CN105921141A - 分级多孔的钛酸锶微球及其制备和应用 - Google Patents

分级多孔的钛酸锶微球及其制备和应用 Download PDF

Info

Publication number
CN105921141A
CN105921141A CN201510976965.9A CN201510976965A CN105921141A CN 105921141 A CN105921141 A CN 105921141A CN 201510976965 A CN201510976965 A CN 201510976965A CN 105921141 A CN105921141 A CN 105921141A
Authority
CN
China
Prior art keywords
microsphere
srtio
agarose
solution
srco
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510976965.9A
Other languages
English (en)
Inventor
姜忠义
孙园园
佟振伟
南延虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201510976965.9A priority Critical patent/CN105921141A/zh
Publication of CN105921141A publication Critical patent/CN105921141A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种种分级多孔的钛酸锶微球,是利用琼脂糖凝胶模板法和溶胶凝胶法制备出的具有多孔结构的SrTiO3微球,所述SrTiO3微球的粒径为17μm‑20μm,所述SrTiO3微球由多个立方型SrTiO3单晶自组装而成,所述SrTiO3微球分布有一级孔隙和二级孔隙,所述一级孔隙的孔径为70‑150nm,二级孔隙的孔径为3nm。本发明获得的钛酸锶微球具有较高的吸附性能和催化性能,为大孔光催化材料的制备提供了一个新的方法。上述钛酸锶微球表现出了良好的光催化还原铬的性能,可通过简单的沉降方法就可以回收。本发明具有廉价易得,制备工艺简单易行,反应条件温和,绿色,无二次污染等有优点。

Description

分级多孔的钛酸锶微球及其制备和应用
技术领域
本发明涉及一种分级多孔钛酸锶光催化剂的制备方法,属于无机功能材料的合成领域,可应用于除去污水中的六价铬。
背景技术
化工、电镀、皮革等工矿企业每年都排出大量的贵金属离子废液,六价铬离子是其中之一,若不及时处理,危害环境,危害人类健康。光催化还原六价铬离子是近年来发展起来的一项操作简单、环境友好、高效率的废水处理技术。其中三元化合物SrTiO3具有稳定,价格低廉等优点。将六价铬离子负载于钛酸锶表面,在足够强的光照下,半导体钛酸锶受到激发,发生电子跃迁,产生电子和空穴。一部分电子和空穴会移动到催化剂的表面与负载离子发生反应;一部分电子和空穴会在半导体内复合,降低催化效率。所以抑制电子和空穴的复合成为提高光催化效率的重要途径。
目前抑制电子和空穴复合的途径主要有:与其它半导体材料复合,与金属或非金属元素掺杂,形貌的调控等。其中多孔材料—形貌调控的一种,被广泛研究,主要是因为多孔结构不仅可以降低电子和空穴的复合,而且还可以提供更多的活性位点、利用更多的光照面积,提高材料的催化性能,
目前制备出的多孔钛酸锶材料主要是小孔和介孔,而大孔的钛酸锶材料至今还没有研究。乳液模板法是近年来制备多孔材料的一种重要途径。乳液微粒可以在10-1000nm尺度变化,且粒径和分布可调可控,因而可以用来制备中孔及中孔以上的多孔材料。
发明内容
本发明的目的在于提供一种制备多孔钛酸锶光催化材料的方法,该制备方法条件温和,制备过程简便、可控性好,分级多孔结构,应用于模拟太阳光下还原六价铬的研究,效果明显。
为了解决上述技术问题,本发明提出的一种分级多孔的钛酸锶微球,是利用琼脂糖凝胶模板法和溶胶凝胶法制备出的具有多孔结构的SrTiO3微球,所述SrTiO3微球的粒径为17μm-20μm,所述SrTiO3微球由多个立方型SrTiO3单晶自组装而成,所述SrTiO3微球分布有一级孔隙和二级孔隙,所述一级孔隙的孔径为70-150nm,二级孔隙的孔径为3nm。
制备上述分级多孔的钛酸锶微球包括以下步骤:
步骤一、配置含有3wt.%的琼脂糖和6-18wt.%SrCO3粉末的水溶液,超声1h并在90℃恒温水浴中加热,直到琼脂糖溶液充分溶解,为水相;同时,在带有搅拌器的三口烧瓶中加入3.8wt.%Span 85、1.6wt.%Tween 80的环己烷溶液,在60℃的恒温水浴中搅拌5min,转速为1000r/min,为油相;水相与油相的比例为1:2;
步骤二、按照水相与油相比例为1:2,将步骤一中的加热了的水相迅速倒入油相,继续在60℃水浴中搅拌30min,转速为1000r/min;然后将乳化液转移到0℃的冷水浴中,保持相同的转速,搅拌30min,低温固化,离心,去掉上层的油相,用乙醇、去离子水反复洗涤;然后用200目、300目的标准筛依次过滤,取200-300目之间的凝胶微球,并保存在20%的乙醇溶液中,记为SrCO3/Agarose凝胶微球。
步骤三、将步骤二中得到的SrCO3/Agarose凝胶微球在50%乙醇溶液、80%乙醇溶液、100%乙醇溶液及100%异丙醇溶液中依次浸泡,每次浸泡时间为6h,置换凝胶微球中的水分;然后浸泡在50%的异丙醇钛的异丙醇水溶液中6h;之后用滤纸过滤,将凝胶微球表面的异丙醇钛溶液吸干;随后,浸泡在50%的异丙醇水溶液中,浸泡6h,水解矿化得到SrCO3/Agarose/TiO2微球;
步骤四、将步骤三中得到的SrCO3/Agarose/TiO2微球冷冻干燥后在1000℃下煅烧10h;然后依次用稀盐酸、去离子水充分洗涤去除未反应的SrCO3,在60℃下干燥得到SrTiO3微球。
本发明的分级多孔的钛酸锶微球作为光催化剂,可以用于除去污水中的六价铬。
与现有技术相比,本发明的有益效果是:
本发明用一种溶胶凝胶结合乳液模板的方法制备出了含有大孔(即一级孔隙)以及介孔(即二级孔隙)的SrTiO3微球。其中,大孔有利于光的折射,增大光的吸收面积,介孔有助于提供更多的活性位点,因此可以提高材料的吸附性能以及催化性能。本发明获得的SrTiO3微球是由边长大约为100nm的立方形SrTiO3单晶组成(如图4所示),除充分利用光线之外,还可以抑制电子-空穴对的复合,提高光催化效率。将本发明制备得到的SrTiO3微球用于还原铬的研究,在pH=2的条件下,2h内就可以100%将六价铬还原为三价铬(如图5所示)。
发明制备得到的SrTiO3微球具有较高的吸附性能和催化性能,为其它大孔光催化材料的制备提供了一个新的方法。钛酸锶微球表现出了良好的光催化还原铬的性能,可通过简单的沉降方法就可以回收。本发明具有廉价易得,制备工艺简单易行,反应条件温和,绿色,无二次污染等有优点。
附图说明
图1为实施例4制备的未煅烧的SrCO3/Agarose/TiO2-18微球的光学显微镜照片;
图2为实施例4制备的STO-18催化剂煅烧后的扫描电镜(SEM)照片;
图3为实施例4制备的STO-18催化剂煅烧后的介孔分布(BET)曲线;
图4为实施例4制备的STO-18催化剂煅烧后的X射线衍射(XRD)曲线;
图5为本发明各实施例制备的STO催化剂在模拟太阳光下还原Cr(VI)时的六价铬浓度随时间变化图。
具体实施方式
下面结合附图和具体实施例对本发明技术方案作进一步详细描述,所描述的具体实施例仅对本发明进行解释说明,并不用以限制本发明。
实施例1
称取0.75g琼脂糖、1.5g碳酸锶粉末于25mL的水溶液中。超声1h后在90℃恒温水浴中加热,直到琼脂糖充分溶解,为水相。同时,在带有搅拌器的三口烧瓶中加入1.9g Span85(三油酸山梨酯)、0.8g Tween 80(吐温80)及50mL环己烷,在60℃的恒温水浴中搅拌5min,转速为1000r/min,为油相。然后将水相迅速倒入油相,继续在60℃水浴中搅拌30min。之后将乳化液转移到0℃的冷水浴中,再搅拌30min,低温固化后用乙醇、去离子水反复洗涤。得到SrCO3/Agarose-6凝胶微球。
将SrCO3/Agarose凝胶微球在50%,80%、100%乙醇溶液及100%异丙醇溶液中依次浸泡,每次浸泡时间为6h,然后浸泡在50%的异丙醇钛的异丙醇水溶液中6h。之后用滤纸过滤,吸干表面的异丙醇钛。随后,浸泡在50%的异丙醇水溶液中,浸泡6h,水解矿化得到SrCO3/Agarose/TiO2-6微球。冷冻干燥,然后在1000℃下煅烧10h。稀盐酸,去离子水洗涤、60℃下干燥后得到SrTiO3微球(图5中以STO-6表示)。
实施例2
称取0.75g琼脂糖、3g碳酸锶粉末于25mL的水溶液中。超声1h后在90℃恒温水浴中加热,直到琼脂糖充分溶解,为水相。同时,在带有搅拌器的三口烧瓶中加入1.9g Span85(三油酸山梨酯)、0.8g Tween 80(吐温80)及50mL环己烷,在60℃的恒温水浴中搅拌5min,转速为1000r/min,为油相。然后将水相迅速倒入油相,继续在60℃水浴中搅拌30min。之后将乳化液转移到0℃的冷水浴中,再搅拌30min,低温固化后用乙醇、去离子水反复洗涤。得到SrCO3/Agarose-12凝胶微球。
将SrCO3/Agaros-12凝胶微球在50%,80%、100%乙醇溶液及100%异丙醇溶液中依次浸泡,每次浸泡时间为6h,然后浸泡在50%的异丙醇钛的异丙醇水溶液中6h。之后用滤纸过滤,吸干表面的异丙醇钛。随后,浸泡在50%的异丙醇水溶液中,浸泡6h,水解矿化得到SrCO3/Agarose/TiO2-12微球。冷冻干燥,然后在1000℃下煅烧10h。稀盐酸,去离子水洗涤、60℃下干燥后得到SrTiO3微球(图5中以STO-12表示)。
实施例3
称取0.75g琼脂糖、3.75g碳酸锶粉末于25mL的水溶液中。超声1h后在90℃恒温水浴中加热,直到琼脂糖充分溶解,为水相。同时,在带有搅拌器的三口烧瓶中加入1.9g Span85(三油酸山梨酯)、0.8g Tween 80(吐温80)及50mL环己烷,在60℃的恒温水浴中搅拌5min,转速为1000r/min,为油相。然后将水相迅速倒入油相,继续在60℃水浴中搅拌30min。之后将乳化液转移到0℃的冷水浴中,再搅拌30min,低温固化后用乙醇、去离子水反复洗涤。得到SrCO3/Agarose-15凝胶微球。
将SrCO3/Agarose-15凝胶微球在50%,80%、100%乙醇溶液及100%异丙醇溶液中依次浸泡,每次浸泡时间为6h,然后浸泡在50%的异丙醇钛的异丙醇水溶液中6h。之后用滤纸过滤,吸干表面的异丙醇钛。随后,浸泡在50%的异丙醇水溶液中,浸泡6h,水解矿化得到SrCO3/Agarose/TiO2-15微球。冷冻干燥,然后在1000℃下煅烧10h。稀盐酸,去离子水洗涤、60℃下干燥后得到SrTiO3微球(图5中以STO-15表示)。
实施例4
称取0.75g琼脂糖、4.5g碳酸锶粉末于25mL的水溶液中。超声1h后在90℃恒温水浴中加热,直到琼脂糖充分溶解,为水相。同时,在带有搅拌器的三口烧瓶中加入1.9g Span85(三油酸山梨酯)、0.8g Tween 80(吐温80)及50mL环己烷,在60℃的恒温水浴中搅拌5min,转速为1000r/min,为油相。然后将水相迅速倒入油相,继续在60℃水浴中搅拌30min。之后将乳化液转移到0℃的冷水浴中,再搅拌30min,低温固化后用乙醇、去离子水反复洗涤。得到SrCO3/Agarose-18凝胶微球。
将SrCO3/Agarose-18凝胶微球在50%,80%、100%乙醇溶液及100%异丙醇溶液中依次浸泡,每次浸泡时间为6h,然后浸泡在50%的异丙醇钛的异丙醇水溶液中6h。之后用滤纸过滤,吸干表面的异丙醇钛。随后,浸泡在50%的异丙醇水溶液中,浸泡6h,水解矿化得到SrCO3/Agarose/TiO2-18微球(如图1所示,可以看出,凝胶微球直径大小分布比较均匀,大小在75微米-100微米之间)。冷冻干燥,然后在1000℃下煅烧10h。稀盐酸,去离子水洗涤、60℃下干燥后得到SrTiO3微球(图5中以STO-18表示)。
如图2所示,实施例4制备的催化剂表面呈现出蠕虫状的大孔结构,大小为70-150nm;如图3所示,可以看出催化剂中也含有介孔结构,孔大小约为3nm;如图4所示,证明SrTiO3的存在,钛酸锶单晶呈现立方形结构。
对比例1
利用溶胶凝胶的方法制备出了TiO2。具体步骤如下,将异丙醇钛溶液逐步滴入体积比为1:1的异丙醇水溶液中,充分搅拌1h,离心,烘干后在800℃下煅烧10h,得到锐钛矿型的TiO2
对比例2
将对比例1中未煅烧的TiO2与SrCO3按照摩尔比为1:1的比例进行混合,然后在1000℃下煅烧10h,得到不含孔的SrTiO3,图5中记为Pure STO。
六价铬还原实验
将20mg本发明制备得到的具有分级多孔结构的钛酸锶微球直接作为催化剂加入到20mL10mg/L的重铬酸钾溶液中,先避光吸附1h,取一次样。然后在500W的氙灯下,每隔0.5h取1mL溶液。以二苯碳酰二肼(DPC)作为显色剂。在紫外-可见分光光度计(U-3010,Hitachi)540nm处检测其吸光值。
实验结果表明,制备的碳酸锶含量为12wt%的STO-12催化剂在模拟太阳光的条件下催化效率最高,在pH=2时2h内就可以100%还原六价铬,如图5所示。与采用水热的方法合成的多孔钛酸锶材料(λ>365nm,2h内还原效果达到90%)相比有明显的优势(Z.Zheng,B.Huang,X.Qin,X.Zhang,Y.Dai,Facile synthesis of SrTiO3hollow microspheres built asassembly of nanocubes and their associated photocatalytic activity,Journal of Colloid andInterface Science,358(2011)68-72.+-)。这种良好的催化效果是由于由SrTiO3晶体自组装形成的多孔结构,有效地抑制了光生电子-空穴的复合,提高了光催化活性,同时大孔和介孔的结构增大了光的吸收面积,有利于光催化反应的进行。
尽管上面结合附图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以做出很多变形,这些均属于本发明的保护之内。

Claims (3)

1.一种分级多孔的钛酸锶微球,其特征在于:是利用琼脂糖凝胶模板法和溶胶凝胶法制备出的具有多孔结构的SrTiO3微球,所述SrTiO3微球的粒径为17μm-20μm,所述SrTiO3微球由多个立方型SrTiO3单晶自组装而成,所述SrTiO3微球分布有一级孔隙和二级孔隙,所述一级孔隙的孔径为70-150nm,二级孔隙的孔径为3nm。
2.一种分级多孔的钛酸锶微球的制备方法,其特征在于:包括以下步骤:
步骤一、配置含有3wt.%的琼脂糖和6-18wt.%SrCO3粉末的水溶液,超声1h并在90℃恒温水浴中加热,直到琼脂糖溶液充分溶解,为水相;同时,在带有搅拌器的三口烧瓶中加入3.8wt.%Span 85、1.6wt.%Tween 80的环己烷溶液,在60℃的恒温水浴中搅拌5min,转速为1000r/min,为油相;水相与油相的比例为1:2;
步骤二、按照水相与油相比例为1:2,将步骤一中的加热了的水相迅速倒入油相,继续在60℃水浴中搅拌30min,转速为1000r/min;然后将乳化液转移到0℃的冷水浴中,保持相同的转速,搅拌30min,低温固化,离心,去掉上层的油相,用乙醇、去离子水反复洗涤;然后用200目、300目的标准筛依次过滤,取200-300目之间的凝胶微球,并保存在20%的乙醇溶液中,记为SrCO3/Agarose凝胶微球。
步骤三、将步骤二中得到的SrCO3/Agarose凝胶微球在50%乙醇溶液、80%乙醇溶液、100%乙醇溶液及100%异丙醇溶液中依次浸泡,每次浸泡时间为6h,置换凝胶微球中的水分;然后浸泡在50%的异丙醇钛的异丙醇水溶液中6h;之后用滤纸过滤,将凝胶微球表面的异丙醇钛溶液吸干;随后,浸泡在50%的异丙醇水溶液中,浸泡6h,水解矿化得到SrCO3/Agarose/TiO2微球;
步骤四、将步骤三中得到的SrCO3/Agarose/TiO2微球冷冻干燥后在1000℃下煅烧10h;然后依次用稀盐酸、去离子水充分洗涤去除未反应的SrCO3,在60℃下干燥得到SrTiO3微球。
3.一种分级多孔的钛酸锶微球的应用,其特征在于:将由权利要求2所述分级多孔的钛酸锶微球的制备方法制备得到的SrTiO3微球作为光催化剂,用于除去污水中的六价铬。
CN201510976965.9A 2015-12-23 2015-12-23 分级多孔的钛酸锶微球及其制备和应用 Pending CN105921141A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510976965.9A CN105921141A (zh) 2015-12-23 2015-12-23 分级多孔的钛酸锶微球及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510976965.9A CN105921141A (zh) 2015-12-23 2015-12-23 分级多孔的钛酸锶微球及其制备和应用

Publications (1)

Publication Number Publication Date
CN105921141A true CN105921141A (zh) 2016-09-07

Family

ID=56840019

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510976965.9A Pending CN105921141A (zh) 2015-12-23 2015-12-23 分级多孔的钛酸锶微球及其制备和应用

Country Status (1)

Country Link
CN (1) CN105921141A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423272A (zh) * 2016-09-28 2017-02-22 中南林业科技大学 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
CN106925248A (zh) * 2017-03-15 2017-07-07 天津大学 羟基修饰的含氧空位钛酸锶光催化材料及其制备和应用
CN109911933A (zh) * 2019-03-08 2019-06-21 广东工业大学 一种黑色二氧化钛纳米材料及其制备方法和应用
CN110952143A (zh) * 2019-12-03 2020-04-03 华东理工大学 一种介孔单晶钛酸锶的合成方法
CN111945226A (zh) * 2020-06-29 2020-11-17 大连大学 一种钛酸锶单晶微球的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219908A (zh) * 2007-09-21 2008-07-16 南京大学 多元金属氧化物半导体介孔材料及其合成方法
CN102390935A (zh) * 2011-08-22 2012-03-28 沈阳工业大学 一种球形颗粒堆积多孔结构钛酸锶薄膜的制备方法
CN104383906A (zh) * 2014-11-10 2015-03-04 沈阳理工大学 一种多孔钛酸锶光催化剂的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219908A (zh) * 2007-09-21 2008-07-16 南京大学 多元金属氧化物半导体介孔材料及其合成方法
CN102390935A (zh) * 2011-08-22 2012-03-28 沈阳工业大学 一种球形颗粒堆积多孔结构钛酸锶薄膜的制备方法
CN104383906A (zh) * 2014-11-10 2015-03-04 沈阳理工大学 一种多孔钛酸锶光催化剂的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIA HONG PAN ET AL.: "Self-Template Synthesis of Porous Perovskite Titanate Solid and Hollow Submicrospheres for Photocatalytic Oxygen Evolution and Mesoscopic Solar Cells", 《ACS APPL. MATER. INTERFACES》 *
KAI-FENG DU ET AL.: "Fabrication of Bimodal Porous CaTiO3 Microspheres Using Composite Agarose/CaCO3 Beads as Template", 《IND. ENG. CHEM. RES.》 *
ZHAOKE ZHENG ET AL.: "Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity", 《JOURNAL OF COLLOID AND INTERFACE SCIENCE》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106423272A (zh) * 2016-09-28 2017-02-22 中南林业科技大学 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
CN106423272B (zh) * 2016-09-28 2019-02-26 中南林业科技大学 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
CN106925248A (zh) * 2017-03-15 2017-07-07 天津大学 羟基修饰的含氧空位钛酸锶光催化材料及其制备和应用
CN106925248B (zh) * 2017-03-15 2019-06-25 天津大学 羟基修饰的含氧空位钛酸锶光催化材料及其制备和应用
CN109911933A (zh) * 2019-03-08 2019-06-21 广东工业大学 一种黑色二氧化钛纳米材料及其制备方法和应用
CN110952143A (zh) * 2019-12-03 2020-04-03 华东理工大学 一种介孔单晶钛酸锶的合成方法
CN110952143B (zh) * 2019-12-03 2021-09-03 华东理工大学 一种介孔单晶钛酸锶的合成方法
CN111945226A (zh) * 2020-06-29 2020-11-17 大连大学 一种钛酸锶单晶微球的制备方法

Similar Documents

Publication Publication Date Title
CN105921141A (zh) 分级多孔的钛酸锶微球及其制备和应用
Zhang et al. Fly ash cenospheres supported visible-light-driven BiVO4 photocatalyst: synthesis, characterization and photocatalytic application
Jiang et al. Equilibrium and kinetic studies of CI Basic Blue 41 adsorption onto N, F-codoped flower-like TiO2 microspheres
Sun et al. Photocatalyst of organic pollutants decomposition: TiO2/glass fiber cloth composites
CN103240073B (zh) 一种Zn2+掺杂BiVO4可见光催化剂及其制备方法
CN103101972A (zh) 一种生物模版法制备三维介孔二氧化钛光催化剂的方法
CN104069848B (zh) 一种醇热法制备纯相钛酸铋与氧化钛复合材料的方法
CN101791548A (zh) 一种可见光催化剂BiVO4及其制备方法
CN102199004A (zh) 表面定向生长二氧化钛纳米棒的空心玻璃微球的制备方法
CN104056611B (zh) 一种制备纳米TiO2的方法
CN108993550A (zh) 一种表面氧空位改性的溴氧铋光催化剂及其制备方法
CN108745274A (zh) 一种累托石介孔材料及其制备方法和应用
CN104310466B (zh) 一种基于凝胶球前驱体的中空二氧化钛微球及其制备方法
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
Shao et al. Enhancing photocatalytic activity by tuning the ratio of hexagonal and orthorhombic phase Nb 2 O 5 hollow fibers
CN108339574A (zh) 一种可见光催化降解罗丹明b的钛基复合材料及其制备
CN105883910B (zh) 一种钙钛矿SrTiO3多孔纳米颗粒的制备方法及产物
He et al. Biogenic C-doped titania templated by cyanobacteria for visible-light photocatalytic degradation of Rhodamine B
CN106824151A (zh) 一种木质素基介孔二氧化钛光催化材料、制备方法及应用
CN104043463A (zh) 一种可见光响应的降解聚丙烯酰胺的光催化剂的制备方法及其应用
Vasić et al. Degradation of crystal violet over heterogeneous TiO2-based catalysts: The effect of process parameters
CN104028259B (zh) 一种纳米氧化锌光催化剂及其制备方法和应用
CN105688874B (zh) 一种具有分级孔状结构的TiO2纳米粉体及其制备方法
CN107913712A (zh) 一种二氧化钛/改性硅藻土复合材料、涂膜及其制备方法和应用
CN107115856A (zh) 一种片状钛酸铋氯氧铋复合材料的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160907