原料的比例提高至100wt%,按照1-40℃/h的升温速率逐渐提高反应器的入口温度至350-380℃,钝化过程结束,调整反应器入口温度后转入正常的汽油改质过程。钝化过程中,优选以1-20℃/h升温速率提高反应器入口温度。
所述活化处理过程中,加氢改质反应器操作工艺条件为:反应温度150-280℃,反应压力0.5-4.0MPa,体积空速1.5-3.5h-1,氢油体积比150-500:1,接触时间8-48小时。
所述钝化过程中,加氢改质反应器操作工艺条件为:反应压力1.5-2.2MPa,体积空速1.5-3.0h-1,氢油体积比150-500:1。
所述汽油原料为硫含量50-1500mg/kg、烯烃含量35-55v%、砷含量小于500μg/kg的汽油原料,可以是催化裂化汽油、催化裂解汽油、焦化汽油、热裂化汽油或其混合物。
所述低烯烃轻质油品为硫含量小于50mg/kg、烯烃含量小于5v%、砷含量小于20μg/kg、终馏点不大于240℃的油品,可以是石脑油、催化重整油、加氢精制油或其混合物。
所述含有分子筛汽油加氢改质催化剂可以为常规汽油加氢脱硫异构化芳构化硫化态催化剂,通常以氧化铝或含硅氧化铝为载体,包含第VIB族和/或第VIII族金属以及分子筛,以催化剂的重量为基准,分子筛的含量为5-70wt%,以硫化物计,VIB族金属含量为2-12wt%,VIII族金属含量为1-7wt%。
所述的含有分子筛汽油加氢改质催化剂,其分子筛可以为ZSM-5和/或SAPO-11,以催化剂重量为基准,分子筛含量为5-70wt%,优选30-65wt%,钨和/或钼以硫化物计含量为2-12wt%,优选2-6wt%,镍和/或钴以硫化物计含量为1-7wt%,优选1-4wt%。
本发明所述的开工方法中,开工后,加氢改质反应器中加氢改质过程的操作工艺条件为:反应压力1.5-2.2MPa,反应温度220-450℃,体积空速1.5-3.0h-1,氢油体积比150-500:1;优选的操作工艺条件为:反应压力1.6-2.0MPa,反应温度220-400℃,体积空速1.7-2.2h-1,氢油体积比300-400:1。
含有分子筛汽油加氢改质催化剂兼具有异构化和芳构化功能,根据催化剂的这一特点,本发明利用按照比例切换汽油原料的过程对活化后的催化剂进行钝化处理,钝化油为一定比例的汽油原料和轻质低烯烃油品的混合物。在钝化油中汽油比例较低、烯烃含量不高时,进行低温钝化,利用副反应产生的焦炭覆盖催化剂上超强活性位产生永久性钝化效果;在钝化油中催化汽油比例较高、烯烃、芳烃含量高时,进行高温钝化,此时催化剂上同时发生芳构化和异构化反应,利用副反应产生的大分子芳烃覆盖分子筛孔道口上异常活性位产生可逆性钝化效果。
在本发明所述的开工方法中,使钝化油中汽油比例与钝化温度相匹配,控制钝化过程中催化剂覆碳量为2-5%,避免了催化汽油比例较高时在低温维持时间较长造成催化剂的过度积碳,从而避免积碳反应的不可逆性造成的催化剂活性损失。
与现有技术相比,本发明采用低烯烃轻质油品稀释的汽油原料作为钝化剂,钝化过程兼具永久性钝化和可逆性钝化,利用分子筛催化剂孔道口处活性位较多、活性较强的特点,采用积碳、大分子芳烃覆盖超强活性位的钝化方式优先钝化不具有选择性的分子筛孔道表面,达到稳定开工、提高催化剂活性稳定性的目的。同时,钝化过程中逐步提高催化汽油原料的比例,钝化过程结束同时完成原料油的切入,省略了钝化结束后的原料引入过程。采用本发明的钝化开工方法时,钝化过程反应温升不超过50℃。
具体实施方式
本发明涉及一种含分子筛汽油加氢改质催化剂的开工方法,具体实施例如下,其中,含分子筛汽油加氢改质催化剂为采用本领域技术人员公知技术制备的负载型加氢改质硫化态催化剂,其组成见表3,汽油原料及低烯烃轻质油品性质见表4、表5。
实施例1
将500ml汽油加氢改质催化剂A装填于500ml绝热床加氢反应器中,与氢气、石脑油接触40小时进行活化处理,活化反应温度270℃,反应压力2.0MPa,体积空速3.0h-1,氢油体积比400:1。
待催化剂活化结束后,将反应器的入口温度降至250℃,按照催化裂化汽油原料油量252g/h、石脑油油量468g/h,将催化裂化汽油和石脑油同时引入反应***;按照3℃/h的升温速率提高反应器的入口温度,直至反应器的入口温度达到315℃;
反应器的入口温度降至300℃,按照催化裂化汽油原料油量468g/h、石脑油油量252g/h,将催化裂化汽油和石脑油同时引入反应***;按照3℃/h提高反应器的入口温度,直至反应器的入口温度达到340℃;
将反应器的入口温度降至320℃,按照催化裂化汽油原料油量720g/h将催化裂化汽油引入反应***;按照3℃/h提高反应器的入口温度,直至反应器的入口温度达到370℃,钝化过程结束。钝化过程中,反应器的操作工艺条件为:反应压力1.7MPa,体积空速2.0h-1,氢油体积比300:1。催化裂化汽油原料完全引入反应***,将反应器入口温度调整为320℃,反应压力、体积空速、氢油比不变,对催化裂化汽油进行加氢改质。
将500ml汽油加氢改质催化剂B装填于500ml绝热床加氢反应器中,重复上述开工过程。
对比例1
将500ml汽油加氢改质催化剂A装填于500ml绝热床加氢反应器中,与氢气、石脑油接触40小时进行活化处理,活化反应温度270℃,反应压力2.0MPa,体积空速3.0h-1,氢油体积比400:1。催化剂活化结束后,将反应器的入口温度降至320℃,按照催化裂化汽油原料油量720g/h将催化裂化汽油引入反应***;反应器的操作工艺条件为:反应压力1.7MPa,体积空速2.0h-1,氢油体积比300:1。
将500ml汽油加氢改质催化剂B装填于500ml绝热床加氢反应器中,重复上述加氢改质反应过程。
表1实施例1及其对比例开工运行产品性能
实施例2
将500ml汽油加氢改质催化剂C装填于500ml绝热床加氢反应器中,与氢气、石脑油接触35小时进行活化处理,活化反应温度240℃,反应压力2.4MPa,体积空速2.0h-1,氢油体积比450:1。
催化剂活化结束后,将反应器的入口温度降至230℃,按照焦化汽油原料油量230g/h、催化重整油油量346g/h,将焦化汽油和催化重整油同时引入反应***;按照10℃/h提高反应器的入口温度,直至反应器的入口温度达到310℃;
将反应器的入口温度降至285℃,按照焦化汽油原料油量346g/h、催化重整油油量230g/h,将焦化汽油和催化重整油同时引入反应***;按照5℃/h提高反应器的入口温度,直至反应器的入口温度达到340℃;
将反应器的入口温度降至315℃,按照焦化汽油原料油量576g/h将焦化汽油引入反应***;按照5℃/h提高反应器的入口温度,直至反应器的入口温度达到360℃;钝化过程结束。钝化过程中,反应器的操作工艺条件为:反应压力2.0MPa,体积空速1.6h-1,氢油体积比400:1。焦化汽油原料完全引入反应***,将反应器入口温度调整为340℃,反应压力、体积空速、氢油比不变,对焦化汽油进行加氢改质。
将500ml汽油加氢改质催化剂D装填于500ml绝热床加氢反应器中,重复上述开工过程。
对比例2
将500ml汽油加氢改质催化剂C装填于500ml绝热床加氢反应器中,与氢气、石脑油接触35小时进行活化处理,活化反应温度240℃,反应压力2.4MPa,体积空速2.0h-1,氢油体积比450:1。催化剂活化结束后,将反应器的入口温度升至320℃,按照焦化汽油原料油量230g/h、催化重整油油量346g/h,将焦化汽油和催化重整油同时引入反应***;在反应器床层温升不再增加后,按照焦化汽油原料油量346g/h、催化重整油油量230g/h,将焦化汽油和催化重整油同时引入反应***;在反应器床层温升不再增加后,按照焦化汽油原料油量576g/h将焦化汽油引入反应***;在反应器床层温升不再增加后,将反应器入口温度调整为340℃,对焦化汽油进行加氢改质。反应器的操作工艺条件为:反应压力2.0MPa,体积空速1.6h-1,氢油体积比400:1。
将500ml汽油加氢改质催化剂D装填于500ml绝热床加氢反应器中,重复上述开工过程。
表2实施例2及其对比例开工运行产品性能
实施例3
将汽油加氢改质催化剂A应用于120万吨/年的催化裂化汽油加氢装置。与氢气、石脑油接触48小时进行活化处理,活化反应温度260℃,反应压力1.9MPa,体积空速1.8h-1,氢油体积比260:1。活化结束后,按照催化裂化汽油原料流量64t/h、加氢精制油油品流量78t/h,将催化裂化汽油和加氢精制油同时引入反应***,同时***外送产品142t/h;按照20℃/h提高反应器的入口温度,直至反应器的入口温度达到310℃;
将加氢改质反应器的入口温度降至300℃,按照催化裂化汽油原料流量100t/h、加氢精制油油品流量42t/h,将催化裂化汽油和加氢精制油同时引入反应***,同时***外送产品142t/h;按照8℃/h提高反应器的入口温度,直至反应器的入口温度达到340℃;
将加氢改质反应器的入口温度降至330℃,按照催化裂化汽油原料流量142t/h引入反应***,同时***外送产品142t/h;按照8℃/h提高反应器的入口温度,直至反应器的入口温度达到370℃;钝化过程结束。催化裂化汽油原料完全引入反应***,钝化过程反应器床层最高温升48℃。
钝化过程中,加氢改质反应器的操作工艺条件为:反应压力1.9MPa,体积空速1.8h-1,氢油体积比260:1。
催化剂运转初期,加氢产品的硫含量为9mg/kg,辛烷值损失0.5个单位。催化剂运转三个月后,加氢产品的硫含量为9mg/kg,辛烷值损失0.3个单位。
表3汽油加氢改质催化剂及其组成
组成,wt% 催化剂A 催化剂B 催化剂C 催化剂D
硫化镍 - - - 3.6
硫化镁 - - - 0.7
硫化钼 3.8 8.8 5.0 -
硫化钴 2.2 7.0 4.1 -
ZSM-5 45 55 35 40
SAPO-11 15 15 - 30
氧化铝 余量 余量 余量 余量
表4汽油原料及其性质
分析项目 单位 催化裂化汽油 焦化汽油 分析方法
馏程FBP 200 205 GB/T 6536
烯烃 vol% 40.0 35 GB/T 11132
硫含量 mg/kg 150 3000 SH/T 0689-2000
砷含量 μg/kg 100 150 SH/T 0629-1996
表5低烯烃轻质油品及其性质
分析项目 单位 石脑油 催化重整油 加氢精制油 分析方法
馏程FBP 200 198 199 GB/T 6536
烯烃 vol% 1.0 2.0 1.0 GB/T 11132
硫含量 mg/kg 50 10 5 SH/T 0689-2000
砷含量 μg/kg 5 2 1 SH/T 0629-1996

Claims (13)

1.一种含分子筛汽油加氢改质催化剂的开工方法,其特征在于,汽油加氢改质反应器中装填的硫化态催化剂先与氢气、低烯烃轻质油品接触,进行活化处理,之后进行钝化处理:降低加氢改质反应器的入口温度至220-270℃,将汽油原料与低烯烃轻质油品混合作为反应器进料,其中汽油原料占总进料的30-50wt%,按照1-40℃/h的升温速率提高加氢改质反应器的入口温度,当入口温度达到300-320℃时,再将加氢改质反应器的入口温度降低10-30℃;然后将进料中汽油原料的比例提高至50-70wt%,按照1-40℃/h的升温速率逐渐提高加氢改质反应器的入口温度至320-350℃时,再次将加氢改质反应器的入口温度降低10-30℃,然后将进料中汽油原料的比例提高至100wt%,按照1-40℃/h的升温速率逐渐提高反应器的入口温度至350-380℃,钝化过程结束。
2.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,钝化过程中,以1-20℃/h升温速率提高反应器入口温度。
3.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述活化过程中,加氢改质反应器操作工艺条件为:反应温度150-280℃,反应压力0.5-4.0MPa,体积空速1.5-3.5h-1,氢油体积比150-500:1,接触时间8-48小时;所述钝化过程中,加氢改质反应器操作工艺条件为:反应压力1.5-2.2MPa,体积空速1.5-3.0h-1,氢油体积比150-500:1。
4.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述汽油原料为硫含量50-1500mg/kg、烯烃含量35-55v%、砷含量小于500μg/kg的汽油原料。
5.根据权利要求4所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述汽油原料选自由催化裂化汽油、催化裂解汽油、焦化汽油及热裂化汽油所构成的群组中的至少一种。
6.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述低烯烃轻质油品为硫含量小于50mg/kg、烯烃含量小于5v%、砷含量小于20μg/kg、终馏点不大于240℃的油品。
7.根据权利要求6所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述低烯烃轻质油品为石脑油。
8.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述含分子筛汽油加氢改质催化剂以氧化铝或含硅氧化铝为载体,包含第VIB族和/或第VIII族金属以及分子筛,以催化剂的重量为基准,分子筛的含量为5-70wt%,以硫化物的重量计,VIB族金属含量为2-12wt%,VIII族金属含量为1-7wt%。
9.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述的含分子筛汽油加氢改质催化剂,其分子筛为ZSM-5和/或SAPO-11,以催化剂的重量为基准,分子筛含量为30-65wt%。
10.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述的含分子筛汽油加氢改质催化剂中,以硫化物的重量计,钨和/或钼含量为2-12wt%,镍和/或钴含量为1-7wt%。
11.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,所述的含分子筛汽油加氢改质催化剂中,以硫化物的重量计,钨和/或钼含量为2-6wt%,镍和/或钴含量为1-4wt%。
12.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,加氢改质反应器中加氢改质过程的操作工艺条件为:反应压力1.5-2.2MPa,反应温度220-450℃,体积空速1.5-3.0h-1,氢油体积比150-500:1。
13.根据权利要求1所述的含分子筛汽油加氢改质催化剂的开工方法,其特征在于,加氢改质反应器中加氢改质过程的操作工艺条件为:反应压力1.6-2.0MPa,反应温度220-400℃,体积空速1.7-2.2h-1,氢油体积比300-400:1。
CN201510246528.1A 2015-05-14 2015-05-14 含分子筛汽油加氢改质催化剂的开工方法 Active CN106147829B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510246528.1A CN106147829B (zh) 2015-05-14 2015-05-14 含分子筛汽油加氢改质催化剂的开工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510246528.1A CN106147829B (zh) 2015-05-14 2015-05-14 含分子筛汽油加氢改质催化剂的开工方法

Publications (2)

Publication Number Publication Date
CN106147829A CN106147829A (zh) 2016-11-23
CN106147829B true CN106147829B (zh) 2018-08-10

Family

ID=57348076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510246528.1A Active CN106147829B (zh) 2015-05-14 2015-05-14 含分子筛汽油加氢改质催化剂的开工方法

Country Status (1)

Country Link
CN (1) CN106147829B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109777477B (zh) * 2017-11-14 2021-08-06 中国石油化工股份有限公司 一种加氢裂化催化剂平稳的开工方法
CN111100688B (zh) * 2018-10-29 2022-04-08 中国石油化工股份有限公司 一种提高加氢裂化装置平稳运行的方法
CN111100689B (zh) * 2018-10-29 2022-04-05 中国石油化工股份有限公司 一种提高加氢裂化装置运行安全性的方法
CN112694912B (zh) * 2019-10-22 2022-12-13 中国石油化工股份有限公司 一种石脑油的改质方法
CN116064134B (zh) * 2021-10-29 2024-05-31 中国石油化工股份有限公司 一种煤合成油加氢裂化装置的开工方法
CN116064116B (zh) * 2021-10-31 2024-05-31 中国石油化工股份有限公司 一种低活性加氢裂化催化剂的开工方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688736A (en) * 1991-07-30 1997-11-18 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
CN101822985A (zh) * 2009-03-04 2010-09-08 中国石油天然气股份有限公司 一种镍基加氢催化剂的预处理方法
CN103785482A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种烯烃异构化催化剂的钝化处理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5688736A (en) * 1991-07-30 1997-11-18 Cri International, Inc. Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst
CN101822985A (zh) * 2009-03-04 2010-09-08 中国石油天然气股份有限公司 一种镍基加氢催化剂的预处理方法
CN103785482A (zh) * 2012-10-26 2014-05-14 中国石油化工股份有限公司 一种烯烃异构化催化剂的钝化处理方法

Also Published As

Publication number Publication date
CN106147829A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
CN106147829B (zh) 含分子筛汽油加氢改质催化剂的开工方法
JP3387700B2 (ja) 接触分解ガソリンの脱硫方法
CN108728162B (zh) 一种生产富含单环芳烃原料的方法
JP3378416B2 (ja) 接触分解ガソリンの脱硫方法
CN112725014B (zh) 一种加氢处理催化剂的级配方法
JP2023501181A (ja) 芳香族リッチ留分油を加工するための方法およびシステム
CN112538384B (zh) 一种多产异丁烷和轻质芳烃的加氢处理-催化裂化组合工艺方法
JP2005528468A (ja) ナフサストリームの選択的水素化脱硫
CN110653007B (zh) 加氢催化剂开工硫化方法
JP3291164B2 (ja) 接触分解ガソリンの脱硫方法
CN102634368B (zh) 一种劣质汽油改质的方法
CN101942331B (zh) 汽油和柴油组合加氢方法
CN106147828B (zh) 一种含分子筛低沸点硫化物重质化催化剂的开工方法
US9861972B1 (en) Hydrodemetallization catalysts
CN106140320B (zh) 低沸点硫化物重质化催化剂的钝化方法
CN106147842B (zh) 一种含分子筛汽油加氢改质催化剂的钝化开工方法
CN102465011A (zh) 重馏分油加氢处理方法
JP4101545B2 (ja) 接触分解ガソリンの脱硫方法
EP1481037A1 (en) Distillate desulfurization process
CN101173184B (zh) 一种劣质汽油选择性加氢脱硫的方法
CN104099127A (zh) 一种馏分油加氢处理工艺方法
CN102465027A (zh) 一种重馏分油加氢处理方法
CN102634370B (zh) 一种汽油加氢改质的方法
CN106675622A (zh) 一种降低fcc汽油深度加氢脱硫辛烷值损失的硫化开工方法
WO2005061677A1 (en) A process for reducing sulfur and olefin contents in gasoline

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant