CN105964275B - CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法 - Google Patents

CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法 Download PDF

Info

Publication number
CN105964275B
CN105964275B CN201610291334.8A CN201610291334A CN105964275B CN 105964275 B CN105964275 B CN 105964275B CN 201610291334 A CN201610291334 A CN 201610291334A CN 105964275 B CN105964275 B CN 105964275B
Authority
CN
China
Prior art keywords
znin
cus
cdin
mass
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610291334.8A
Other languages
English (en)
Other versions
CN105964275A (zh
Inventor
李莉
陈熙
曹艳珍
张文治
于岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qiqihar University
Original Assignee
Qiqihar University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qiqihar University filed Critical Qiqihar University
Priority to CN201610291334.8A priority Critical patent/CN105964275B/zh
Publication of CN105964275A publication Critical patent/CN105964275A/zh
Application granted granted Critical
Publication of CN105964275B publication Critical patent/CN105964275B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/346Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of microwave energy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,属于化工行业技术领域。采用Zn(NO3)3·6H2O、In(NO3)3·4.5H2O、Cd(NO3)2·4H2O、Cu(NO3)2·3H2O、C2H5NS五种化学试剂原料按质量配比混合放入去离子水中搅拌均匀,通过微波反应器微波辐射反应后,再通过去离子水和无水乙醇分别反复洗涤后,再经过烘干得到最终产物CuS/CdIn2S4/ZnIn2S4复合光催化剂。对其表面形貌、微观结构、光催化活性进行了测定,产品性能在降解有机污染物甲基橙和光解水制氢的光催化方面有很大提高。采用微波辅助一步合成方法,具有反应时间短、生成的产物均匀、生产过程简洁实用等特点,试样和批量生产性能稳定可靠。

Description

CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成 方法
技术领域
本发明涉及一种CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,属于化工行业技术领域。
背景技术
自从1972年Fujishima和Honda教授发现利用TiO2电极在紫外光照射下可以分解水生成氢气和氧气以来,光催化技术便引起了各国科学家的广泛关注。然而,目前大部分的光催化剂只能够被仅占太阳光中3%~5%的紫外光所激发,不能有效利用太阳光中大部分的可见光,所以制备具有可见光响应的高效光催化材料的研究在光催化降解有机污染物甲基橙和光解水制氢方面则显得非常有意义。
发明内容
为了解决上述问题,本发明的目的在于提供一种CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,一方面,由于ZnIn2S4、CdIn2S4和CuS都具有较窄的禁带宽度,这可以有效地提高复合材料在可见光区的吸收,以达到较高的太阳光利用率。另一方面,ZnIn2S4与CdIn2S4和CuS的复合增加了复合材料光生电子的迁移途径,这种光生电子的多途径迁移从本质上降低了光生电子-空穴对的复合率,提高了复合材料的光催化反应效率。采用Zn(NO3)3·6H2O、In(NO3)3·4.5H2O、Cd(NO3)2·4H2O、Cu(NO3)2·3H2O、C2H5NS五种化学试剂原料按质量配比混合放入去离子水中搅拌均匀,通过微波反应器微波辐射反应后,再通过去离子水和无水乙醇分别反复洗涤后,再经过烘干得到最终产物CuS/CdIn2S4/ZnIn2S4复合光催化剂。产品制作过程简洁实用,产品性能稳定可靠,具有较高可见光响应。
本发明解决其技术问题所采用的技术方案是:CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,称取Zn(NO3)3·6H2O,质量为0.134±0.001g、In(NO3)3·4.5H2O,质量为0.382±0.002g、Cd(NO3)2·4H2O,质量为0.015±0.001g、Cu(NO3)2·3H2O,质量为0.001±0.0002g和C2H5NS,质量为0.225 ±0.002g。将上述五种化学试剂原料混合放入20+2mL去离子水中,充分搅拌20+2min后,倒入100 mL聚四氟乙烯内衬的微波反应器中,设定微波水热反应温度为160±2℃,反应时间为1.5+0.05h。微波辐射反应结束后,将生成的棕色沉淀物用去离子水和无水乙醇分别反复洗涤4-5次。将沉淀物放入烘干箱,设定烘干温度60±2℃,干燥时间12 +0.1h,取出得到最终产物CuS/CdIn2S4/ZnIn2S4复合光催化剂。
本发明的有益效果是:采用微波辅助一步法合成具有较高可见光响应的CuS/CdIn2S4/ZnIn2S4复合光催化剂。复合材料由异质ZnIn2S4、立方相CdIn2S4和六方相CuS组成,且CdIn2S4和CuS的引入提高了光催化剂在可见光区的吸收。CuS/CdIn2S4/ZnIn2S4保持了较好的花球状结构,具有较大的比表面积。与P25相比,复合光催化剂在模拟日光和可见光下对有机污染物甲基橙具有较好的光降解效果。另外,Pt作为助催化剂时,复合催化剂在Na2S-Na2SO3溶液中和可见光的照射下具有较高的产氢速率,这是由于CdIn2S4和CuS的引入,扩大了复合材料可见光响应的范围,同时增加了光生电子的迁移途径,抑制了CuS/CdIn2S4/ZnIn2S4光生电子-空穴对的复合,从而改善其光催化活性。同时,采用微波辅助一步合成方法,具有反应时间短、生成的产物均匀、生产过程简洁实用等特点,试样和批量生产性能稳定可靠。
附图说明
下面结合附图和具体实施方式对本发明做进一步说明。
图1是CuS/CdIn2S4/ZnIn2S4复合光催化剂表面形貌之一图。
图2是CuS/CdIn2S4/ZnIn2S4复合光催化剂表面形貌之二图。
图3是CuS/CdIn2S4/ZnIn2S4复合光催化剂微观结构之一图。
图4是CuS/CdIn2S4/ZnIn2S4复合光催化剂微观结构之二图。
图5是CuS/CdIn2S4/ZnIn2S4复合光催化剂的HRTEM照片之一。
图6是CuS/CdIn2S4/ZnIn2S4复合光催化剂的HRTEM照片之二。
图7是直接光降解、P25、ZnIn2S4、CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4模拟日光催化降解甲基橙反应速率图。
图8是直接光降解、P25、ZnIn2S4、CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4可见光催化降解甲基橙反应速率图。
图9是直接光降解、P25、ZnIn2S4、CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4的可见光催化降解甲基橙动力学结果图。
图10是P25、ZnIn2S4、CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4 在Na2S溶液中光解水制氢速率图。
图11 是0.2% wt Pt助催化剂负载CuS/CdIn2S4/ZnIn2S4在Na2S-Na2SO3溶液中光解水制氢实验图。
图12是0.2% wt Pt助催化剂负载CuS/CdIn2S4/ZnIn2S4以Na2S-Na2SO3作为牺牲剂,在大于420 nm的可见光照射下光解水制氢的催化剂稳定性结果图。
具体实施方式
CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,称取购于天津市东丽区天大化学试剂厂99.0%的Zn(NO3)3·6H2O,质量为0.1339g、购于上海市国药集团化学试剂有限公司99.5%的In(NO3)3·4.5H2O,质量为0.3819 g、购于天津市科密欧化学试剂有限公99.0%的Cd(NO3)2·4H2O,质量为0.0154g、购于天津市天力化学试剂有限公司99.5%的Cu(NO3)2·3H2O,质量为0.001g和购于天津市科密欧化学试剂有限公司99.0%的C2H5NS,质量为0.225 4g。将上述五种化学试剂原料混合放入20mL去离子水中,充分搅拌20min后,倒入100mL聚四氟乙烯内衬的微波反应器中,选用上海新仪微波化学科技有限公司的MDS-8G型微波反应器,设定微波水热反应温度为160℃,反应时间为1.5 h。微波辐射反应结束后,将生成的棕色沉淀物用去离子水和无水乙醇分别反复洗涤4次。将沉淀物滤净放入烘干箱,设定烘干温度60℃,干燥时间12h,取出得到最终产物为CuS/CdIn2S4/ZnIn2S4复合光催化剂。
CuS/CdIn2S4/ZnIn2S4复合光催化剂的结构及性能测定:
一、表面形貌和微观结构
CuS/CdIn2S4/ZnIn2S4样品的表面形貌和微观结构分析结果见图1—6。由图1、图2可清楚地观察到,样品呈现出较为规则的花瓣球状结构,且球体的直径约为600 nm,球体之间具有良好的分散性。同时图3、图4的TEM结果表明,样品的微观结构主要是由不规则的块状晶体和长度100-200 nm的棒状晶体均匀堆积而成,且块状晶体和长棒状晶体的表面都分布有大量直径~5 nm的纳米颗粒。图5、图6为样品CuS/CdIn2S4/ZnIn2S4的HRTEM照片,其插图为选定区域的快速傅里叶变换(FFT)图像。
二、光催化性能测定
市售P25、单质ZnIn2S4、双质CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4的光催化活性进行了降解有机污染物甲基橙和光解水制氢的光催化实验。
1、降解有机污染物甲基橙见图7、图8显示,CuS/CdIn2S4/ZnIn2S4复合材料在模拟日光和可见光下对甲基橙的降解均呈现出最高的光催化活性,远超过市售P25。另外,不同样品对降解甲基橙速率的影响见图9所示。根据实验数据,按照公式-ln(C t /C 0 )=kt+b进行计算,其中,C t 为染料在t时刻的浓度(mg·L-1),C 0 是染料初始浓度(mg·L-1),k是速率常数(min-1),b为截距。由图9可见,-ln(C t /C 0 )与反应时间t基本呈线性关系,这说明染料甲基橙的降解遵循准一级反应动力学。经计算,直接光降解、P25、ZnIn2S4、CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4的可见光光催化降解甲基橙的表观反应速率常数分别为5.67×10-5、4.95×10-4、5.34×10-3、6.20×10-3和8.96×10-3 min-1
2、光解水制氢P25、ZnIn2S4、CdIn2S4/ZnIn2S4和CuS/CdIn2S4/ZnIn2S4不同样品在Na2S溶液中产氢速率结果如图10所示。结果表明,CuS/CdIn2S4/ZnIn2S4复合材料具有最好的产氢能力,其产氢速率为P25的15倍。其插图显示,CuS/CdIn2S4/ZnIn2S4在Na2S-Na2SO3溶液中的产氢速率要高于Na2S或Na2SO3的单一溶液,证明Na2S和Na2SO3在光催化过程中存在协同效应。为了进一步提高光催化剂的产氢能力,将Pt作为助催化剂通过光还原法负载在样品CuS/CdIn2S4/ZnIn2S4的表面,结果如11所示。0.2% wt Pt负载后,CuS/CdIn2S4/ZnIn2S4的产氢速率达到358.4 μmol·h-1·g-1,比负载前提高了6倍。使用420 nm截止滤波片后,Pt负载CuS/CdIn2S4/ZnIn2S4的产氢速率仍然能达到233.9 μmol·h-1·g-1,表明样品具有较高的可见光响应。为了考察Pt负载CuS/CdIn2S4/ZnIn2S4的光催化稳定性,以Na2S-Na2SO3作为牺牲剂,在波长大于420 nm的可见光照射下持续产氢24 h。图12表明,样品在产氢24 h后仍保持一定的光催化稳定性,且光催化反应前后的晶型结构并没有发生较大改变,其插图显示反应前后样品的XRD谱图。

Claims (2)

1.一种CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,其特征是:称取Zn(NO3)3·6H2O,质量为0.134±0.001g、In(NO3)3·4.5H2O,质量为0.382±0.002g、Cd(NO3)2·4H2O,质量为0.015±0.001g、Cu(NO3)2·3H2O,质量为0.001±0.0002g和C2H5NS,质量为0.225 ±0.002g;将上述五种化学试剂原料混合放入20± 2mL去离子水中,充分搅拌20±2min后,倒入100 mL聚四氟乙烯内衬的微波反应器中,设定微波水热反应温度为160±2℃,反应时间为1.5± 0.05h;微波辐射反应结束后,将生成的棕色沉淀物用去离子水和无水乙醇分别反复洗涤4-5次;将沉淀物放入烘干箱,设定烘干温度60±2℃,干燥时间12 ±0.1h,取出得到最终产物CuS/CdIn2S4/ZnIn2S4复合光催化剂。
2.根据权利要求1所述的CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法,其特征是: Zn(NO3)3·6H2O,质量为0.1339g、In(NO3)3·4.5H2O,质量为0.3819 g、Cd(NO3)2·4H2O,质量为0.0154g、Cu(NO3)2·3H2O,质量为0.001g和C2H5NS,质量为0.225 4g;混合放入20mL去离子水中,充分搅拌20min后,倒入100 mL微波反应器中,反应温度为160℃,反应时间为1.5 h;反应结束后,将生成物用去离子水和无水乙醇分别反复洗涤4次;将沉淀物滤净放入烘干箱,设定烘干温度60℃,干燥时间12h。
CN201610291334.8A 2016-05-05 2016-05-05 CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法 Expired - Fee Related CN105964275B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610291334.8A CN105964275B (zh) 2016-05-05 2016-05-05 CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610291334.8A CN105964275B (zh) 2016-05-05 2016-05-05 CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法

Publications (2)

Publication Number Publication Date
CN105964275A CN105964275A (zh) 2016-09-28
CN105964275B true CN105964275B (zh) 2021-03-23

Family

ID=56993865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610291334.8A Expired - Fee Related CN105964275B (zh) 2016-05-05 2016-05-05 CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法

Country Status (1)

Country Link
CN (1) CN105964275B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106745199B (zh) * 2016-12-30 2018-10-23 东华大学 一种常压低温无模板制备中空硫化铟微球的方法
CN106964369B (zh) * 2017-03-21 2019-09-24 温州大学 一种异质结光催化剂的制备方法和应用
CN109012699B (zh) * 2018-09-03 2021-03-05 辽宁大学 对称反z型光催化剂及其制备方法和应用
CN109847781A (zh) * 2019-01-30 2019-06-07 太原理工大学 一种CdIn2S4/g-C3N4复合光催化剂的制备方法及其应用
CN109821562B (zh) * 2019-04-09 2021-08-24 淮北师范大学 一种MoP-Zn3In2S6复合纳米材料的制备方法
CN114130407B (zh) * 2021-12-17 2023-05-16 公元股份有限公司 一种Cu2S/CuInS2/ZnIn2S4复合光催化剂的制备方法和应用
CN115845877A (zh) * 2022-10-20 2023-03-28 厦门稀土材料研究所 光催化剂、制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104971762A (zh) * 2015-07-16 2015-10-14 华南理工大学 一种g-C3N4/CaIn2S4可见光复合光催化剂的制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009066529A (ja) * 2007-09-13 2009-04-02 Tokyo Univ Of Science 光触媒およびその製造方法並びに水素ガス発生方法
EP2230702A1 (en) * 2009-03-19 2010-09-22 Ecole Polytechnique Fédérale de Lausanne (EPFL) Modified surface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104971762A (zh) * 2015-07-16 2015-10-14 华南理工大学 一种g-C3N4/CaIn2S4可见光复合光催化剂的制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZnIn2S4光催化剂的制备及光催化分解硫化氢的研究;单雯妍;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20101115(第11期);第58页 *
微波法制备多孔ZnIn2S4光催化剂及光催化性能的研究;张国中;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20131215(第S1期);第48-49、66页 *

Also Published As

Publication number Publication date
CN105964275A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
CN105964275B (zh) CuS/CdIn2S4/ZnIn2S4复合光催化剂的微波辅助一步合成方法
Chen et al. Hollow ZnCdS dodecahedral cages for highly efficient visible-light-driven hydrogen generation
Azam et al. Engineering approach to enhance photocatalytic water splitting for dynamic H2 production using La2O3/TiO2 nanocatalyst in a monolith photoreactor
Yang et al. Fabrication of bimodal-pore SrTiO3 microspheres with excellent photocatalytic performance for Cr (VI) reduction under simulated sunlight
CN102151577B (zh) 一种Ag3PO4/Mg-Al LDO可见光复合光催化剂及其制备与应用
CN104707542B (zh) 一种光催化剂/SiO2复合气凝胶材料及其制备方法
CN106622252A (zh) 一种co2加氢制甲醇的催化剂
Wen et al. Three-dimensional ordered macroporous materials for photocatalysis: design and applications
CN103223338B (zh) 一种二氧化钛微球阵列负载铂可见光光催化剂及制备方法
CN107175115B (zh) 一种空间电荷分离型复合光催化剂的制备方法和应用
He et al. Low-temperature synthesis of nano-porous high entropy spinel oxides with high grain boundary density for oxygen evolution reaction
CN104588040A (zh) 一种光催化剂及其制备方法
Cheng et al. Fe-doped zirconia nanoparticles with highly negative conduction band potential for enhancing visible light photocatalytic performance
CN104959153A (zh) 光催化产氢助剂、光催化剂及光催化剂的制备方法和应用
CN100434165C (zh) 高活性纳米晶BiVO4可见光催化剂的超声化学的制备方法
Wang et al. Structure-controlled CdS (0D, 1D, 2D) embedded onto 2D ZnS porous nanosheets for highly efficient photocatalytic hydrogen generation
CN112958135A (zh) 一种铈掺杂、铈-氮共掺杂钨酸铋光催化材料及制备方法
CN106582758B (zh) 层级纳米结构Bi2O3/(BiO)2CO3的制备
CN102125831B (zh) 介孔Bi2O3/TiO2纳米光催化剂的制备方法
Quan et al. Construction of an MZO heterojunction system with improved photocatalytic activity for degradation of organic dyes
CN109046456B (zh) 负载型锰-金属有机框架复合材料的制备方法及其应用
Huang et al. Copper-doped zinc sulfide nanoframes with three-dimensional photocatalytic surfaces for enhanced solar driven H2 production
Quan et al. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO 3 decorated with Zn x Cd 1− x S
Wu et al. Preparation of N-TiO2/SiO2 composites by solvothermal method and their photocatalytic properties
CN110721685B (zh) 一种复合光催化材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210323