CN106031006B - Dc-dc变换器 - Google Patents

Dc-dc变换器 Download PDF

Info

Publication number
CN106031006B
CN106031006B CN201580009547.0A CN201580009547A CN106031006B CN 106031006 B CN106031006 B CN 106031006B CN 201580009547 A CN201580009547 A CN 201580009547A CN 106031006 B CN106031006 B CN 106031006B
Authority
CN
China
Prior art keywords
elements
series circuit
switching element
switching
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580009547.0A
Other languages
English (en)
Other versions
CN106031006A (zh
Inventor
田子政成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of CN106031006A publication Critical patent/CN106031006A/zh
Application granted granted Critical
Publication of CN106031006B publication Critical patent/CN106031006B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/077Charge pumps of the Schenkel-type with parallel connected charge pump stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

具备电感器及开关切换元件所构成的n个第1串联电路(CS11,CS12)和n个整流元件(D1,D2)串联连接而成的使得整流方向相同的的第2串联电路(CS2)。在n=2的情况下,在第1串联电路(CS11)的电感器(L1)与开关切换元件(Q1)的连接点(P11)被连接于第2串联电路(CS2)的一端,第2串联电路(CS2)的另一端被连接于平滑用电容器(Cout)及负载(RL)的一端。电感器(L2)与开关切换元件(Q2)的连接点(P12)经由电容器(C2)而被连接于整流元件(D1,D2)的连接点。在对于第2串联电路(CS2)的连接顺序中,第奇数个开关切换元件(Q1)与第偶数个开关切换元件(Q2)被互补地驱动。

Description

DC-DC变换器
技术领域
本发明涉及将直流输入电压升压后输出的DC-DC变换器。
背景技术
使用了电容器与二极管的充电泵方式的升压电路一般作为输入电源电压低且电流容量小的DC-DC变换器而被采用。专利文献1中示出具备矩形波生成电路及利用电容器与二极管将该矩形波倍压整流的电路的电源电路。
充电泵方式的升压电路在原理上生成给定振幅的电压,并且将该电压平滑来生成直流电压。以该直流电压为基准,使交流电压(通常是作为开关切换波形的方形波)叠加后将该电压平滑,由此生成振幅值为2倍的电压。
在先技术文献
专利文献
专利文献1:JP特开平10-323046号公报
发明内容
-发明所要解决的技术问题-
使用了电容器与二极管的充电泵方式的升压电路虽然具有能以简易的电路进行升压的优点,但可列举以下的问题点。
(1)由于仅利用电容器与二极管进行升压,故针对电容器的充放电电流无法增大,无法对应于要求较大的负载电流的情况。
(2)由于是在平滑为直流电压后在该直流电压上叠加交流电压的电路,故为了进行倍压整流一定需要2个二极管。因此,二极管中的损耗较大。
(3)由于从电容器脉冲性地向开关切换元件流入大的电流,故开关切换元件中的损耗较大。为此,开关切换元件的发热大。电力变换效率也难以提高。为了减小脉冲电流,虽然只要减小电容器的电容即可,但该情况下难以输出大电流。
因而,本发明的目的在于,提供一种可增大负载电流且减少了二极管及开关切换元件中的损耗的低发热、电力变换效率高的DC-DC变换器。
-用于解决技术问题的手段-
本发明的DC-DC变换器,其特征在于,
n个第1串联电路并联地连接在直流电压输入端子之间,每个第1串联电路由电感器及开关切换元件构成,
所述n个第1串联电路之中的1个第1串联电路中,在所述电感器与所述开关切换元件的连接点处,连接由n个整流元件串联连接而成的第2串联电路的一端,以使得整流方向相同,
所述第2串联电路之中的各整流元件彼此的连接点、和所述第1串联电路之中的其余的(n-1)个第1串联电路中的所述电感器与所述开关切换元件的连接点经由电容器而被连接,
所述第2串联电路的另一端被连接于平滑用电容器及负载的一端,
所述DC-DC变换器具备开关切换控制电路,针对所述n个整流元件所连接的n个所述开关切换元件,在由所述第2串联电路规定的整流元件的连接顺序中,该开关切换控制电路互补地驱动第奇数个开关切换元件与第偶数个开关切换元件。
根据上述构成,n个第1串联电路的开关切换元件之中的第奇数个开关切换元件与第偶数个开关切换元件被相互互补地驱动,对电感器与开关切换元件进行连接的电容器每当开关切换元件的互补性的驱动时被充放电,因此可以运转充放电电流,可增大负载供给电流。再有,不需要现有技术的用于平滑成直流电压的整流二极管,不会产生该二极管中的损耗。
所述开关切换元件优选为场效应晶体管。由此,可减少导通损耗。
所述整流元件为场效应晶体管,优选通过所述开关切换控制电路来驱动该整流元件。由此,可减少整流元件中的导通损耗。
优选所述第2串联电路的各整流元件在该整流元件的连接顺序中相对于被连接于该整流元件的前级侧的开关切换元件而被互补地驱动。根据该构成,可简化多个开关切换元件与整流元件的驱动信号,可简化开关切换控制电路。
-发明效果-
根据本发明,可增大升压用电容器所对应的充放电电流的综合电流量,可适用于负载供给电流大的电源装置。再有,由于并非是在平滑成直流电压后将交流电压叠加于该直流电压,而是将交流电压叠加于交流电压之后进行整流平滑,故不需要用于平滑成直流电压的整流二极管,该二极管中的损耗不会产生。
附图说明
图1是第1实施方式涉及的DC-DC变换器101的电路图。
图2是图1中示出的开关切换元件Q1、Q2的栅极信号的波形图。
图3是图1各部的波形图。
图4是第2实施方式涉及的DC-DC变换器102的电路图。
图5是图4中示出的开关切换元件Q1、Q2、Q3的栅极信号的波形图。
图6是图4各部的波形图。
图7是第3实施方式涉及的DC-DC变换器103的电路图。
图8是第4实施方式涉及的DC-DC变换器104的电路图。
图9是第5实施方式涉及的DC-DC变换器105的电路图。
具体实施方式
以后参照附图并列举若干个具体例子,来表示本发明的多个具体实施方式。各图中对同一部位附以同一符号。各实施方式只是示例,当然能够进行不同的实施方式中示出的构成的局部性的置换或组合。
《第1实施方式》
图1(A)(B)是第1实施方式涉及的DC-DC变换器101的电路图。该DC-DC变换器101具备连接直流输入电源E的输入端子T1、和连接负载RL的输出端子T2。图1(A)及图1(B)分别表示之后表示的2个状态中的电流的路径。
DC-DC变换器101在输入侧具备电容器Cin、在输出侧具备电容器Cout。再有,DC-DC变换器101具备:电感器L1及开关切换元件Q1所构成的第1串联电路CS11、和电感器L2及开关切换元件Q2所构成的第1串联电路CS12。即,具备2个第1串联电路CS11、CS12。这些第1串联电路CS11、CS12并联连接于直流电压E的输入端子之间。
上述2个第1串联电路CS11、CS12之中的1个第1串联电路CS11中,在电感器L1与开关切换元件Q1的连接点P11,连接由2个二极管D1、D2串联连接而成的第2串联电路CS2的一端,以使得整流方向相同。
第2串联电路CS2之中的二极管D1与二极管D2的连接点P21、和上述2个第1串联电路CS11、CS12之中的其余的第1串联电路CS12中的电感器L2与开关切换元件Q2的连接点P12经由电容器C2而被连接。
第2串联电路CS2的另一端被连接于平滑用电容器Cout及负载RL的一端。
DC-DC变换器101具备开关切换控制电路1。开关切换元件Q1、Q2是场效应晶体管,开关切换控制电路1通过对开关切换元件Q1、Q2输出栅极信号来驱动开关切换元件Q1、Q2。该开关切换控制电路1针对2个二极管D1、D2所连接着的2个开关切换元件Q1、Q2,在第2串联电路CS2所规定的二极管D1、D2的连接顺序中,互补地驱动第1个开关切换元件Q1及第2个开关切换元件Q2。
图2是图1中示出的开关切换元件Q1、Q2的栅极信号的波形图。向开关切换元件Q1、Q2提供2相的驱动信号。本例中,第1开关切换元件Q1与第2开关切换元件Q2被交替地接通(ON)/断开(OFF)。“状态1”是第1开关切换元件Q1断开、第2开关切换元件Q2接通的状态,“状态2”是第2开关切换元件Q2断开、第1开关切换元件Q1接通的状态。
图3是图1各部的波形图。图3中,各符号的含义如下。
vd1:开关切换元件Q1的漏极电压
vd2:开关切换元件Q2的漏极电压
vg1:开关切换元件Q1的栅极电压
vg2:开关切换元件Q2的栅极电压
VD2:二极管D2的正极电压
Vout:向负载的输出电压
上述状态1、2中的动作如下。
[状态1]
开关切换元件Q1断开、Q2接通,由此如图1(A)所示,励磁电流i2在电感器L2中流动。再有,电流i3从电感器L1经由二极管D1及电容器C2而流向Q2。由此,电感器L1的励磁能量被释放,并且电容器C2被充电(charge up)。
[状态2]
若开关切换元件Q1接通,则二极管D1变成反向偏置,如图1(B)所示,励磁电流i1在电感器L1中流动。再有,由于开关切换元件Q2是断开的,故电流i4从电感器L2经由电容器C2、二极管D2而流动。此时,如图3所示,电容器C2的充电电压被叠加在Q2的漏极电压Vd2(电感器L2的电压)而得的电压被输出。
以后,交替地反复[状态1]、[状态2]。通过该动作,在由第2串联电路CS2规定的二极管的连接顺序中,由初级的二极管D1及与该二极管D1连接的第1串联电路CS11来构成升压斩波器电路。而且,来自该升压斩波器电路的能量释放时,在由第2串联电路CS2规定的二极管的连接顺序中,下一级的二极管D2所连接的电容器C2被充电(charge up),来自连接有电容器C2的第1串联电路CS12的电感器L2的能量释放时,叠加电容器C2的电压后被输出。该电压由平滑用电容器Cout进行平滑并提供给负载RL。由此,向负载输出单个的升压斩波器电路中生成的电压的2倍的电压。在图3中示出的例子中,在单个的升压斩波器电路中生成20V,能向负载输出其2倍的约40V。
在一旦平滑为直流电压后将交流电压叠加于该直流电压的现有方式的DC-DC变换器中,在以升压斩波器电路直接地进行升压的情况下,需要输出电压以上的耐压的开关切换元件及整流元件,但在本实施方式中,将交流电压叠加于交流电压,最后平滑成直流电压,因此能向开关切换元件及整流元件施加比输出电压低的电压。为此,能够选择低耐压且特性优良的元件。
另外,在对输出电压进行控制的情况下,只要通过PWM控制对开关切换元件Q1、Q2的接通占空比进行控制即可。
《第2实施方式》
图4是第2实施方式涉及的DC-DC变换器102的电路图。该DC-DC变换器102具备连接直流输入电源E的输入端子T1、和连接负载RL的输出端子T2。
本实施方式的DC-DC变换器102具备3个第1串联电路CS11、CS12、CS13。再有,具备3个二极管D1、D2、D3串联连接而成的第2串联电路CS2。
虽然在3个第1串联电路CS11、CS12、CS13的开关切换元件Q1、Q2、Q3连接有对这些开关切换元件进行驱动的开关切换控制电路,但在图4中省略图示。该开关切换控制电路在第2串联电路CS2所规定的二极管D1、D2、D3的连接顺序中,互补地驱动第奇数个开关切换元件Q1、Q3与第偶数个开关切换元件Q2。
图5是图4中示出的开关切换元件Q1、Q2、Q3的栅极信号的波形图。本例中,开关切换元件Q1、Q2、Q3以50%占空比被交替地接通/断开。“状态1”是第1开关切换元件Q1及第3开关切换元件Q3断开、第2开关切换元件Q2接通的期间,“状态2”是第2开关切换元件Q2断开、第1开关切换元件Q1及第3开关切换元件Q3接通的期间。
图6是图4各部的波形图。图6中,各符号的含义如下。
vd1:开关切换元件Q1的漏极电压
vd2:开关切换元件Q2的漏极电压
vd3:开关切换元件Q3的漏极电压
VD2:二极管D2的正极电压
VD3:二极管D3的正极电压
Vout:向负载的输出电压
上述状态1、2中的动作如下,稳定动作状态下,状态1与状态2周期性地被交替地反复。
[状态1]
开关切换元件Q2为接通状态、开关切换元件Q1、Q3为断开状态,如图4(A)所示,励磁电流i2在电感器L2中流动。由于开关切换元件Q1为断开状态,故电流i3经由电感器L1、二极管D1、电容器C2而流动。由此,电容器C2被充电(charge up)。由于开关切换元件Q3为断开状态,故励磁电流i5在电感器L3中流动。此时,电感器L3的电压被叠加了电容器C3的充电电压(1周期前的、后述的状态2的动作中电容器C3被充电(charge up))而得的电压经由二极管D3而被输出。此时,D2成为反向偏置且被断开。
[状态2]
开关切换元件Q1、Q3为接通状态、开关切换元件Q2为断开状态,如图4(B)所示,电流i4从电感器L2经由电容器C2、二极管D2而流向电容器C3。此时,开关切换元件Q3处于接通状态,电容器C3被充电(charge up)。由此,电感器L2的励磁能量被释放,并且电容器C2的电压被充电至电容器C3。由于开关切换元件Q1、Q3为接通状态,故电感器L1、L3的励磁电流i1、i3流动。
以后,交替地反复[状态1]、[状态2]。通过该动作,在来自第1串联电路CS11的电感器L1的能量释放时,在第2串联电路CS2所规定的二极管的连接顺序中相当于下一级的第1串联电路CS12的电容器C2被充电(charge up)。而且,来自该第1串联电路CS12的能量释放时,电容器C2的电压被叠加在第2串联电路CS2所规定的二极管的连接顺序中相当于下一级的第1串联电路CS13的电容器C3并被输出。该被叠加的电压被电容器Cout平滑且向负载RL供给。由此,能向负载输出单个的升压斩波器电路中生成的电压的3倍的电压。
本实施方式中,由于将交流电压叠加于交流电压、最后平滑成直流电压,故能向开关切换元件施加比输出电压小的电压。为此,能够选择低耐压且特性更优良的元件。
《第3实施方式》
图7是第3实施方式涉及的DC-DC变换器103的电路图。该DC-DC变换器103具备连接直流输入电源E的输入端子T1、及连接负载RL的输出端子T2。
本实施方式的DC-DC变换器103具备n个第1串联电路CS11、CS12、CS13、CS14···CS1n。再有,具备n个二极管D1、D2、D3、D4···Dn被串联连接而成的第2串联电路CS2。
n个第1串联电路CS11、CS12、CS13、CS14···CS1n的开关切换元件Q1、Q2、Q3、Q4···Qn连接对这些开关切换元件进行驱动的开关切换控制电路。该开关切换控制电路在第2串联电路CS2所规定的二极管D1、D2、D3、D4···Dn的连接顺序中互补地驱动第奇数个开关切换元件Q1、Q3···与第偶数个开关切换元件Q2、Q4···。
本实施方式的DC-DC变换器103中,也与第1、第2实施方式示出的DC-DC变换器同样,具有[状态1]与[状态2],并交替地反复这两种状态。通过该动作,能向负载输出单个的升压斩波器电路中生成的电压的n倍的电压。
《第4实施方式》
图8(A)(B)是第4实施方式涉及的DC-DC变换器104的电路图。该DC-DC变换器104输出将极性反转并且进行了升压的电压。本实施方式的DC-DC变换器104相当于将在第1实施方式的图1(A)(B)中示出的DC-DC变换器101的电感器与开关切换元件的位置交换后的电路。即,将各斩波器电路设为反转变换器的构成。
DC-DC变换器104的动作如下。
[状态1]
开关切换元件Q1断开、Q2接通,由此如图8(A)所示,励磁电流i2在电感器L2中流动。再有,电流i3经由电容器C2、二极管D1而在电感器L1中流动。由此,电感器L1的励磁能量被释放,并且电容器C2被充电(charge up)。
[状态2]
若开关切换元件Q1接通,则二极管D1变成反向偏置,如图8(B)所示,励磁电流i1在电感器L1中流动。再有,由于开关切换元件Q2断开,故电流i4经由二极管D2、电容器C2而在电感器L2中流动。此时,向输出端子T2输出在电感器L2的电压上叠加了电容器C2的充电电压而得的负电压。
《第5实施方式》
图9是第5实施方式涉及的DC-DC变换器105的电路图。第1实施方式示出的例子中,虽然作为整流元件而具备二极管D1、D2,但在本实施方式中,整流元件具备基于场效应晶体管的整流元件Q21、Q22。开关切换控制电路1不仅对开关切换元件Q1、Q2进行控制,也对整流元件Q21、Q22进行控制。具体地,开关切换控制电路1在整流元件Q21、Q22的连接顺序中,相对于被连接于该整流元件的前级侧的开关切换元件而互补地进行驱动。即,整流元件Q21与被连接于其前级侧的开关切换元件Q1被互补地驱动,整流元件Q22与被连接于其前级侧的开关切换元件Q2被互补地驱动。因此,在开关切换元件Q2接通之时,整流元件Q21接通,在开关切换元件Q1接通之时,整流元件Q22接通。
根据本实施方式,可减少整流元件中的导通损耗。再有,开关切换控制电路1可以利用单纯的驱动信号来驱动开关切换元件Q1、Q2及整流元件Q21、Q22。
-符号说明-
CS11、CS12、CS13、CS14···CS1n...第1串联电路
CS2...第2串联电路
C2、C3、C4···Cn...电容器
Cin、Cout...电容器
D1、D2、D3、D4···Dn...二极管(整流元件)
E...直流输入电源
i1~i4...电流
L1、L2、L3、L4···Ln...电感器
Q1、Q2、Q3、Q4···Qn...开关切换元件
Q21、Q22...整流元件
RL...负载
T1...输入端子
T2...输出端子
Vd1、Vd2、Vd3...漏极电压
1...开关切换控制电路
101~105...DC-DC变换器

Claims (4)

1.一种DC-DC变换器,其特征在于,
n个第1串联电路并联地连接在直流电压输入端子之间,每个第1串联电路由电感器及开关切换元件构成,其中,n=3以上的自然数,
所述n个第1串联电路之中的1个第1串联电路中,在所述电感器与所述开关切换元件的连接点处,连接由n个整流元件串联连接为整流方向相同而成的第2串联电路的一端,
所述第2串联电路之中的各整流元件彼此的连接点、和所述第1串联电路之中的其余的n-1个第1串联电路中的所述电感器与所述开关切换元件的连接点经由电容器而被连接,
所述电容器全部经由所述第1串联电路而被接地,
所述第2串联电路的另一端被连接于平滑用电容器及负载的一端,
所述DC-DC变换器具备开关切换控制电路,针对所述n个整流元件所连接的n个所述开关切换元件,在由所述第2串联电路规定的整流元件的连接顺序中,在连接所述第2串联电路的所述一端的开关切换元件不连接所述电容器,该开关切换控制电路互补地驱动第奇数个开关切换元件与第偶数个开关切换元件,并且,在第奇数个开关切换元件驱动时,在第偶数个整流元件中流动电流,在第偶数个开关切换元件驱动时,在第奇数个整流元件中流动电流。
2.根据权利要求1所述的DC-DC变换器,其特征在于,
所述开关切换元件为场效应晶体管。
3.根据权利要求1或2所述的DC-DC变换器,其特征在于,
所述整流元件为场效应晶体管,
所述开关切换控制电路对所述整流元件进行驱动。
4.根据权利要求3所述的DC-DC变换器,其特征在于,
所述第2串联电路的各整流元件在该整流元件的连接顺序中相对于被连接于该整流元件的前级侧的所述开关切换元件而被互补地驱动。
CN201580009547.0A 2014-03-24 2015-03-17 Dc-dc变换器 Active CN106031006B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014-060224 2014-03-24
JP2014060224 2014-03-24
PCT/JP2015/057810 WO2015146695A1 (ja) 2014-03-24 2015-03-17 Dc-dcコンバータ

Publications (2)

Publication Number Publication Date
CN106031006A CN106031006A (zh) 2016-10-12
CN106031006B true CN106031006B (zh) 2020-01-17

Family

ID=54195218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580009547.0A Active CN106031006B (zh) 2014-03-24 2015-03-17 Dc-dc变换器

Country Status (5)

Country Link
US (1) US9998006B2 (zh)
JP (1) JP6057017B2 (zh)
CN (1) CN106031006B (zh)
DE (1) DE112015001421T5 (zh)
WO (1) WO2015146695A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9929654B2 (en) * 2015-08-17 2018-03-27 The Curators Of The University Of Missouri High voltage gain DC/DC power electronic converters
CN105118451B (zh) * 2015-08-19 2018-02-23 深圳市华星光电技术有限公司 驱动电路以及液晶显示装置
US9831775B2 (en) * 2016-02-25 2017-11-28 International Business Machines Corporation Buck converter
US12015350B2 (en) * 2022-07-25 2024-06-18 P-Duke Technology Co., Ltd. Multi-phase converter including a duty cycle limiter
DE102022118507A1 (de) 2022-07-25 2024-01-25 P-Duke Technology Co., Ltd. Neuartige Stromversorgungsvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202586748U (zh) * 2012-02-28 2012-12-05 河南天创新能源设备有限公司 一种交错并联boost变换器
CN103051182A (zh) * 2013-01-18 2013-04-17 重庆大学 一种变结构双输入直流变换器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323046A (ja) * 1997-05-12 1998-12-04 Sumitomo Metal Ind Ltd チャージポンプ及び直流電源回路
TWI289971B (en) * 2005-11-01 2007-11-11 Asustek Comp Inc Boost converter and boost conversion method
JP2009055722A (ja) * 2007-08-28 2009-03-12 Seiko Npc Corp チャージポンプ方式電源回路
WO2009123054A1 (ja) * 2008-04-02 2009-10-08 国立大学法人群馬大学 スイッチング制御装置
JP5152510B2 (ja) * 2008-09-18 2013-02-27 住友電気工業株式会社 電圧変換回路
US8350538B2 (en) * 2009-04-11 2013-01-08 Cuks, Llc Voltage step-down switching DC-to-DC converter
JP5775993B2 (ja) * 2010-03-31 2015-09-09 パナソニックIpマネジメント株式会社 スイッチトキャパシタ装置
US8362756B2 (en) * 2010-12-21 2013-01-29 Exar Corporation Digital boost feedback voltage controller for switch-mode power supplies using pulse-frequency modulation
JP2012182871A (ja) * 2011-02-28 2012-09-20 Panasonic Corp チャージポンプ回路及びスイッチ装置
US9106130B2 (en) * 2012-07-16 2015-08-11 Power Systems Technologies, Inc. Magnetic device and power converter employing the same
KR101422948B1 (ko) * 2012-12-11 2014-07-23 삼성전기주식회사 역률 보정 회로
CN102946194B (zh) * 2012-12-12 2016-02-03 重庆大学 一种高增益交错并联升压型变换器
US9240712B2 (en) * 2012-12-13 2016-01-19 Power Systems Technologies Ltd. Controller including a common current-sense device for power switches of a power converter
CN203434860U (zh) * 2013-08-26 2014-02-12 华南理工大学 一种基于耦合电感和电压转移技术的高增益升压变换器
US9300206B2 (en) * 2013-11-15 2016-03-29 Power Systems Technologies Ltd. Method for estimating power of a power converter
JP6213268B2 (ja) * 2014-01-30 2017-10-18 株式会社デンソー 電力変換装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202586748U (zh) * 2012-02-28 2012-12-05 河南天创新能源设备有限公司 一种交错并联boost变换器
CN103051182A (zh) * 2013-01-18 2013-04-17 重庆大学 一种变结构双输入直流变换器

Also Published As

Publication number Publication date
DE112015001421T5 (de) 2016-12-15
US9998006B2 (en) 2018-06-12
JP6057017B2 (ja) 2017-01-11
JPWO2015146695A1 (ja) 2017-04-13
WO2015146695A1 (ja) 2015-10-01
CN106031006A (zh) 2016-10-12
US20170012532A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US8000117B2 (en) Buck boost function based on a capacitor bootstrap input buck converter
CN103731047B (zh) 电源设备
CN202424528U (zh) Dc/dc转换器及利用该转换器的电源装置和电子设备
CN106031006B (zh) Dc-dc变换器
TWI483518B (zh) 用於接收輸入電壓的開關調製器的控制電路及在開關調製器中利用接通時間恆定體系控制主開關和低端開關的方法
CA2963665A1 (en) Two-phase three-level converter and controller therefor
US20130234785A1 (en) Apparatus and Method for Feedforward Controlled Charge Pumps
US20100301826A1 (en) System and method for oring phases to overcome duty cycle limitations in a multi-phase boost converter
CN102035379B (zh) Dc-dc变流器
US10205398B2 (en) Very high efficiency one stage isolated power factor correction circuit
CN103259397A (zh) 开关电源装置
WO2016208544A1 (ja) 電力変換装置及びその制御方法
KR101005463B1 (ko) 직류/직류 변환기 및 그 구동방법
CN103269164A (zh) 原边恒流控制的准单级高功率因数电路及装置
JP5422801B2 (ja) 昇降圧スイッチング電源回路
KR101030776B1 (ko) 승압형 직류/직류 변환기
US11469664B2 (en) Power converter with a high conversion ratio
JP5347594B2 (ja) 電力供給装置
CN102893506B (zh) Boost级联升压电路
JP2018085873A (ja) ゼロボルトスイッチング方式のスイッチング電源装置
CN104052315A (zh) 降压式交直流转换器
JP6137947B2 (ja) 双方向絶縁型dc−dcコンバータ
JP5467029B2 (ja) 電源装置
JP6242353B2 (ja) 出力電圧反転型dcdcコンバータ
JP2010259198A (ja) Dc−dc変換装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant