CN106045525B - 一种氮化硅烧结体及其制备方法 - Google Patents

一种氮化硅烧结体及其制备方法 Download PDF

Info

Publication number
CN106045525B
CN106045525B CN201610381662.7A CN201610381662A CN106045525B CN 106045525 B CN106045525 B CN 106045525B CN 201610381662 A CN201610381662 A CN 201610381662A CN 106045525 B CN106045525 B CN 106045525B
Authority
CN
China
Prior art keywords
metal
powder
silicon nitride
nitride
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610381662.7A
Other languages
English (en)
Other versions
CN106045525A (zh
Inventor
刘学建
王鲁杰
杨晓
姚秀敏
黄政仁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Ceramics of CAS
Original Assignee
Shanghai Institute of Ceramics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Ceramics of CAS filed Critical Shanghai Institute of Ceramics of CAS
Priority to CN201610381662.7A priority Critical patent/CN106045525B/zh
Publication of CN106045525A publication Critical patent/CN106045525A/zh
Application granted granted Critical
Publication of CN106045525B publication Critical patent/CN106045525B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明涉及一种氮化硅烧结体及其制备方法,所述氮化硅烧结体包含氮化硅相和晶界相,所述晶界相包含金属硅化物和金属氮化物,其中金属硅化物与金属氮化物至少部分以相邻或/和相互包裹的形式存在,所述金属硅化物与金属氮化物总质量占所述氮化硅与烧结助剂的总质量的0.1~10wt%,优选0.1~5wt%。本发明提供的氮化物烧结质体具有良好的抗弯强度、断裂韧性、抗热震性,可用于机械、冶金、航空等领域。

Description

一种氮化硅烧结体及其制备方法
技术领域
本发明涉及一种氮化硅烧结体及其制备方法,属于材料领域。
背景技术
氮化硅以高强度、高韧性、抗热震等性能被广泛应用于机械、冶金、航空等领域。其性能取决于氮化硅的致密度、晶粒尺寸分布及长径比、增强相的性质等。
Fe、Mn、Cu、Ni、Co、Cr等的硅化物具有较低的熔点,能够促进氮化硅传质,加速致密化,增加晶粒长径比等优点,利于氮化硅质体性能的提高。但这些硅化物本身往往具有比较高的热膨胀系数,在氮化硅质体烧结后冷却过程中容易因收缩过大产生裂纹,而且其拥有比较低的弹性模量,容易造成应力集中效应,微裂纹和应力集中容易造成氮化硅的强度下降,过高的热膨胀系数也不利于氮化硅烧结体的抗热震性。
W、Mo、Ti、V等的氮化物往往具有热膨胀系数低、弹性模量高等特点,其单独加入到氮化硅中在一定范围内可以提高氮化硅的断裂韧性,但高弹性模量也容易造成应力集中,不利于氮化硅抗弯强度的提升。
发明内容
针对上述问题,本发明首次结合Fe、Mn、Cu、Ni、Co、Cr等的硅化物与W、Mo、Ti、V等的氮化物的优点,其目的在于提供一种具有良好的抗弯强度、断裂韧性、抗热震性的氮化硅烧结体。
一方面,本发明提供了一种氮化硅烧结体,所述氮化硅烧结体包含氮化硅相和晶界相,所述晶界相包含金属硅化物和金属氮化物,其中金属硅化物与金属氮化物至少部分以相邻或/和相互包裹的形式存在,所述金属硅化物与金属氮化物总质量占所述氮化硅与烧结助剂的总质量的0.1~10wt%,优选0.1~5wt%。所述晶界相中的金属硅化物与金属氮化物超过30%以相邻或相互包裹的相形式存在。
本发明将Fe、Mn、Cu、Ni、Co、Cr等的硅化物与W、Mo、Ti、V等的氮化物相结合,通过金属硅化物相邻或包裹金属氮化物形式的存在,金属硅化物能够有效的促进传质作用,改善氮化硅的形貌,而金属氮化物对于金属硅化物的高热膨胀系数、低弹性模量起到很好地缓冲作用,应力集中效应以及热膨胀不匹配效应得到有效的控制。
较佳地,所述金属硅化物与金属氮化物形成的相邻相和/或相互包裹相的直径为0.2~200μm。
较佳地,所述金属硅化物和金属氮化物的质量比为1:10~10:1,优选1:5~5:1。
较佳地,所述金属硅化物为Fe、Mn、Cu、Ni、Co、Cr的硅化物中的至少一种。
较佳地,所述金属氮化物为W、Mo、Ti、V的氮化物中的至少一种。
另一方面,本发明还提供了一种氮化硅烧结体的制备方法,包括:
(1)将第一金属粉体W、Mo、Ti、V中的至少一种与硅粉按照原子比1:2~3:1球磨混合后经烘干、过筛,再于氩气气氛中在1300-1700℃下热处理1-2小时,得到第一金属硅化物粉体;
(2)将第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉按照原子比1:2~3:1称量后,再加入所得第一金属硅化物粉体球磨混合后经烘干、过筛,再于氩气气氛中在1100-1300℃下热处理1-2小时,得到多金属硅化物粉体;
(3)将所得多金属硅化物粉体、氮化硅粉体、烧结助剂球磨混合后经干燥、过筛、成型,再于含有氮气的气氛中在1700~1900℃下烧结1~5小时,得到所述氮化硅烧结体。
本发明首先制备多金属硅化物粉体,其中多金属硅化物粉体多以相互包裹或相邻结构存在,彼此结合紧密。然后将氮化硅粉体、多金属硅化物粉体、烧结助剂均匀混合,成型,在含有氮气的气氛下烧结,通过原位反应在烧结体中使第一金属硅化物(例如,W、Mo、Ti、V的硅化物中的至少一种)原位生成金属氮化物,并形成第二金属硅化物(例如,Fe、Mn、Cu、Ni、Co、Cr的硅化物中的至少一种)与第一金属氮化物相邻或包裹相。如此多金属硅化物不容易在混料过程中被冲散,容易使金属氮化物和第二金属硅化物相邻或相互包裹。
较佳地,步骤(2)中所述第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉的总质量与第一金属硅化物粉体的质量比为1:10~10:1,优选1:5~5:1。
较佳地,步骤(3)中所述烧结助剂为金属氧化物或/和稀土氧化物,所述烧结助剂的质量为氮化硅粉体和烧结助剂总质量的3~15wt%,其中金属氧化物为Al2O3、MgO中的至少一种或多种,稀土氧化物为Y2O3、Yb2O3、Sm2O3、La2O3中的一种或多种。
较佳地,所述球磨混合的溶剂可为无水乙醇。
较佳地,所述烘干为在40-80℃下干燥2-8小时。
较佳地,步骤(3)中所述多金属硅化物粉体的质量为氮化硅粉体和烧结助剂总质量的0.1~10wt%,,优选0.1~5%。
较佳地,所述多金属硅化物粉体的平均粒径不超过15μm。
较佳地,步骤(3)中所述成型为先经10-80MPa干压后再在120-200MPa下冷等静压,或直接在120-200MPa下冷等静压成型。
本发明提供的氮化物烧结质体具有良好的抗弯强度、断裂韧性、抗热震性,可用于机械、冶金、航空等领域。
附图说明
图1为实施例1所制备多金属硅化物粉体的XRD图谱;
图2为实施例1所制备多金属硅化物粉体的SEM背散射电子图;
图3为实施例1所制备多金属硅化物粉体的EDS元素分析能谱图;
图4为实施例1所制备氮化硅烧结体断面的EDS元素分析能谱图;
图5为实施例1所制备氮化硅烧结体抛光面的SEM图;
图6为实施例1所制备氮化硅烧结体的具有相邻或包裹结构的晶界相的EDS元素线扫描图谱;
图7为实施例1所制备氮化硅烧结体抛光面中具有相邻或包裹结构的晶界相的EBSD能谱图。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明将氮化硅粉体、多金属硅化物粉体、烧结助剂均匀混合,成型,在含有氮气的气氛下烧结,可以形成包含氮化硅相和晶界相的氮化硅烧结体。其中晶界相包含由多金属硅化物粉体生成的至少部分以相邻或/和相互包裹的金属硅化物和金属氮化物。其中烧结助剂大部分也存在于晶界相中。晶界相中所述金属硅化物与金属氮化物的含量取决于加入的多金属硅化物粉体量,可占氮化硅粉体和烧结助剂总质量的0.1~10wt%,优选0.1~5wt%。本发明还可通过调节金属硅化物与金属氮化物的比例,其中所述金属硅化物和金属氮化物的质量比可为1:10~10:1,优选1:5~5:1,可以使氮化硅质体抗弯强度、断裂韧性以及抗热震性达到不同程度的提高。以下示例性地说明本发明提供的氮化硅烧结体得制备方法。
本发明将第一金属粉体W、Mo、Ti、V中的至少一种与硅粉按照原子比1:2~3:1称量混合,再加入溶剂(例如,无水乙醇等)进行球磨混合,得一次浆料。
将一次浆料经烘干、过筛,再于氩气气氛中在1300-1700℃下热处理1-2小时,得到第一金属硅化物粉体。
将第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉按照原子比1:2~3:1称量后,再加入所得第一金属硅化物粉体、溶剂(例如,无水乙醇等)进行球磨混合后,得到二次浆料。其中所述第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉的总质量与第一金属硅化物粉体的质量比可为1:10~10:1,优选1:5~5:1。
将二次浆料经烘干、过筛,再于氩气气氛中在1100-1300℃下热处理1-2小时,得到多金属硅化物粉体。此次热处理使得多金属硅化物粉体中不同的硅化物紧密的结合在一起,在添加到氮化硅粉体中的混料过程中不同的硅化物通过球磨混合也难以被分散开。
将制备的多金属硅化物粉体、氮化硅粉体、烧结助剂(例如,金属氧化物与稀土氧化物)、溶剂(例如,无水乙醇等),并进行球磨混合,其中所述多金属硅化物粉体的质量可为氮化硅粉体和烧结助剂总质量的0.1~10wt%,优选0.1~5wt%。所述烧结助剂的质量可为氮化硅粉体和烧结助剂总质量的3~15wt%。然后通过干燥、过筛、成型,再于含有氮气的气氛(例如氮气气压可为1MPa)中在1700~1900℃下烧结1~5小时,得到所述氮化硅烧结体。在此次烧结过程中使得多金属硅化物粉体中的第一金属硅化物部分或全部通过原位反应在烧结体中生成金属氮化物,其中第二金属硅化物与金属氮化物部分形成金属硅化物与金属氮化物相邻或包裹相。其中,所述多金属硅化物粉体的平均粒径不超过15μm,颗粒过大会造成分散困难。
上述方法中所述烘干一般使用烘箱在40-80℃下干燥2-8小时。
上述方法中所述成型可为先经10-80MPa干压后再在120-200MPa下冷等静压。或直接在120-200MPa下冷等静压成型。
本发明采用万能试验机测试样品的三点抗弯强度。本发明采用开槽法测试样品的断裂韧性。
本发明采用水冷法测试强度降低50%的温差,以测试样品的抗热震性。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
按照W:Si=1:2(原子比)称取相钨粉和硅粉共100g,置于氮化硅球磨罐中;
添加100g氮化硅研磨球,150g无水乙醇,行星式球磨机(rpm=300)混合1h;
浆料经80℃烘箱干燥5h,过80目筛,得到粉体;
粉体在氩气气氛下1400℃热处理2h,得到WSi2粉体;
按照Fe:Si=1:2(原子比)称取相应铁粉和硅粉共100g、上述方法得到的WSi2粉体100g,置于氮化硅球磨罐中;
添加200g氮化硅研磨球,300g无水乙醇,行星式球磨机(rpm=300)混合2h;
浆料经60℃烘箱干燥5h,过80目筛,得到粉体;
粉体在氩气气氛下1200℃热处理3h,得到FeSi2:WSi2=1:1(质量比)的多金属硅化物粉体;称取FeSi2:WSi2=1:1(质量比)的多金属硅化物粉体1.5g、氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体88g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料;
粉体成型后在1MPa氮气气压下1800℃烧结2h。
图1为实施例1所制备多金属硅化物粉体的XRD图谱,结果表明:W粉、Fe粉和Si粉可以完全反应,制备出主要组成为WSi2、FeSi2和FeSi的物相,没有发现其它杂相。
图2为实施例1所制备多金属硅化物粉体的SEM背散射电子图,结果表明:所制备的金属硅化物颗粒细小、均匀。
图3为实施例1所制备多金属硅化物粉体的EDS元素分析能谱图,结果表明:所制备的多金属硅化物粉体多以相互包裹或相邻结构存在,彼此结合紧密。
图4为实施例1所制备氮化硅烧结体断面的EDS元素分析能谱图,结果表明:在所制备的氮化硅陶瓷烧结体中,含Fe相和含W相大量结合在一起,形成相邻或/和包裹相。
图5为实施例1所制备氮化硅烧结体抛光面的SEM图;图6为实施例1所制备氮化硅烧结体抛光面中具有相邻或包裹结构的晶界相的EDS元素线扫描图谱。结合图5和图6结果表明:含Fe相和含W相以相互包裹的形式结合在一起,含Fe相有效包裹含W相。
图7为实施例1所制备氮化硅烧结体抛光面中具有相邻或包裹结构的晶界相的EBSD能谱图,结果表明:形成了含Fe相有效包裹含W相的微观结构;而且含Fe相为Fe5Si3相,含W相为WN相。
实施例2
参照实施例1制备得到CuSi2/WSi2=1:1(质量比)的多金属硅化物粉体;
称取CuSi2/WSi2=1:1(质量比)的多金属硅化物粉体5g、氧化镁粉体3g、氧化钇粉体5g、氮化硅粉体92g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在5MPa氮气气压下1860℃烧结3h。
实施例3
参照实施例1制备得到FeSi2/MoSi2=10:1(质量比)的多金属硅化物粉体;
称取FeSi2/MoSi2=10:1(质量比)的多金属硅化物粉体1g、氧化铝粉体4g、氧化镧粉体11g、氮化硅粉体85g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在0.2MPa氮气气压下1750℃烧结5h。
实施例4
参照实施例1制备得到FeSi2/MoSi2=10:1(质量比)的多金属硅化物粉体;
称取FeSi2/MoSi2=10:1(质量比)的多金属硅化物粉体0.5g、氧化铝粉体3g、氧化铈粉体5g、氮化硅粉体92g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在3MPa氮气气压下1850℃烧结1h。
实施例5
参照实施例1制备得到MnSi2/MoSi2=1:10(质量比)的多金属硅化物粉体;
称取MnSi2/MoSi2=1:10(质量比)的多金属硅化物粉体3g、氧化铝粉体4g、氧化钐粉体4g、氮化硅粉体92g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在0.5MPa氮气气压下1820℃烧结3h。
实施例6
参照实施例1制备得到Fe5Si3/MoSi2=10:1(质量比)的多金属硅化物粉体;
称取Fe5Si3/MoSi2=10:1(质量比)的多金属硅化物粉体2g、氧化铝粉体5g、氧化铒粉体6g、氮化硅粉体89g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在0.1MPa氮气气压下1800℃烧结2h。
实施例7
参照实施例1制备得到FeSi2/WSi2=1:10(质量比)的多金属硅化物粉体;
称取FeSi2/WSi2=1:10(质量比)的多金属硅化物粉体0.1g、氧化铝粉体2g、氧化镱粉体8g、氮化硅粉体90g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在3MPa氮气气压下1800℃烧结2h。
实施例8
参照实施例1制备得到FeSi2/WSi2=1:5(质量比)的多金属硅化物粉体;
称取FeSi2/WSi2=1:5(质量比)的多金属硅化物粉体0.6g、氧化铝粉体9g、氧化镥粉体6g、氮化硅粉体85g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在0.1MPa氮气气压下1700℃烧结5h。
实施例9
参照实施例1制备得到Cu3Si/WSi2=5:1(质量比)的多金属硅化物粉体;
称取Cu3Si/WSi2=5:1(质量比)的多金属硅化物粉体1g、氧化铝粉体5g、氧化钇粉体5g、氮化硅粉体90g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在1MPa氮气气压下1750℃烧结2h。
实施例10
参照实施例1制备得到FeSi2/WSi2=1:1(质量比)的多金属硅化物粉体;
称取FeSi2/WSi2=1:1(质量比)的多金属硅化物粉体10g、氧化镁粉体2.5g、氧化镱粉体0.5g、氮化硅粉体97g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在6MPa氮气气压下1900℃烧结5h。
实施例2~10采用不同种类和含量的金属粉体与硅粉体原料,通过与实施例1相同或相近的制备工艺,制备出其它各种氮化硅烧结体;研究结果表明:在所制备的氮化硅烧结体中同样形成了相应金属硅化物与金属氮化物相邻或包裹的微观结构,烧结体的抗弯强度、断裂韧性以及抗热震性等表现优异,参考表1。
对比例1
称取氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体88g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在1MPa氮气气压下1800℃烧结2h。
对比例2
参照实施例1制备MoSi2粉体;
称取MoSi2粉体0.5g、氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体88g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在1MPa氮气气压下1800℃烧结2h。
对比例3
参照实施例1制备FeSi2粉体;
称取FeSi2粉体2g、氧化铝粉体3g、氧化钇粉体9g、氮化硅粉体88g置于氮化硅球磨罐中,添加150g无水乙醇、200g氮化硅研磨球,经球磨、干燥、过筛得到粉体原料。粉体成型后在1MPa氮气气压下1800℃烧结2h。
对比例1~3采用与实施例1相同或相近的制备工艺,当不引入金属硅化物时(对比例1),所制备烧结体材料的抗弯强度、断裂韧性以及抗热震性等均有所降低;当仅引入一种金属硅化物时(对比例2和3),所制备烧结体材料的抗弯强度、断裂韧性以及抗热震性等性能也不能同时得到提升,参考表1。
表1金属硅化物添加类型、含量以及对应强度、韧性、抗热震性

Claims (10)

1.一种氮化硅烧结体,其特征在于,所述氮化硅烧结体包含氮化硅相和晶界相,所述晶界相包含金属硅化物和金属氮化物,其中金属硅化物与金属氮化物至少部分以相邻或/和相互包裹的形式存在,所述金属硅化物与金属氮化物总质量占所述氮化硅粉体与烧结助剂的总质量的0.1~10wt%;
所述金属硅化物为Fe、Mn、Cu、Ni、Co、Cr的硅化物中的至少一种,所述金属氮化物为W、Mo、Ti、V的氮化物中的至少一种;
所述氮化硅烧结体的制备方法包括:
(1)将第一金属粉体W、Mo、Ti、V中的至少一种与硅粉按照原子比1:2~3:1球磨混合后经烘干、过筛,再于氩气气氛中在1300-1700℃下热处理1~2小时,得到第一金属硅化物粉体;
(2)将第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉按照原子比1:2~3:1称量后,再加入所得第一金属硅化物粉体球磨混合后经烘干、过筛,再于氩气气氛中在1100~1300℃下热处理1~2小时,得到多金属硅化物粉体;
(3)将所得多金属硅化物粉体、氮化硅粉体、烧结助剂球磨混合后经干燥、过筛、成型,再于含有氮气的气氛中在1700~1900℃下烧结1~5小时,得到所述氮化硅烧结体。
2.根据权利要求1所述的氮化硅烧结体,其特征在于,所述金属硅化物与金属氮化物总质量占所述氮化硅与烧结助剂的总质量的0.1~5wt%。
3.根据权利要求1所述的氮化硅烧结体,其特征在于,所述金属硅化物与金属氮化物形成的相邻相和/或相互包裹相的直径为0.2~200μm。
4.根据权利要求1-3中任一项所述的氮化硅烧结体,其特征在于,所述金属硅化物和金属氮化物的质量比为1:10~10:1。
5.一种制备氮化硅烧结体的制备方法,其特征在于,所述氮化硅烧结体包含氮化硅相和晶界相,所述晶界相包含金属硅化物和金属氮化物,其中金属硅化物与金属氮化物至少部分以相邻或/和相互包裹的形式存在,所述金属硅化物与金属氮化物总质量占所述氮化硅粉体与烧结助剂的总质量的0.1~10wt%;所述制备方法包括:
(1)将第一金属粉体W、Mo、Ti、V中的至少一种与硅粉按照原子比1:2~3:1球磨混合后经烘干、过筛,再于氩气气氛中在1300-1700℃下热处理1~2小时,得到第一金属硅化物粉体;
(2)将第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉按照原子比1:2~3:1称量后,再加入所得第一金属硅化物粉体球磨混合后经烘干、过筛,再于氩气气氛中在1100~1300℃下热处理1~2小时,得到多金属硅化物粉体;
(3)将所得多金属硅化物粉体、氮化硅粉体、烧结助剂球磨混合后经干燥、过筛、成型,再于含有氮气的气氛中在1700~1900℃下烧结1~5小时,得到所述氮化硅烧结体。
6.根据权利要求5所述的制备方法,其特征在于,所述第二金属粉体Fe、Mn、Cu、Ni、Co、Cr中的至少一种与硅粉的总质量与第一金属硅化物粉体的质量比为1:10~10:1。
7.根据权利要求5所述的制备方法,其特征在于,所述烧结助剂为金属氧化物或/和稀土氧化物,所述烧结助剂的质量为氮化硅粉体和烧结助剂总质量的3~15wt%,其中金属氧化物为Al2O3、MgO中的至少一种或多种,稀土氧化物为Y2O3、Yb2O3、Sm2O3、La2O3中的一种或多种。
8.根据权利要求5所述的制备方法,其特征在于,所述多金属硅化物粉体的平均粒径不超过15μm。
9.根据权利要求5-8中任一项所述的制备方法,其特征在于,所述多金属硅化物粉体的质量为氮化硅粉体和烧结助剂总质量的0.1~10wt%。
10.据权利要求9所述的制备方法,其特征在于,所述多金属硅化物粉体的质量为氮化硅粉体和烧结助剂总质量的0.1~5wt%。
CN201610381662.7A 2016-06-01 2016-06-01 一种氮化硅烧结体及其制备方法 Active CN106045525B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610381662.7A CN106045525B (zh) 2016-06-01 2016-06-01 一种氮化硅烧结体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610381662.7A CN106045525B (zh) 2016-06-01 2016-06-01 一种氮化硅烧结体及其制备方法

Publications (2)

Publication Number Publication Date
CN106045525A CN106045525A (zh) 2016-10-26
CN106045525B true CN106045525B (zh) 2018-12-07

Family

ID=57171797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610381662.7A Active CN106045525B (zh) 2016-06-01 2016-06-01 一种氮化硅烧结体及其制备方法

Country Status (1)

Country Link
CN (1) CN106045525B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111302823B (zh) * 2017-04-10 2021-07-20 中国科学院上海硅酸盐研究所 一种氮化硅-树脂双连续相复合陶瓷材料及其制造方法和应用
CN107151144A (zh) * 2017-05-27 2017-09-12 陈国生 一种铝合金低压铸造用氮化硅配件新材料及其制备方法
CN110117192B (zh) * 2018-02-07 2021-06-15 中国科学院上海硅酸盐研究所 一种氮化硅烧结体及其制备方法
CN111423237B (zh) * 2019-01-10 2021-08-31 中国科学院上海硅酸盐研究所 一种金属硅化物与金属复合增强的氮化硅烧结体及其制备方法
CN109851369B (zh) * 2019-01-24 2022-04-05 江西中科上宇科技有限公司 一种制备高热导率氮化硅陶瓷的方法
CN109665851B (zh) * 2019-02-27 2021-03-16 陕西理工大学 多级孪晶结构氮化硅高温陶瓷材料的制备方法
CN110698207A (zh) * 2019-11-08 2020-01-17 陕西科技大学 一种基于氮化硅的层状陶瓷复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842507A (zh) * 2003-08-26 2006-10-04 京瓷株式会社 氮化硅质烧结体及其制造方法,和使用其的耐熔融金属用构件、耐磨损用构件
CN104817327A (zh) * 2015-03-27 2015-08-05 冷水江市明玉陶瓷工具有限责任公司 一种氮化硅复合陶瓷模具材料及其制备方法与应用
CN105541337A (zh) * 2015-12-25 2016-05-04 中国科学院上海硅酸盐研究所 一种多金属硅化物粉体及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064515B2 (ja) * 1985-04-10 1994-01-19 株式会社日立製作所 高靭性窒化珪素焼結体およびその製法
JP3694583B2 (ja) * 1998-03-24 2005-09-14 京セラ株式会社 粉砕機用部材
FR2934854B1 (fr) * 2008-08-08 2011-04-22 Beatrice Drazenovic Ceramique semi-conductrice

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842507A (zh) * 2003-08-26 2006-10-04 京瓷株式会社 氮化硅质烧结体及其制造方法,和使用其的耐熔融金属用构件、耐磨损用构件
CN104817327A (zh) * 2015-03-27 2015-08-05 冷水江市明玉陶瓷工具有限责任公司 一种氮化硅复合陶瓷模具材料及其制备方法与应用
CN105541337A (zh) * 2015-12-25 2016-05-04 中国科学院上海硅酸盐研究所 一种多金属硅化物粉体及其制备方法

Also Published As

Publication number Publication date
CN106045525A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
CN106045525B (zh) 一种氮化硅烧结体及其制备方法
CN113444952A (zh) 一种高强度高韧性的高熵金属陶瓷及其制备方法
CN109305816A (zh) 一种常压烧结制备高热导率氮化硅陶瓷的方法
JP2002097005A5 (zh)
JP5046221B2 (ja) 高い信頼性を持つ高熱伝導窒化ケイ素セラミックスの製造方法
CN108610055A (zh) 一种低温液相烧结制备致密氮化硅陶瓷的方法
CN105541337B (zh) 一种多金属硅化物粉体及其制备方法
CN111423237B (zh) 一种金属硅化物与金属复合增强的氮化硅烧结体及其制备方法
CN110877980A (zh) 一种高强度碳化硅/氮化硅复相陶瓷及其制备方法
CN110117192A (zh) 一种氮化硅烧结体及其制备方法
JP6720053B2 (ja) 窒化ケイ素焼結体の製造方法
CN108315625A (zh) 穿甲弹钨合金的制备方法
JP2000327430A (ja) 窒化アルミニウム焼結体とその製造方法
JP2001206774A (ja) 窒化珪素質焼結体
CN110937903A (zh) 一种高强度、高导热性的氮化硅陶瓷材料及其制备方法
JP2687632B2 (ja) 窒化珪素焼結体の製造方法
JPS6346029B2 (zh)
JPH08319168A (ja) サイアロンセラミックスの製造方法
JPH064515B2 (ja) 高靭性窒化珪素焼結体およびその製法
JP2687633B2 (ja) 窒化珪素焼結体の製造方法
JP3216973B2 (ja) 窒化珪素質焼結体及びその製造方法
JP2881189B2 (ja) 窒化珪素−炭化珪素複合セラミックスの製造方法
JPS62270467A (ja) 窒化アルミニウム質焼結体
JPH10245268A (ja) 窒化珪素複合焼結体とその製造方法
JPS61227908A (ja) 窒化珪素質焼結体用原料粉末の製法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant