CN106011761B - 沉积材料的方法和设备 - Google Patents

沉积材料的方法和设备 Download PDF

Info

Publication number
CN106011761B
CN106011761B CN201610201666.2A CN201610201666A CN106011761B CN 106011761 B CN106011761 B CN 106011761B CN 201610201666 A CN201610201666 A CN 201610201666A CN 106011761 B CN106011761 B CN 106011761B
Authority
CN
China
Prior art keywords
substrate
chamber
magnetic field
secondary magnetic
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610201666.2A
Other languages
English (en)
Other versions
CN106011761A (zh
Inventor
斯蒂芬·R·伯吉斯
R·辛德曼
阿米特·拉斯托吉
保罗·埃杜拉多·利马
C·L·威迪克斯
保罗·理查
斯科特·海莫尔
丹尼尔·库克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPTS Technologies Ltd
Original Assignee
SPTS Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPTS Technologies Ltd filed Critical SPTS Technologies Ltd
Publication of CN106011761A publication Critical patent/CN106011761A/zh
Application granted granted Critical
Publication of CN106011761B publication Critical patent/CN106011761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3458Electromagnets in particular for cathodic sputtering apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0617AIII BV compounds, where A is Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3435Applying energy to the substrate during sputtering
    • C23C14/345Applying energy to the substrate during sputtering using substrate bias
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32669Particular magnets or magnet arrangements for controlling the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • H01J37/32688Multi-cusp fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus
    • H01J37/3452Magnet distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3461Means for shaping the magnetic field, e.g. magnetic shunts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3464Operating strategies
    • H01J37/3467Pulsed operation, e.g. HIPIMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3402Gas-filled discharge tubes operating with cathodic sputtering using supplementary magnetic fields
    • H01J37/3405Magnetron sputtering
    • H01J37/3408Planar magnetron sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Metallurgy (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Physical Vapour Deposition (AREA)
  • Plasma Technology (AREA)

Abstract

本发明涉及沉积材料的方法和设备。本发明提供一种在腔室内用脉冲DC磁控装置通过脉冲DC磁控溅射将介电材料沉积到衬底上的方法,所述脉冲DC磁控装置产生一个或多个初级磁场;其中,溅射材料从靶材中溅射出,其中,所述靶材和所述衬底隔开2.5~10cm的间隙,并且在所述腔室内产生次级磁场,所述次级磁场引起由所述脉冲DC磁控装置产生的等离子体向所述腔室的一个或多个壁扩展。

Description

沉积材料的方法和设备
技术领域
本发明涉及一种通过磁控溅射将材料沉积到腔室中的衬底上的方法以及相关设备。
背景技术
磁控溅射是众所周知的PVD(物理气相沉积)的实例。磁控溅射用于将一定范围的膜沉积到一定范围的衬底上。例如,已知通过脉冲DC磁控溅射沉积AlN膜。AlN膜能够以确定的结晶取向进行沉积,从而产生压电特性。沉积的膜从而能够在某些确定的RF频带下形成谐振结构。这种类型的膜例如在体声波(BAW)装置的制造中具有应用,并用作RF频率的滤波器。通常情况下,表面积为几平方毫米的BAW装置被装配到圆形硅衬底上。硅衬底可以是直径为200mm。压电AlN膜的谐振频率是膜厚及其声学特性的一阶函数。因此,整个衬底上的AlN厚度的不均匀性必须非常低,以允许滤波器在校正的RF滤波器频带中工作。通常情况下,AlN厚度的不均匀性(NU%)应小于1%。
AlN的PVD的已知问题是:沉积的膜厚在衬底的径向最外端部分上明显下降。对于200mm直径的硅晶片,径向最外端15mm的晶片特别容易受到AlN膜厚大幅下降的影响。这种下降使得BAW滤波器不能由这一部分的晶片制成,除非进行额外的工艺步骤以适应膜厚的这种内在变化。图1示出了AlN膜厚(埃)关于硅晶片半径(mm)的函数的两个线扫描,一个线扫描在90o,另一个线扫描在第一晶片1和第二晶片2上的沉积。膜厚的下降在晶片的较外20mm处变得显著,并且在晶片的最外15mm处特别明显。对于200mm直径晶片,晶片的最外15mm代表87cm2的面积,其中全表面积为314cm2。这代表用于处理的可用硅的损失为28%。
应理解的是,通常期望实现均匀的磁控溅射的沉积膜厚,因为通常期望制造过程提供均匀的结果。因此,本发明并不限定于AlN膜的沉积。
在至少一些本发明的实施方式中,本发明解决了上述问题。
发明内容
根据本发明的第一方面,提供了一种在腔室中用脉冲DC磁控装置通过脉冲DC磁控溅射将介电材料沉积到衬底上的方法,所述脉冲DC磁控装置产生一个或多个初级磁场;
其中,从靶材中溅射出溅射材料,其中,所述靶材和所述衬底隔开2.5~10cm的间隙,并且在所述腔室内产生次级磁场,所述腔室引起由所述脉冲DC磁控装置产生的等离子体向所述腔室的一个或多个壁扩展。
所述衬底可以具有150mm或更大的宽度。
所述靶材可以具有一宽度,并且所述衬底可以具有一宽度。所述靶材的宽度可以大于所述衬底的宽度。在这些情况下,所述等离子体的宽度大于所述衬底的宽度,并且与直觉相反的是:这可能有利于使所述等离子体进一步扩展。通常情况下,所述靶材和所述衬底的宽度为各自的半径。原则上,所述靶材和所述衬底可以是不同形状的,并且所述宽度可以对应于一种或多种不同的线性尺寸。
可以使用电磁体创建所述次级磁场。可以通过将DC电流施加到线圈来创建所述次级磁场。所述线圈可以设置在所述腔室的外周。通常情况下,所述磁控装置位于所述腔室的上部区域,并且所述线圈设置在所述腔室的主体部分周围,所述腔室的主体部分位于所述腔室的上部区域的下方。原则上,所述线圈可以设置在所述腔室内。然而,这被认为是不太实用的布置。
所述电磁体可以是单个电磁体或具有对齐的极性的一系列电磁体,使得全部电磁体引起由所述磁控装置产生的等离子体向所述腔室的一个或多个壁扩展。
或者,可以使用永磁体创建所述次级磁场。然而,有利的是能够使用电磁体,因为电磁体更容易对所述次级磁场进行微调以产生最佳性能。
一般情况下,产生所述次级磁场,以便在所述衬底的外周部分提供厚度增大的沉积的材料。
所述次级磁场可以引起离子偏离所述衬底的外周部分。所述次级磁场可以向所述腔室的一个或多个壁吸引电子以产生漂移电场,所述漂移电场使离子偏离所述衬底的外周部分。
在所述腔室的壁和所述衬底之间的区域中,所述次级磁场可以在所述腔室中大致沿轴向延伸。
可以使用脉冲DC磁控溅射来沉积所述材料。当与脉冲DC磁控溅射或产生高密度离子的任何其它磁控溅射技术一起使用时,本发明被认为是特别有效的。
可以使用反应溅射来沉积所述材料。
沉积的介电材料可以是AlN。沉积的介电材料可以是硅氧化物。
负偏压电位可被施加到衬底支架,所述衬底放置在所述衬底支架上。
所述等离子体可以在包含氩的气体混合物中产生。其它稀有气体是可预期的。
Ar+离子可以偏离所述衬底的外周部分。
所述衬底可以是半导体衬底,诸如半导体晶片。所述衬底可以是硅衬底。所述衬底可以是半径为200mm或300mm的晶片。
根据本发明的第二方面,提供了一种通过脉冲DC磁控溅射将介电材料沉积到衬底上的PVD设备,包括:
腔室;
脉冲DC磁控装置,所述脉冲DC磁控装置产生一个或多个初级磁场,所述脉冲DC磁控装置包括能溅射出溅射材料的靶材;
衬底支架,所述衬底支架设置在所述腔室中;
次级磁场产生装置,所述次级磁场产生装置被配置成在使用时所述靶材和所述衬底隔开2.5~10cm的间隙;以及,
控制器,所述控制器被配置成控制所述次级磁场产生装置,使得次级磁场产生在所述腔室内,而同时沉积所述介电材料,所述次级磁场使所述腔室的一个或多个壁偏离漂移电场,所述漂移电场使离子偏离所述衬底的外周部分。
所述衬底支架被配置成支承宽度为150mm或更大的衬底。
所述靶材可以具有宽度。所述衬底支架被配置成支承具有宽度的衬底。所述靶材的宽度可以大于所述衬底的宽度。
所述次级磁场产生装置可以是电磁体。所述电磁体可以是单个电磁体或具有对齐的极性的一系列电磁体,使得全部电磁体产生磁场,所述磁场使电子向所述腔室的一个或多个壁偏移以产生漂移电场,所述漂移电场使离子偏离所述衬底的外周部分。
所述次级磁场产生装置可以包括:设置在所述腔室的外周的线圈,以及将DC电流施加到所述线圈的电源。
所述脉冲DC磁控装置可以是平衡的磁控管或未平衡的磁控管。
所述设备可以进一步包括所述衬底。
根据本发明的第三方面,提供了一种制造体声波装置的方法,所述方法包括使用根据本发明的第一方面的方法将介电材料沉积到衬底上。
虽然本发明已经描述如上,但是它延伸至上文中或者下面的说明书、附图或权利要求中所陈述的特征的任何发明组合。
附图说明
将参照附图描述根据本发明的设备和方法的实施方式,其中:
图1示出了现有技术沉积工艺的作为晶片径向位置的函数的AlN膜厚;
图2是现有技术用于沉积AlN的DC磁控***的一部分的半示意性截面图;
图3示出了根据本发明的PVD设备;
图4是用于沉积AlN的本发明的DC磁控***的一部分的半示意性截面图;
图5示出了对于DC线圈中的若干DC电流值,作为晶片径向位置的函数的AlN膜厚;以及,
图6示出了对于DC线圈中的若干DC电流值,晶片内已沉积的AlN膜的不均一性。
具体实施方式
图3示出了本发明的PVD设备,通常用30描述。设备30包括腔室32,腔室32容纳DC磁控装置34;靶材36,通过磁控装置34从靶材36中溅射出材料;以及衬底支架38,衬底支架38支承衬底(未示出),所需的材料沉积在衬底上。设备30进一步包括线圈40,线圈40设置在腔室32的主体部分周围。在图3所示的实施方式中,腔室是圆柱形的,虽然在原则上可以利用其它腔室形状和其它线圈横截面形状。为了简单呈现起见,磁控溅射装置的其它通用方面(诸如气体入口和出口)未在图3中示出。
将脉冲DC功率从DC电源施加到靶材36上。通过线圈DC电源46将DC功率施加到线圈40,线圈DC电源46能够改变施加的电流。将RF功率从RF电源44施加到衬底支架38,以便使衬底支架具有负偏压。通常情况下,衬底支架38通常以13.56MHz进行驱动,尽管本发明并不受限制于这个方面。电源42、44、46的操作由控制器48控制。控制器48可以是具有合适的图形用户界面的计算机。
已在上面描述了与材料(诸如AlN)沉积有关的膜均匀性的问题。本发明人认为:他们已经发现了沉积的AlN膜在晶片外周处的厚度降低的原因。不希望受到任何特定的理论或推测所束缚,据信:在晶片外周处的膜厚降低是由于带正电荷的离子溅射。这被描绘在图2中,图2示出了DC磁控***的一部分,DC磁控***的一部分包括具有靶材背板20a的腔室20,靶材背板20a充当盖部。靶材22被粘接到靶材背板20a上。一对可旋转的磁铁24放置在靶材背板20a的对面,远离靶材22。晶片26放置在台板28上,台板28能被RF驱动以产生负DC偏压。将氩气和氮气的混合物引入腔室,并且将负的脉冲高DC电压施加到由此充当阴极的靶材背板20a/靶材22。这产生了包含氩离子和AlN离子的高密度等离子体。晶片26位于阴极的主侵蚀轨道内,阴极的主侵蚀轨道由磁铁24的转动路径限定。据信,一部分离子使等离子体的阴极辉光(negative glow)逸出并朝着台板28移动。也据信,台板28上的负偏压起到将带正电荷的离子(诸如Ar+)吸引到晶片26的边缘的作用,从而导致沉积的AlN膜在该区域中通过溅射蚀刻变薄。Al正离子和N正离子可能也会产生某些溅射蚀刻。
图4示出了本发明的设备的一部分,这与图2所示的现有技术设备的许多特征相同。因此,图4中已使用的相同附图标记描述了这些相同特征。图4中所示的本发明的实施方式进一步包括多匝线圈29,多匝线圈29位于腔室20的主体部分周围。线圈29由DC电源(未示出)供给DC电流。图4也示出了由通电线圈29产生的次级磁场线。可见,腔室20的内部中产生的磁场线21沿着腔室大致轴向延伸至接近主体部分的腔室壁。由线圈29产生的次级磁场的作用是引起等离子体朝向腔室20的主体部分的壁扩展。不希望受到任何特定的理论或推测所束缚,据信:次级磁场吸引来自阴极的电子,这反过来建立了漂移电场,该漂移电场使离子偏离晶片26的边缘。这降低了在晶片的边缘处的溅射蚀刻。因此,据信,本发明能够通过使这些正离子朝向腔室壁偏离来减少朝向晶片边缘移动的正离子的数目,否则这会溅射蚀刻晶片的边缘区域。由于影响晶片边缘区域的正离子数得以减少,据信,由离子轰击导致的晶片的这个区域中的局部变薄的效果也减少。这导致沉积的膜均匀性改善。
已使用根据图2和图4的设备进行实验,以将AlN膜沉积到硅衬底上。所使用的沉积工艺条件示于表1中。
表1:AlN膜沉积的工艺条件
工艺步骤 参数(常规值) 参数范围
脉冲DC功率(kW) 5 1~10
脉冲频率(KHz)和持续时间(μs) 10,4 5~100,1~10
腔室压力(mT) 3 1~10
气体流量(sccm) 20Ar/40N<sub>2</sub> 5~40Ar/5~80N<sub>2</sub>
台板温度(℃) 150 100~400
衬底偏压(V) -35 -20~45
靶材至晶片的间距(cm) ~4.5 3~9
将多种DC电流施加到产生次级磁场的线圈(分别对应于图4和图3中所示的线圈29和线圈40)。更具体地说,0A、10A和20A的电流与33匝线圈结合使用。图5示出了对于使用这些DC电流沉积的膜,沉积的AlN膜厚与晶片上的径向位置的函数。线50示出了当不施加电流时的膜厚,线52示出了10A电流的膜厚,并且线54示出了20A电流的膜厚。可见,当20A电流用于产生次级磁场时,在硅晶片的边缘处AlN膜厚没有出现下降。图6示出了3、5和10mm边缘排除(ee)的49点极性测量的由1σ%标准偏差表示的晶片内膜(WIW)厚度不均匀性关于施加到生成次级磁场的线圈的DC线圈电流的函数。线60、62、64分别对应于3mm、5mm和10mm的边缘排除。图6示出了在未施加直流电流时不均匀性在3和5mm边缘排除处较高,这是由于在晶片边缘处膜厚下降。在施加20A的DC电流时,晶片内不均匀性对于3mm、5mm到10mm的边缘排除来说基本上相同。可见,对于与这些实验相关的***和工艺条件,最佳次级磁场是由施加约20A的DC电流产生的。也能够看出获得了优异的结果。实际上,加工到3mm边缘排除被认为是现有技术。使用电磁体产生次级磁场是有利的,因为它允许磁场的强度容易改变以得到最佳结果。在本文提供的实例中,优化的磁场为33×20=660安培匝(Amp turn)。对于任何给定的实现方式,使用本文提供的原理能够容易地得到优化的磁场。
本发明能够应用于范围广泛的PVD***。能够产生实施本发明的预定***,并且也能够容易地改进现有的PVD***。

Claims (16)

1.一种在腔室内用脉冲DC磁控装置通过脉冲DC磁控溅射将介电材料沉积到衬底上的方法,所述脉冲DC磁控装置产生一个或多个初级磁场;
其中,从靶材中溅射出溅射材料,其中,所述靶材和所述衬底隔开2.5~10cm的间隙,并且在所述腔室内产生次级磁场,所述次级磁场引起由所述脉冲DC磁控装置产生的等离子体向所述腔室的一个或多个壁扩展,其中使用电磁体通过将DC电流施加到线圈来创建所述次级磁场,所述线圈设置在所述腔室的外周,且在所述腔室的壁和所述衬底之间的区域中,所述次级磁场在所述腔室中大致沿轴向延伸;以及
其中,将负RF偏压电位施加到衬底支架,所述衬底放置在所述衬底支架上。
2.根据权利要求1所述的方法,其中,所述衬底具有150mm或更大的宽度。
3.根据权利要求1或2所述的方法,其中,所述靶材具有宽度,所述衬底具有宽度,并且所述靶材的宽度大于所述衬底的宽度。
4.根据权利要求1所述的方法,其中,所述电磁体是单个电磁体或具有对齐的极性的一系列电磁体,使得全部电磁体引起由所述磁控装置产生的等离子体向所述腔室的一个或多个壁扩展。
5.根据权利要求1所述的方法,其中,产生所述次级磁场,以便在所述衬底的外周部分提供厚度增大的沉积的介电材料。
6.根据权利要求1所述的方法,其中,所述次级磁场引起离子偏离所述衬底的外周部分。
7.根据权利要求6所述的方法,其中,Ar+离子偏离所述衬底的外周部分。
8.根据权利要求6或7所述的方法,其中,所述次级磁场向所述腔室的一个或多个壁吸引电子以产生漂移电场,所述漂移电场使离子偏离所述衬底的外周部分。
9.根据权利要求1所述的方法,其中,AlN被沉积。
10.根据权利要求1所述的方法,其中,所述衬底是半导体衬底,诸如硅衬底。
11.一种通过DC磁控溅射将介电材料沉积到衬底上的PVD设备,包括:
腔室;
脉冲DC磁控装置,所述DC磁控装置产生一个或多个初级磁场,所述脉冲DC磁控装置包括能溅射出溅射材料的靶材;
衬底支架,所述衬底支架设置在所述腔室中,其中负RF偏压电位被施加到所述衬底支架;
次级磁场产生装置,所述次级磁场产生装置被配置成在使用时所述靶材和所述衬底隔开2.5~10cm的间隙;以及
控制器,所述控制器被配置成控制所述次级磁场产生装置,使得在所述腔室内产生次级磁场,而同时沉积所述介电材料,所述次级磁场使电子向所述腔室的一个或多个壁偏移以产生漂移电场,所述漂移电场使离子偏离所述衬底的外周部分,其中,所述次级磁场产生装置是电磁体,并且包括设置在所述腔室的外周的线圈以及将DC电流施加到所述线圈的电源,且在所述腔室的壁和所述衬底之间的区域中,所述次级磁场在所述腔室中大致沿轴向延伸。
12.根据权利要求11所述的设备,其中,所述衬底支架被配置成支承宽度为150mm或更大的衬底。
13.根据权利要求11或12所述的设备,其中,所述靶材具有宽度,所述衬底支架被配置成支承具有宽度的衬底,并且所述靶材的宽度大于所述衬底的宽度。
14.根据权利要求11所述的设备,其中,所述电磁体是单个电磁体或具有对齐的极性的一系列电磁体,使得全部电磁体产生磁场,所述磁场使电子向所述腔室的一个或多个壁偏移以产生漂移电场,所述漂移电场使离子偏离所述衬底的外周部分。
15.根据权利要求11所述的设备,进一步包括所述衬底。
16.一种制造体声波装置的方法,所述方法包括使用根据权利要求1所述的方法将介电材料沉积到衬底上。
CN201610201666.2A 2015-03-31 2016-03-31 沉积材料的方法和设备 Active CN106011761B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1505578.3 2015-03-31
GBGB1505578.3A GB201505578D0 (en) 2015-03-31 2015-03-31 Method and apparatus for depositing a material

Publications (2)

Publication Number Publication Date
CN106011761A CN106011761A (zh) 2016-10-12
CN106011761B true CN106011761B (zh) 2020-12-29

Family

ID=53178467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610201666.2A Active CN106011761B (zh) 2015-03-31 2016-03-31 沉积材料的方法和设备

Country Status (7)

Country Link
US (2) US10900114B2 (zh)
EP (1) EP3075876B1 (zh)
JP (2) JP7141197B2 (zh)
KR (1) KR20160117350A (zh)
CN (1) CN106011761B (zh)
GB (1) GB201505578D0 (zh)
TW (1) TWI695079B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230034431A (ko) * 2018-06-21 2023-03-09 인프리아 코포레이션 모노알킬 주석 알콕사이드 및 이들의 가수분해 및 축합 생성물의 안정적인 용액
GB201815216D0 (en) 2018-09-18 2018-10-31 Spts Technologies Ltd Apparatus and a method of controlling thickness variation in a material layer formed using physical vapour deposition
CN111349899B (zh) * 2018-12-20 2022-02-25 上海陛通半导体能源科技股份有限公司 物理气相沉积材料的方法和设备
GB201909538D0 (en) * 2019-07-02 2019-08-14 Spts Technologies Ltd Deposition apparatus
CN110527967B (zh) * 2019-09-23 2020-09-11 上海陛通半导体能源科技股份有限公司 物理气相沉积设备
CN112760609B (zh) * 2020-12-22 2022-10-21 北京北方华创微电子装备有限公司 磁控溅射设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132575A (en) * 1998-09-28 2000-10-17 Alcatel Magnetron reactor for providing a high density, inductively coupled plasma source for sputtering metal and dielectric films

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531142A (en) * 1978-08-25 1980-03-05 Tomonobu Hata Pressed magnetic field type magnetron sputter by focusing magnetic field
JP3718237B2 (ja) 1993-03-18 2005-11-24 株式会社東芝 スパッタリング方法
US6599399B2 (en) * 1997-03-07 2003-07-29 Applied Materials, Inc. Sputtering method to generate ionized metal plasma using electron beams and magnetic field
US5902461A (en) 1997-09-03 1999-05-11 Applied Materials, Inc. Apparatus and method for enhancing uniformity of a metal film formed on a substrate with the aid of an inductively coupled plasma
US6342134B1 (en) * 2000-02-11 2002-01-29 Agere Systems Guardian Corp. Method for producing piezoelectric films with rotating magnetron sputtering system
US6352629B1 (en) * 2000-07-10 2002-03-05 Applied Materials, Inc. Coaxial electromagnet in a magnetron sputtering reactor
GB0116688D0 (en) * 2001-07-07 2001-08-29 Trikon Holdings Ltd Method of depositing aluminium nitride
CN1656243B (zh) 2001-11-14 2010-06-16 应用材料有限公司 用于溅射和再溅射的自离子化及电感耦合等离子体
US7504006B2 (en) * 2002-08-01 2009-03-17 Applied Materials, Inc. Self-ionized and capacitively-coupled plasma for sputtering and resputtering
US7686926B2 (en) 2004-05-26 2010-03-30 Applied Materials, Inc. Multi-step process for forming a metal barrier in a sputter reactor
US20060172536A1 (en) 2005-02-03 2006-08-03 Brown Karl M Apparatus for plasma-enhanced physical vapor deposition of copper with RF source power applied through the workpiece
US7749785B2 (en) * 2007-05-02 2010-07-06 Showa Denko K.K. Manufacturing method of group III nitride semiconductor light-emitting device
JP4997448B2 (ja) * 2007-12-21 2012-08-08 独立行政法人産業技術総合研究所 窒化物半導体の製造方法および窒化物半導体デバイス
WO2010070845A1 (ja) * 2008-12-15 2010-06-24 株式会社アルバック スパッタリング装置及びスパッタリング方法
KR101429069B1 (ko) 2009-07-17 2014-08-11 가부시키가이샤 아루박 성막 장치 및 성막 방법
US20120070589A1 (en) 2010-09-21 2012-03-22 Liqi Wu Creation of magnetic field (vector potential) well for improved plasma deposition and resputtering uniformity
US9611539B2 (en) * 2012-01-27 2017-04-04 Applied Materials, Inc. Crystalline orientation and overhang control in collision based RF plasmas
CN103374705B (zh) * 2012-04-11 2015-12-02 北京北方微电子基地设备工艺研究中心有限责任公司 一种磁控溅射装置
CN112581463B (zh) 2020-12-25 2024-02-27 北京百度网讯科技有限公司 图像缺陷的检测方法、装置、电子设备、存储介质及产品

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6132575A (en) * 1998-09-28 2000-10-17 Alcatel Magnetron reactor for providing a high density, inductively coupled plasma source for sputtering metal and dielectric films

Also Published As

Publication number Publication date
TWI695079B (zh) 2020-06-01
US10900114B2 (en) 2021-01-26
GB201505578D0 (en) 2015-05-13
US20210123130A1 (en) 2021-04-29
KR20160117350A (ko) 2016-10-10
JP7141197B2 (ja) 2022-09-22
EP3075876A1 (en) 2016-10-05
CN106011761A (zh) 2016-10-12
JP7236477B2 (ja) 2023-03-09
EP3075876B1 (en) 2019-02-13
US20160289815A1 (en) 2016-10-06
JP2021073378A (ja) 2021-05-13
JP2016194155A (ja) 2016-11-17
TW201702414A (zh) 2017-01-16
US11875980B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
CN106011761B (zh) 沉积材料的方法和设备
JP5037630B2 (ja) プラズマ処理装置
KR102033180B1 (ko) 플라즈마 처리 장치
US8133362B2 (en) Physical vapor deposition with multi-point clamp
US20090308732A1 (en) Apparatus and method for uniform deposition
KR101371003B1 (ko) 임피던스 매칭 네트워크에 의한 물리 기상 증착법
US8911602B2 (en) Dual hexagonal shaped plasma source
JP2006511945A (ja) 容量結合型プラズマを増強して局在化させるための方法および装置ならびに磁石アセンブリ
US9181619B2 (en) Physical vapor deposition with heat diffuser
CN110904414B (zh) 磁体组件、包括该磁体组件的装置和方法
TW201611082A (zh) 用於電漿處理反應器中電磁均勻度和歪斜調諧的系統與方法
EP3510624B1 (en) Ion filtering method
JP5441163B2 (ja) 位相シフトによる物理的気相成長方法
EP2660351B1 (en) Radio frequency tuned substrate biased physical vapor deposition apparatus and method of operation
US20110209989A1 (en) Physical vapor deposition with insulated clamp
JP3436931B2 (ja) プラズマを用いて基板を処理するための装置および方法
JP2011034705A (ja) プラズマ処理装置
JP2018029119A (ja) 誘導結合型プラズマ処理装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant