CN106076446B - 一种双支路实现间隔微液滴融合功能的微通道 - Google Patents

一种双支路实现间隔微液滴融合功能的微通道 Download PDF

Info

Publication number
CN106076446B
CN106076446B CN201610696301.1A CN201610696301A CN106076446B CN 106076446 B CN106076446 B CN 106076446B CN 201610696301 A CN201610696301 A CN 201610696301A CN 106076446 B CN106076446 B CN 106076446B
Authority
CN
China
Prior art keywords
branch
drop
microlayer model
microchannel
fusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610696301.1A
Other languages
English (en)
Other versions
CN106076446A (zh
Inventor
刘赵淼
张龙祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201610696301.1A priority Critical patent/CN106076446B/zh
Publication of CN106076446A publication Critical patent/CN106076446A/zh
Application granted granted Critical
Publication of CN106076446B publication Critical patent/CN106076446B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502746Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means for controlling flow resistance, e.g. flow controllers, baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502769Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements
    • B01L3/502784Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by multiphase flow arrangements specially adapted for droplet or plug flow, e.g. digital microfluidics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/026Fluid interfacing between devices or objects, e.g. connectors, inlet details
    • B01L2200/027Fluid interfacing between devices or objects, e.g. connectors, inlet details for microfluidic devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种双支路实现间隔微液滴融合功能的微通道,该微通道包含两个功能单元,一是微液滴生成单元,该微液滴生成单元为用以生成微液滴的T型通道;另一是实现微液滴融合单元,该微液滴融合单元由上游分叉下游又汇合的两支路通道构成。微液滴生成单元同水相入口和油相入口相连接。微液滴融合单元是由第一支路和第二支路构成的上游分叉下游又汇合的双支路结构组成,第一支路和第二支路两连接组成口字形结构,第一支路为底部的水平结构,第一支路的端部设有球形端口,第二支路为倒U形结构。本发明结构简单且可灵活实现液滴的可控融合功能,这将为微液滴发生复杂的可控的生化反应提供保障。

Description

一种双支路实现间隔微液滴融合功能的微通道
技术领域
皮升至纳升体积范围的微液滴因具有无交叉污染等优势,它在血液检测、蛋白质结晶、细胞分析、聚合酶链反应(PCR)、疾病诊断、颗粒合成等生化领域呈现出巨大的应用潜力。
背景技术
微流控芯片技术(Microfluidics)又被称为芯片实验室(Lab-on-a-chip),能在一个几平方厘米的微小芯片上集成传统的生物和化学实验室的基本功能,包括样品分离、制备、化学反应、检测等操作。液滴微流控技术是微流控芯片技术的一个重要分支。微液滴因具有通量高,无交叉污染等优势,其在喷墨打印、微混合、DNA分析、材料合成、蛋白质结晶等领域呈现出巨大的应用潜力。一些基于微液滴的生化反应,如微纳颗粒合成,过程中需要将两种不同的液滴融合在一起,以便获得较好的混合反应效果。由此,液滴的可控融合已成为一项重要的液滴微流控技术,对于在液滴内实现多步反应十分重要。
发明内容
一种双支路实现间隔微液滴融合功能的微通道,本发明是基于上游分叉下游又汇合的双支路微通道流动阻力差异原理,设计了实现间隔微液滴相融合的微通道。
一种双支路实现间隔微液滴融合功能的微通道,该微通道包含两个功能单元,一是微液滴生成单元9,该微液滴生成单元9为用以生成微液滴的T型通道;另一是实现微液滴融合单元10,该微液滴融合单元10由上游分叉下游又汇合的两支路通道构成。微液滴生成单元9同水相入口8和油相入口7相连接。微液滴融合单元10是由第一支路11和第二支路12构成的上游分叉下游又汇合的双支路结构组成,第一支路11和第二支路12两连接组成口字形结构,第一支路11为底部的水平结构,第一支路11的端部设有球形端口,第二支路12为倒U形结构。
工作时,离散相(水相)通过注射泵与水相入口8相连,连续相(油相)通过注射泵与油相入口7相连,出口13通过PE管连接至液池。在连续相施加给离散相的剪切力和压力共同作用下,在液滴生成单元9处生成大小均一的微液滴,这为液滴后续融合做“前期准备”。此后,第一支路11与第二支路12内的液滴发生不同融合行为。
第一液滴1在第一支路11内运动,第一支路11的流阻R11小于第二支路12的流阻R12;运动的液滴增加了该支路的流阻R11,且增加至超过第二支路12的流阻R12;第二液滴2则选择第二支路12运动。由于第一液滴1沿第一支路11球形端口的“缩颈”结构使得第一路径11的流阻R11变大,以至第三液滴3和第四液滴4继续运动至第二支路12。此时第二支路12中第二液滴2、第三液滴3、第四液滴4大大增加了R12,以至第五液滴5运动至第一支路11和第二支路12的上游交汇处时,第一液滴1被连续相“挤压”至第一支路11和第二支路12的下游交汇处同第二液滴2发生融合。为了使液滴在第二支路12的运动速度快于第一支路11,并将第二支路12的宽度减小,以达到第一支路液滴1和第二支路液滴2在下游交汇处融合的目的。发生第一次融合后,第一液滴1完全离开第一支路支路11,由后续的第五液滴5“补充”至第一支路11。第五液滴5和第三液滴3进行第二次融合,第六液滴6和第四液滴4进行第三次融合。此后,如此重复进行,第二支路12同第一支路11的液滴发生三次融合即第一次为相邻液滴融合,第二次和第三次为间隔一个液滴融合。因此,该发明的微通道不仅可实现相邻液滴融合而且还可以实现间隔液滴融合的功能,这将为微液滴发生复杂的生化反应提供非常便利的条件。
微通道通过软光刻工艺加工而成,所采用材料为聚二甲基硅氧烷(PDMS)。
本发明在不增加额外驱动或者控制装置的基础上,利用简单两支路交汇结构不仅可实现相邻液滴融合而且还可以实现间隔液滴融合的功能,同已有的实现液滴融合功能的微通道相比,该发明结构简单且可灵活实现液滴的可控融合功能,这将为微液滴发生复杂的可控的生化反应提供保障。
附图说明
图1实现微液滴融合的双支路微通道结构示意图
图2双支路局部结构放大示意图
图3实现微液滴融合的双支路微通道实际工作示意图
具体实施方式
结合附图3对本发明的微通道工作过程和效果进行进一步详细说明和验证。
微通道实际工作主要包含水相入口、油相入口、液滴生成单元、融合单元和出口。工作时注射泵分别通过PE管同水相入口和油相入口相连接。出口通过PE管连接至废液池。为了证明该发明可以实现间隔液滴融合的功能,图3给出了实验效果图,图(a)和图(b)分别为两液滴融合前后实验实际效果图。由图3可知,该发明可以达到预期的融合效果。

Claims (2)

1.一种双支路实现间隔微液滴融合功能的微通道,其特征在于:该微通道包含两个功能单元,一是微液滴生成单元(9),该微液滴生成单元(9)为用以生成微液滴的T型通道;另一是实现微液滴融合单元(10),该微液滴融合单元(10)由上游分叉下游又汇合的两支路通道构成;微液滴生成单元(9)同水相入口(8)和油相入口(7)相连接;微液滴融合单元(10)是由第一支路(11)和第二支路(12)构成的上游分叉下游又汇合的双支路结构组成,第一支路(11)和第二支路(12)两连接组成口字形结构,第二支路(12)为倒U形结构,第一支路(11)为底部的水平结构,第一支路(11 )的端部设有球形端口;
工作时,离散相通过注射泵与水相入口(8)相连,连续相通过注射泵与油相入口(7)相连,出口(13)通过PE管连接至液池;在连续相施加给离散相的剪切力和压力共同作用下,在液滴生成单元(9)处生成大小均一的微液滴,这为液滴后续融合做“前期准备”;此后,第一支路(11)与第二支路(12)内的液滴发生不同融合行为;
第一液滴(1)在第一支路(11)内运动,第一支路(11)的流阻R11小于第二支路(12)的流阻R12;运动的液滴增加了该支路的流阻R11,且增加至超过第二支路(12)的流阻R12;第二液滴(2)则选择第二支路(12)运动;由于第一液滴(1)沿第一支路(11)球形端口的“缩颈”结构使得第一路径(11)的流阻R11变大,以至第三液滴(3)和第四液滴(4)继续运动至第二支路(12);此时第二支路(12)中第二液滴(2)、第三液滴(3)、第四液滴(4)大大增加了R12,以至第五液滴(5)运动至第一支路(11)和第二支路(12)的上游交汇处时,第一液滴(1)被连续相“挤压”至第一支路(11)和第二支路(12)的下游交汇处同第二液滴(2)发生融合;为了使液滴在第二支路(12)的运动速度快于第一支路(11),并将第二支路(12)的宽度减小,以达到第一支路液滴(1)和第二支路液滴(2)在下游交汇处融合的目的;发生第一次融合后,第一液滴(1)完全离开第一支路支路(11),由后续的第五液滴(5)“补充”至第一支路(11);第五液滴(5)和第三液滴(3)进行第二次融合,第六液滴(6)和第四液滴(4)进行第三次融合;此后,如此重复进行,第二支路(12)同第一支路(11)的液滴发生三次融合即第一次为相邻液滴融合,第二次和第三次为间隔一个液滴融合;因此,该发明的微通道不仅可实现相邻液滴融合而且还可以实现间隔液滴融合的功能,这将为微液滴发生复杂的生化反应提供非常便利的条件。
2.根据权利要求1所述的一种双支路实现间隔微液滴融合功能的微通道,其特征在于:微通道通过软光刻工艺加工而成,所采用材料为聚二甲基硅氧烷。
CN201610696301.1A 2016-08-19 2016-08-19 一种双支路实现间隔微液滴融合功能的微通道 Active CN106076446B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610696301.1A CN106076446B (zh) 2016-08-19 2016-08-19 一种双支路实现间隔微液滴融合功能的微通道

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610696301.1A CN106076446B (zh) 2016-08-19 2016-08-19 一种双支路实现间隔微液滴融合功能的微通道

Publications (2)

Publication Number Publication Date
CN106076446A CN106076446A (zh) 2016-11-09
CN106076446B true CN106076446B (zh) 2018-12-07

Family

ID=58070811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610696301.1A Active CN106076446B (zh) 2016-08-19 2016-08-19 一种双支路实现间隔微液滴融合功能的微通道

Country Status (1)

Country Link
CN (1) CN106076446B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108273454A (zh) * 2016-12-27 2018-07-13 中国科学院微生物研究所 一种小型反应管中纳升级微液滴融合的方法
CN109647547A (zh) * 2017-10-12 2019-04-19 中国科学院大连化学物理研究所 一种基于微流控技术的可控双水相液滴的制备方法
CN210146032U (zh) * 2018-06-07 2020-03-17 洛阳华清天木生物科技有限公司 一种用于微液滴定量分割与融合的装置及芯片
CN111068799B (zh) * 2018-10-18 2021-03-23 浙江达普生物科技有限公司 用于产生液滴的微流体通路及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495016B1 (en) * 1999-10-14 2002-12-17 Agilent Technologies, Inc. Microfluidic microchip with integrated substance injection
WO2008097559A2 (en) * 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
CN103055970A (zh) * 2012-12-31 2013-04-24 苏州汶颢芯片科技有限公司 一种基于微/纳结构的混合微流控芯片及其制备方法
CN103386333A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种微流控液滴生产芯片
CN104084247A (zh) * 2014-06-30 2014-10-08 北京工业大学 基于t形微通道的弹性壁面微流控芯片
US8905073B2 (en) * 2006-03-09 2014-12-09 Sekisui Chemical Co. Ltd. Micro fluid device and trace liquid diluting method
CN204380706U (zh) * 2015-01-14 2015-06-10 三峡大学 一种基于磁性石墨烯的sers自参考微流控芯片
CN104826674A (zh) * 2015-04-27 2015-08-12 北京工业大学 实现液滴生成的反y型通道微流控芯片

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495016B1 (en) * 1999-10-14 2002-12-17 Agilent Technologies, Inc. Microfluidic microchip with integrated substance injection
US8905073B2 (en) * 2006-03-09 2014-12-09 Sekisui Chemical Co. Ltd. Micro fluid device and trace liquid diluting method
WO2008097559A2 (en) * 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
CN103055970A (zh) * 2012-12-31 2013-04-24 苏州汶颢芯片科技有限公司 一种基于微/纳结构的混合微流控芯片及其制备方法
CN103386333A (zh) * 2013-08-07 2013-11-13 苏州扬清芯片科技有限公司 一种微流控液滴生产芯片
CN104084247A (zh) * 2014-06-30 2014-10-08 北京工业大学 基于t形微通道的弹性壁面微流控芯片
CN204380706U (zh) * 2015-01-14 2015-06-10 三峡大学 一种基于磁性石墨烯的sers自参考微流控芯片
CN104826674A (zh) * 2015-04-27 2015-08-12 北京工业大学 实现液滴生成的反y型通道微流控芯片

Also Published As

Publication number Publication date
CN106076446A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
Narayanamurthy et al. Advances in passively driven microfluidics and lab-on-chip devices: A comprehensive literature review and patent analysis
CN106076446B (zh) 一种双支路实现间隔微液滴融合功能的微通道
CN108745429B (zh) 一种多通道快速检测微流体检测芯片
US20150125947A1 (en) Microfluidic device
CN209287355U (zh) 微流控芯片及含有该微流控芯片的装置
US20040043506A1 (en) Cascaded hydrodynamic focusing in microfluidic channels
CN106215988B (zh) 一种双支路实现微液滴两次***功能的微通道
Yuan et al. On-chip microparticle and cell washing using coflow of viscoelastic fluid and newtonian fluid
US20130244270A1 (en) Microfluidic device for cell motility screening and chemotaxis testing
CN107110763A (zh) 分选微流体装置中的颗粒
Volpe et al. Polymeric fully inertial lab-on-a-chip with enhanced-throughput sorting capabilities
CN109803758A (zh) 用于微流体装置的流体控制器的改进或与之相关的改进
CN105618167A (zh) 一种用于高通量制备液滴的离心式微流控芯片
Shahriari et al. Flow regime mapping of high inertial gas–liquid droplet microflows in flow-focusing geometries
WO2013030155A1 (en) A micro-fluidic device for sorting particles, and methods for sorting particles
TW200909338A (en) Autonomous microfluidic apparatus
Kumar Microfluidic devices in nanotechnology: Fundamental concepts
CN112076807A (zh) 一种自发形成油包水液滴的微流控芯片及装置
Arakawa et al. Three-dimensional sheath flow sorting microsystem using thermosensitive hydrogel
CN105214546A (zh) 一种基于脉动流的震荡射流式微混合器
CN108993337A (zh) 一种液滴流微反应器的集成装置
JP7418026B2 (ja) マイクロ流体粒子分離強化の方法およびその装置
CN102500266B (zh) 一种用于高粘度溶液的快速微混合装置
KR20180115695A (ko) 미세유체 혼합 장치 및 방법
CN209188810U (zh) 微流控芯片、含有该微流控芯片的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant