CN105742358B - 电子器件及其制造方法 - Google Patents

电子器件及其制造方法 Download PDF

Info

Publication number
CN105742358B
CN105742358B CN201510765524.4A CN201510765524A CN105742358B CN 105742358 B CN105742358 B CN 105742358B CN 201510765524 A CN201510765524 A CN 201510765524A CN 105742358 B CN105742358 B CN 105742358B
Authority
CN
China
Prior art keywords
electrode
material layer
dimensional
layer
electronic device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510765524.4A
Other languages
English (en)
Other versions
CN105742358A (zh
Inventor
李珉贤
申铉振
李载昊
金海龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of CN105742358A publication Critical patent/CN105742358A/zh
Application granted granted Critical
Publication of CN105742358B publication Critical patent/CN105742358B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0673Nanowires or nanotubes oriented parallel to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/47Schottky barrier electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66431Unipolar field-effect transistors with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7839Field effect transistors with field effect produced by an insulated gate with Schottky drain or source contact
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78681Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising AIIIBV or AIIBVI or AIVBVI semiconductor materials, or Se or Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78684Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising semiconductor materials of Group IV not being silicon, or alloys including an element of the group IV, e.g. Ge, SiN alloys, SiC alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/413Nanosized electrodes, e.g. nanowire electrodes comprising one or a plurality of nanowires

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本公开提供了电子器件及其制造方法。该电子器件包括2D材料层以及彼此间隔开的第一电极和第二电极。2D材料层连接第一电极和第二电极。2D材料层包括多个2D纳米材料。2D纳米材料中的至少一些彼此交叠。

Description

电子器件及其制造方法
技术领域
本公开涉及包括二维(2D)材料层的电子器件和/或通过喷墨印刷制造该电子器件的方法。
背景技术
石墨烯具有其中碳原子以二维(2D)方式连接到彼此的结构。石墨烯可以具有原子级别的厚度。石墨烯具有比硅(Si)高的电子迁移率和比硅(Si)高的导热率。石墨烯是化学稳定的。石墨烯可以具有大的表面积。然而,由于石墨烯可以具有0eV的带隙,所以包括石墨烯作为沟道材料的晶体管可以具有低的开/关电流比。因此,高的待机电流(standbycurrent)可以产生在包括石墨烯的晶体管中。因此,包括石墨烯的晶体管器件的操作效率会降低。为了提高包括石墨烯的晶体管的操作效率,已经提出修饰(modify)石墨烯的方法。然而,尽管包括石墨烯的晶体管的开/关电流比可以通过修饰石墨烯而提高,但是修饰石墨烯也会降低导通电流密度或载流子迁移率并增加用于晶体管器件的制造成本。
发明内容
本公开涉及包括二维(2D)材料层的电子器件和/或通过使用喷墨印刷制造该电子器件的方法。
其他的方面将在随后的描述中部分地阐述,并将由该描述而部分地清楚,或者可以通过示例实施方式的实践而掌握。
根据示例实施方式,一种电子器件包括:第一电极;第二电极,与第一电极间隔开;以及二维(2D)材料层,连接到第一电极和第二电极。2D材料层包括多个2D纳米材料。2D纳米材料中的至少一些彼此交叠。
在示例实施方式中,2D纳米材料可以具有半导体特性。
在示例实施方式中,2D材料层还可以包括导电材料。导电材料可以包括石墨烯、导电颗粒、导电纳米管和导电纳米线中的至少一个。
在示例实施方式中,2D材料层还可以包括掺杂剂。2D纳米材料可以掺杂有杂质。2D材料层是电子器件的沟道层。电子器件还可以包括在2D材料层上的栅绝缘层以及在栅绝缘层上的栅电极。或者,电子器件还可以包括在基板上的栅电极以及在栅电极上的栅绝缘层,2D材料层在栅绝缘层上。
在示例实施方式中,肖特基结可以形成在第一电极和第二电极中的至少一个与2D材料层之间。p-n结可以形成在2D材料层的第一导电类型材料层与第二导电类型材料层之间。
在示例实施方式中,多个2D纳米材料的每个可以包括至少一层。
在示例实施方式中,多个2D纳米材料的每个可以包括过渡金属二硫属化物(TMD)、磷烯(黑磷)、锗烯和硅烯中的至少一个。
根据示例实施方式,一种制造电子器件的方法包括:通过喷墨印刷在基板上形成二维(2D)材料层,2D材料层包括具有半导体特性的多个2D纳米材料,2D纳米材料中的至少一些彼此交叠;以及形成连接到2D材料层的第一电极和第二电极。
在示例实施方式中,形成2D材料层可以包括通过喷射墨水到基板上而形成墨水图案以及干燥该墨水图案。墨水可以包括溶剂和2D纳米材料。
在示例实施方式中,墨水中的2D纳米材料与溶剂的混合比率可以在从约1μg/mL至约100mg/mL的范围。
在示例实施方式中,墨水还可以包括导电材料。墨水还可以包括掺杂剂。2D纳米材料可以掺杂有杂质。
在示例实施方式中,第一电极和第二电极可以通过喷墨印刷而形成。
在示例实施方式中,该方法还可以包括在2D材料层上形成栅绝缘层以及在栅绝缘层上形成栅电极。栅绝缘层和栅电极可以通过喷墨印刷而形成。
根据示例实施方式,一种制造电子器件的方法包括:形成二维(2D)材料层;形成连接到2D材料层的第一部分的第一电极;以及形成连接到2D材料层的第二部分的第二电极。2D材料层包括具有半导体特性的多个2D纳米材料。2D纳米材料中的至少一些彼此交叠。第二电极与第一电极间隔开。
在示例实施方式中,该方法还可以包括在基板上形成栅电极以及在基板上形成栅绝缘层。形成2D材料层可以包括在基板上喷墨印刷墨水图案并干燥该墨水图案。墨水可以包括溶剂和2D纳米材料。形成栅绝缘层可以包括以下之一:(i)在栅电极的顶部上形成栅绝缘层;和(ii)在栅电极与基板之间形成栅绝缘层。栅绝缘层可以在2D材料层与栅电极之间延伸。
在示例实施方式中,2D纳米材料可以包括过渡金属二硫属化物(TMD)、磷烯、锗烯和硅烯中的一个。
在示例实施方式中,形成第一电极可以包括在2D材料层的第一部分处形成2D材料层与第一电极之间的肖特基结。
在示例实施方式中,2D材料层可以包括在2D纳米材料周围的导电材料和掺杂剂中的至少之一。导电材料可以包括石墨烯、导电颗粒、导电纳米管和导电纳米线中的一个。
附图说明
从以下结合附图对非限制性的实施方式的描述,这些和/或其它的方面将变得明显并更易于理解,相同的附图标记在不同的视图中始终指代相同的部件。附图不一定按比例,而是重点在于示出发明构思的原理。在附图中:
图1是示出根据示例实施方式的电子器件的平面图;
图2是沿图1的线II-II'截取的截面图;
图3是示出图2的二维(2D)材料层的放大截面图;
图4是示出图2的2D材料层的变型的截面图;
图5A至图5D是用于说明根据示例实施方式的形成2D材料层的方法的截面图;
图6A至图6D是用于说明根据示例实施方式的制造电子器件的方法的截面图;
图7是示出根据示例实施方式的电子器件的平面图;
图8是沿图7的VIII-VIII'截取的截面图;
图9是示出根据示例实施方式的电子器件的截面图;
图10是示出根据示例实施方式的电子器件的截面图;以及
图11是示出根据示例实施方式的电子器件的截面图。
具体实施方式
现在将参照附图更充分地描述示例实施方式,附图中示出了一些示例实施方式。然而,示例实施方式可以以许多不同的形式实施并且不应被解释为限于这里阐述的实施方式;而是,提供这些实施方式使得本公开将透彻和完整,并将发明构思的示例实施方式的范围充分传达给本领域普通技术人员。在附图中,为了清晰,层和区域的厚度被夸大。附图中的相同的参考字符和/或标记表示相同的元件,因此可以省略它们的描述。
将理解,当一元件被称为“连接到”或“联接到”另一元件时,它可以直接连接到或联接到另一元件,或者可以存在***元件。相反,当一元件被称为“直接连接”或者“直接联接”到另一元件时,不存在***元件。用于描述元件或层之间的关系的其他词语应当以相似的方式解释(例如,“在......之间”和“直接在......之间”、“相邻”和“直接相邻”、“在......上”和“直接在......上”)。如这里所用的,术语“和/或”包括一个或多个相关所列项目的任何及所有组合。
将理解,尽管这里可以使用术语“第一”、“第二”等来描述各种元件、部件、区域、层和/或部分,但是这些元件、部件、区域、层和/或部分不应受到这些术语限制。这些术语仅用于将一个元件、部件、区域、层或部分与另一元件、部件、区域、层或部分区别开。因此,下面讨论的第一元件、部件、区域、层或部分可以被称为第二元件、部件、区域、层或部分而没有背离示例实施方式的教导。
为了便于描述,这里可以使用空间关系术语诸如“在...之下”、“在...下面”、“下”、“上面”、“上”等来描述一个元件或特征与另一个(些)元件或特征的如附图所示的关系。将理解,空间关系术语旨在涵盖除附图所示的取向之外器件在使用或操作中的不同的取向。例如,如果附图中的器件被翻转,被描述为“在”其他元件或特征“下面”或“之下”的元件将取向为在其他元件或特征“之上”。因此,术语“在...下面”能够涵盖之上和之下两种取向。器件可以另外地取向(旋转90度或在其他的取向),这里使用的空间关系描述符被相应地解释。
这里使用的术语仅是为了描述特定实施方式的目的,而并不旨在限制示例实施方式。如这里使用的,单数形式“一”和“该”旨在也包括复数形式,除非上下文清楚地另外指示。还将理解的,如果这里使用的术语“包括”和/或“包含”指定所述特征、数字、步骤、操作、元件和/或部件的存在,但是并不排除一个或多个其他特征、数字、步骤、操作、元件、部件和/或其组的存在或添加。当诸如“......中的至少一个”的表述在一列元件之后时,修饰元件的整个列表而不修饰该列表中的单个元件。
这里参照截面图描述了示例实施方式,该截面图是示例实施方式的理想化实施方式(及中间结构)的示意图。因而,例如由制造技术和/或公差引起的图示形状的偏离是可能发生的。因此,示例实施方式不应被解释为限于这里示出的区域的特定形状,而是包括例如由制造引起的形状的偏差。因此,附图中示出的区域在本质上是示意性的,它们的形状并非要示出器件的区域的实际形状,并且不旨在限制示例实施方式的范围。
除非另外限定,否则这里使用的所有术语(包括技术术语和科学术语)具有与示例实施方式所属领域的普通技术人员通常理解的相同的含义。还将理解的是,术语诸如在通用词典中限定的那些应当被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应被解释为理想化或过度形式化的含义,除非这里明确地如此限定。
图1是示出根据示例实施方式的电子器件100的平面图。图2是沿图1的线II-II'截取的截面图。图1和图2中示出的电子器件100是具有底栅极(under-gate)结构的晶体管器件。
参照图1和图2,电子器件100可以包括栅电极120、栅绝缘层130、二维(2D)材料层140以及第一电极151和第二电极152。栅电极120可以提供在基板110上。基板110可以例如是半导体基板(例如,硅基板)。然而,示例实施方式不限于此,基板110可以由各种材料中的任何材料形成。此外,基板110可以由柔性材料诸如塑料基板形成。绝缘层(未示出)可以进一步提供在基板110的顶表面上以将基板110与栅电极120绝缘。绝缘层可以包括例如硅氧化物或硅氮化物,但是不限于此。当基板110包括绝缘材料时,绝缘层可以不提供在基板110的顶表面上。
栅电极120可以包括导电材料。例如,栅电极120可以包括石墨烯、碳纳米管(CNT)或者金属诸如银(Ag)、金(Au)、铂(Pt)或铜(Cu)。然而,示例实施方式不限于此,栅电极120可以包括其他各种导电材料中的任何材料。栅绝缘层130提供在基板110上以覆盖栅电极120。栅绝缘层130可以包括各种绝缘材料。例如,栅绝缘层130可以包括硅氧化物、硅氮化物、硅氮氧化物、铝氧化物、铪氧化物和/或绝缘聚合物,但是不限于此。栅绝缘层130可以通过使用如下文描述的喷墨印刷形成。
2D材料层140提供在栅绝缘层130上。2D材料层140可以用作沟道层。2D材料层140设置为对应于栅电极120。图3是示出图2的2D材料层140的放大截面图。如图3所示,2D材料层140可以形成为使得多个2D纳米材料141中的至少一些彼此交叠。2D纳米材料141是具有半导体特性并具有2D晶体结构的纳米尺寸材料。
每个2D纳米材料141可以包括一层或多层。例如,每个2D纳米材料141可以包括几十层(例如,约10至约90层)。每个2D纳米材料141的每个层可以具有等于或小于约几纳米(nm)的厚度。例如,每个2D纳米材料141的每个层可以具有大于0nm并且等于或小于约2nm的厚度,但是不限于此。每个2D纳米材料141的每个层可以具有在从约几十nm至约几百nm(例如,约10nm至约900nm)的范围的尺寸。每个2D纳米材料141可以具有各种平面形状中的任何形状诸如四边形形状或五边形形状。
因而,2D材料层140可以形成为使得2D纳米材料141中的一些彼此交叠。2D材料层140可以通过使用如下所述的喷墨印刷形成。通过使用喷墨印刷形成的2D材料层140可以具有在从约几nm(例如,3nm)至约几百nm(例如,约100至约900nm)的范围的厚度以及在从约几百nm(例如,100nm或更大)至约几百微米(μm)(例如,约900μm)的范围的尺寸。因而,当2D材料层140通过使用喷墨印刷形成时,2D材料层140可以形成为具有大的面积。
如上所述,2D材料层140包括具有半导体特性的2D纳米材料141。例如,2D纳米材料141可以包括从由过渡金属二硫属化物(transition metal dichalcogenide,TMD)、磷烯(phosphorene)(黑磷)、锗烯(germanane)和硅烯(silicene)构成的组中选择的至少一个。TMD可以包括从由MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、TaS2、TaSe2、TiS2、TiSe2、HfS2、HfSe2、SnS2、SnSe2、GeS2、GeSe2、GaS2、GaSe2、Bi2S3、Bi2Se3和Bi2Te3构成的组中选择的至少一个。
包括具有半导体特性的2D纳米材料141的2D材料层140具有比石墨烯低的迁移率但是具有大于0eV的带隙。因此,当2D材料层140用作电子器件100(其为晶体管器件)的沟道层时,开/关电流比可以增大为等于或者大于100,从而提高电子器件100的操作效率。
第一电极151和第二电极152提供在2D材料层140的两侧。第一电极151和第二电极152提供在栅绝缘层130上以电连接到2D材料层140。第一电极151和第二电极152可以分别是源电极和漏电极。替代地,第一电极151和第二电极152可以分别是漏电极和源电极。第一电极151和第二电极152可以包括导电材料,像栅电极120一样。例如,第一电极151和第二电极152可以包括石墨烯、CNT或者金属诸如Ag、Au、Pt或Cu。如下文描述的,第一电极151和第二电极152以及栅电极120可以通过使用喷墨印刷形成。
虽然已经描述了2D材料层140包括2D纳米材料141的情形,但是2D材料层140还可以包括除了2D纳米材料141之外的材料。图4是示出图2的2D材料层140的变型的截面图。参照图4,2D材料层140'包括多个2D纳米材料141和导电材料142。2D纳米材料141提供为使得至少一些2D纳米材料141彼此交叠。导电材料142可以附接到2D纳米材料141并可以提高2D纳米材料141之间的导电性。因此,电子器件100的导通电流可以由于包括在2D材料层140中的导电材料142而增大。
包括在2D材料层140中的导电材料142可以包括例如石墨烯、导电颗粒、导电纳米管和导电纳米线当中的至少一个。导电颗粒可以包括从例如Ag、Au、Pt、Cu和富勒烯构成的组中选择的至少一个。导电纳米管可以包括例如CNT。导电纳米线可以包括例如Ag纳米线。然而,示例实施方式不限于此。
掺杂剂可以进一步包括在包含2D纳米材料141的2D材料层140或者包含2D纳米材料141和导电材料142两者的2D材料层140'中。掺杂剂可以允许特定的电荷从其通过。因此,电子器件100的关断电流可以由于包括在2D材料层140中的掺杂剂而减小。当2D材料层140通过使用如下面描述的喷墨印刷形成时,掺杂剂可以被包括在墨水中。包括在2D材料层140中的2D纳米材料141可以预先掺杂有杂质。掺杂剂可以包括碱金属(例如K或Li)、AuCl3或者诸如聚乙烯亚胺(polyethylenimine)的聚合物、HPtCl4、AuCl3、HAuCl4、三氟甲烷磺酸银(silver trifluoromethanesulfonate,AgOTf)、AgNO3、H2PdCl6、Pd(OAc)2、Cu(CN)2,但是不限于此。
如上所述,由于包括具有半导体特性的2D纳米材料141的2D材料层140被用作电子器件100的沟道层,所以可以提高电子器件100的操作效率。当2D材料层140通过使用如下面描述的喷墨印刷形成时,电子器件100可以形成为具有大的面积。
现在将说明通过使用喷墨印刷形成2D材料层的方法。图5A至图5D是用于说明根据示例实施方式的形成2D材料层的方法的截面图。
参照图5A,喷墨印刷装置200提供在基板250上。喷墨印刷装置200可以包括其中填充用于形成2D材料层240(见图5D)的墨水230的墨水腔220以及将墨水230喷射在基板250上的喷墨头210。喷墨印刷装置200可以通过使用例如热喷墨印刷或者压电喷墨印刷来喷射墨水230,但是不限于此。
用于形成2D材料层240的墨水230可以通过将多个纳米材料241与溶剂243混合来制备。溶剂243可以包括从例如水、丙酮、甲醇、乙醇、异丙醇、环己酮、环己烷、氯苯、氯仿、甲酰胺、N-甲基甲酰胺、N-甲基吡咯烷酮、N-乙烯基吡咯烷酮、二甲基亚砜(dimethylsulphoxide)、苯甲腈(benzonitrile)、环己基吡咯烷酮(cyclohecyl-pyrrolidinone)、N-月桂基吡咯烷酮、苯甲酸苄酯(benzyl benzoate)、二苄醚溴苯(benzylether bromobenzene)、二甲基乙酰胺和二甲基甲酰胺构成的组中选择的至少一个,但是不限于此。
用于形成2D材料层240的墨水230可以通过将2D纳米材料241与溶剂243混合来制备。2D纳米材料241与溶剂243的混合比率可以在从约1μg/mL至约100mg/mL的范围,但不限于此。2D纳米材料241是具有半导体特性并具有2D晶体结构的纳米尺寸材料。每个2D纳米材料241可以包括一层或者多层。每个2D纳米材料241的每个层可以具有等于或小于约几nm的厚度并可以具有在从约几十nm至约几百nm的范围的尺寸。
每个2D纳米材料241可以包括半导体材料。例如,每个2D纳米材料241可以包括从例如TMD、磷烯(黑磷)、锗烯和硅烯构成的组中选择的至少一个。TMD可以包括从例如MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、TaS2、TaSe2、TiS2、TiSe2、HfS2、HfSe2、SnS2、SnSe2、GeS2、GeSe2、GaS2、GaSe2、Bi2S3、Bi2Se3和Bi2Te3构成的组中选择的至少一个。2D纳米材料241可以包括未掺杂的半导体材料。替代地,2D纳米材料241可以掺杂有期望的(和/或替代地,预定的)杂质。在这种情况下,墨水230可以通过将预先掺杂有杂质的2D纳米材料241与溶剂243混合来制备。
导电材料(未示出)可以进一步包括在用于形成2D材料层240的墨水230中。导电材料可以包括例如石墨烯、导电颗粒、导电纳米管和导电纳米线当中的至少一个。导电颗粒可以包括从例如Ag、Au、Pt、Cu和富勒烯构成的组中选择的至少一个。导电纳米管可以包括例如CNT。导电纳米线可以包括例如Ag纳米线。然而,示例实施方式不限于此。
掺杂剂可以进一步包括在用于形成2D材料层240的墨水230中。也就是,当2D纳米材料241包括未掺杂的半导体材料时,掺杂剂可以进一步与溶剂243混合。
参照图5B,墨水230通过利用喷墨印刷装置200被喷射到基板250的期望的(和/或替代地,预定的)位置上。在此工艺中,喷墨头210可以在期望的(和/或替代地,预定的)方向上移动,墨水230可以从喷墨头210被喷射为液滴211以在基板250上形成墨水图案230'。参照图5C,当喷墨印刷结束时,包括2D纳米材料241和溶剂243的墨水图案230'可以在基板250上形成为期望的(和/或替代地,预定的)形状。
参照图5D,当墨水图案230'被干燥以去除溶剂243时,包括2D纳米材料241的2D材料层240可以形成在基板250上。墨水图案230'可以通过利用自然干燥或者通过施加热而被干燥。因而,2D材料层240可以通过利用喷墨印刷而形成,使得至少一些2D纳米材料241彼此交叠。2D材料层240可以具有在从约几nm至约几百nm的范围的厚度以及在从约几百nm至几百μm的范围的尺寸。然而,示例实施方式不限于此。
如上所述,掺杂剂可以被进一步包括在用于形成2D材料层240的墨水230中,或者预先掺杂有期望的(和/或替代地,预定的)杂质的2D纳米材料241可以被包括在墨水230中。在这种情况下,通过利用喷墨印刷而形成的2D材料层240可以包括具有期望的(和/或替代地,预定的)导电类型的半导体材料。例如,2D材料层240可以包括p型半导体材料或者n型半导体材料。
此外,如上所述,导电材料可以被进一步包括在用于形成2D材料层240的墨水230中。导电材料可以包括例如石墨烯、导电颗粒、导电纳米管和导电纳米线当中的至少一个。在这种情况下,通过利用喷墨印刷形成的2D材料层240中的导电材料可以提高2D纳米材料241之间的导电性。
现在将说明制造包括2D材料层的电子器件的方法。
图6A至图6D是用于说明根据示例实施方式的制造电子器件的方法的截面图。通过利用图6A至图6D的方法制造的电子器件可以是图1和图2的电子器件100,该电子器件100是晶体管器件。
参照图6A,制备基板310,然后栅电极320形成在基板310上。基板310可以是半导体基板。例如,基板310可以是硅基板。然而,示例实施方式不限于此,基板310可以是由各种材料中的任何材料形成的基板。此外,基板310可以是由柔性材料形成的基板诸如塑料基板。绝缘层(未示出)可以进一步提供在基板310的顶表面上以使基板310与栅电极320绝缘。绝缘层可以包括例如硅氧化物或者硅氮化物,但是不限于此。当基板310包括绝缘材料时,绝缘层可以不提供在基板310的顶表面上。
栅电极320形成在基板310的顶表面上。栅电极320可以通过利用喷墨印刷而形成。在这种情况下,栅电极320可以通过利用喷墨印刷装置在基板310的顶表面上印刷包括导电材料的墨水然后干燥该墨水而形成。包括在墨水中的导电材料可以包括从例如石墨烯、Ag颗粒、Au颗粒、Pt颗粒、Cu颗粒、CNT和Ag纳米线构成的组中选择的至少一个,但是不限于此。栅电极320可以通过利用另外的沉积方法代替喷墨印刷来形成。
参照图6B,栅绝缘层330形成在基板310上以覆盖栅电极320。栅绝缘层330可以包括高k电介质材料。例如,栅绝缘层330可以包括硅氧化物、硅氮化物、硅氮氧化物、铝氧化物、铪氧化物和/或绝缘聚合物,但是不限于此。栅绝缘层330可以通过利用喷墨印刷而形成。在这种情况下,栅绝缘层330可以通过利用喷墨印刷装置在基板310上印刷包括期望的(和/或替代地,预定的)绝缘材料的墨水以覆盖栅电极320然后干燥该墨水而形成。栅绝缘层330可以通过利用另外的沉积方法代替喷墨印刷来形成。
参照图6C,2D材料层340形成在栅绝缘层330上。2D材料层340可以设置为对应于栅电极320。用作沟道层的2D材料层340可以形成为使得具有半导体特性的2D纳米材料341彼此交叠。
2D材料层340可以通过利用如上所述的喷墨印刷来形成。在这种情况下,2D材料层340可以通过利用喷墨印刷装置在栅绝缘层330的顶表面上印刷其中2D纳米材料341与溶剂混合的墨水然后干燥该墨水而形成。溶剂可以包括从例如水、丙酮、甲醇、乙醇、异丙醇、环己酮、环己烷、氯苯、氯仿、甲酰胺、N-甲基甲酰胺、N-甲基吡咯烷酮、N-乙烯基吡咯烷酮、二甲基亚砜(dimethylsulphoxide)、苯甲腈(benzonitrile)、环己基吡咯烷酮(cyclohecyl-pyrrolidinone)、N-月桂基吡咯烷酮、苯甲酸苄酯(benzyl benzoate)、二苄醚溴苯(benzylether bromobenzene)、二甲基乙酰胺和二甲基甲酰胺构成的组中选择的至少一个,但是不限于此。
2D纳米材料341可以包括半导体材料。例如,2D纳米材料341可以包括从TMD、磷烯(黑磷)、锗烯和硅烯构成的组中选择的至少一个。TMD可以包括从例如MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、TaS2、TaSe2、TiS2、TiSe2、HfS2、HfSe2、SnS2、SnSe2、GeS2、GeSe2、GaS2、GaSe2、Bi2S3、Bi2Se3和Bi2Te3构成的组中选择的至少一个。2D纳米材料341可以包括未掺杂的半导体材料。替代地,2D纳米材料341可以掺杂有期望的(和/或替代地,预定的)杂质。
每个2D纳米材料341可以包括一层或者多层。例如,每个2D纳米材料341可以包括几十层。每个2D纳米材料341的每个层可以具有等于或小于约几nm的厚度。例如,每个2D纳米材料341的每个层可以具有等于或小于2nm的厚度。然而,示例实施方式不限于此。每个2D纳米材料341的每个层可以具有在从约几十nm至几百nm的范围的尺寸。每个2D纳米材料341可以具有各种平面形状中的任何形状。
墨水的2D纳米材料341与溶剂的混合比率可以在从约1μg/mL至约100mg/mL的范围,但是不限于此。2D材料层340可以通过在栅绝缘层330的顶表面上印刷该墨水以具有期望的(和/或替代地,预定的)形状然后干燥该墨水而形成。2D材料层340可以形成为使得至少一些2D纳米材料341彼此交叠。因而,利用喷墨印刷形成的2D材料层341的厚度和尺寸可以分别在从约几nm至约几百nm范围以及在从约几百nm至约几百μm范围。
导电材料(未示出)可以进一步与墨水的溶剂混合。导电材料可以包括例如石墨烯、导电颗粒、导电纳米管和导电纳米线当中的至少一个。导电颗粒可以包括从例如Ag、Au、Pt、Cu和富勒烯构成的组中选择的至少一个,导电纳米管可以包括例如CNT,导电纳米线可以包括例如Ag纳米线。然而,示例实施方式不限于此。因而,当2D材料层340通过利用包括2D纳米材料341和导电材料的墨水形成时,导电材料连接2D纳米材料341,从而增大2D材料层341的导电性并增大电子器件的导通电流。
此外,掺杂剂(未示出)可以进一步与墨水的溶剂混合。因而,当掺杂剂被进一步包括在溶剂中或者2D纳米材料341被预先掺杂时,2D材料层340可以具有期望的(和/或替代地,预定的)导电类型。例如,2D材料层340可以包括p型半导体材料或n型半导体材料。因而,由于2D材料层340被掺杂有期望的(和/或替代地,预定的)杂质,所以电子器件的关断电流可以减小。
参照图6D,电子器件通过在2D材料层340的两侧上形成第一电极351和第二电极352而完成。第一电极351和第二电极352可以分别是源电极和漏电极。替代地,第一电极351和第二电极352可以分别是漏电极和源电极。第一电极351和第二电极352可以通过利用喷墨印刷而形成。在这种情况下,第一电极351和第二电极352可以通过利用喷墨印刷装置在栅绝缘层330和2D材料层340的顶表面上印刷包括导电材料的墨水以具有期望的(和/或替代地,预定的)形状然后干燥该墨水而形成。包括在墨水中的导电材料可以包括从例如石墨烯、Ag颗粒、Au颗粒、Pt颗粒、Cu颗粒、CNT和Ag纳米线构成的组中选择的至少一个。第一电极351和第二电极352可以通过利用另外的沉积方法形成,代替喷墨印刷。
多个电子器件可以被制造。在这种情况下,包括低k电介质材料诸如氟化石墨烯或石墨烯氧化物的绝缘层可以形成在电子器件之间。栅绝缘层可以通过利用喷墨印刷而形成。
如上所述,由于栅电极320、栅绝缘层330、2D材料层340以及第一电极351和第二电极352通过利用喷墨印刷而形成,所以电子器件可以被简单地制造。此外,由于2D材料层340可以通过利用喷墨印刷而形成为具有大的尺寸,所以电子器件可以被形成为具有大的面积。
图7是示出根据示例实施方式的电子器件400的平面图。图8是沿图7的VIII-VIII'截取的截面图。具有顶栅结构的晶体管器件被示出为图7和图8中的电子器件400。
参照图7和图8,电子器件400包括提供在基板410上的2D材料层440、栅绝缘层430、栅电极420以及第一电极451和第二电极452。基板410可以是由各种材料中的任何材料形成的基板诸如半导体基板,并可以是由柔性材料形成的基板诸如塑料基板。绝缘层(未示出)可以进一步提供在基板410的顶表面上以使基板410与2D材料层440绝缘。绝缘层可以例如包括硅氧化物或者硅氮化物,但是不限于此。当基板410包括绝缘材料时,绝缘层可以不提供在基板410的顶表面上。
用作沟道层的2D材料层440提供在基板410上。如上所述,2D材料层440可以形成为使得多个2D纳米材料441中的至少一些彼此交叠。2D纳米材料440是具有半导体特性并具有2D晶体结构的纳米尺寸材料。
每个2D纳米材料441可以包括一层或者多层。例如,每个2D纳米材料441可以包括几十层。每个2D纳米材料441的每个层可以具有等于或小于约几nm的厚度并可以具有在从约几十nm至约几百nm的范围的尺寸。每个2D纳米材料441可以具有各种平面形状中的任何形状。2D材料层440可以通过利用如上所述的喷墨印刷而形成。利用喷墨印刷形成的2D材料层440的厚度和尺寸可以分别在从约几nm至约几百nm的范围以及在从约几百nm至约几百μm的范围。
2D材料层440包括具有半导体特性的2D纳米材料441。例如,2D纳米材料441可以包括从TMD、磷烯(黑磷)、锗烯和硅烯构成的组中选择的至少一个。TMD可以包括从例如MoS2、MoSe2、MoTe2、WS2、WSe2、WTe2、TaS2、TaSe2、TiS2、TiSe2、HfS2、HfSe2、SnS2、SnSe2、GeS2、GeSe2、GaS2、GaSe2、Bi2S3、Bi2Se3和Bi2Te3构成的组中选择的至少一个。如上所述,由于当2D材料层440被用作电子器件400的沟道层时开/关电流比增大为等于或大于100,所以可以提高电子器件400的操作效率。
2D材料层440还可以包括除了2D纳米材料441之外的材料。例如,2D材料层440可以包括多个2D纳米材料441和导电材料(未示出)。2D纳米材料441可以形成为使得2D纳米材料441中的至少一些彼此交叠,导电材料可以附接到2D纳米材料441并可以提高2D纳米材料441之间的导电性。包括在2D材料层440中的导电材料可以包括例如石墨烯、导电颗粒、导电纳米管和导电纳米线当中的至少一个。导电颗粒可以包括从例如Ag、Au、Pt、Cu和富勒烯构成的组选择的至少一个。导电纳米管可以包括例如CNT。导电纳米线可以包括例如Ag纳米线。
掺杂剂(未示出)可以进一步包括在2D材料层440中,该2D材料层440包括2D纳米材料441或包括2D纳米材料441和导电材料两者。当2D材料层440通过使用喷墨印刷形成时,掺杂剂可以包括在墨水中。包括在2D材料层440中的2D纳米材料441可以预先掺杂有杂质。
栅绝缘层430提供在基板410上以覆盖2D材料层440。栅绝缘层430可以包括各种绝缘材料中的任何绝缘材料。例如,栅绝缘层430可以包括硅氧化物、硅氮化物、硅氮氧化物、铝氧化物、铪氧化物和/或绝缘聚合物,但是不限于此。栅绝缘层430可以通过利用喷墨印刷或者另外的沉积方法形成。
栅电极420提供在栅绝缘层430上。栅电极420可以设置为对应于2D材料层440。栅电极420可以包括导电材料。例如,栅电极420可以包括石墨烯、CNT或者金属诸如Ag、Au、Pt或Cu。栅绝缘层430可以通过利用喷墨印刷或者另外的沉积方法形成。
第一电极451和第二电极452提供在栅电极420的两侧。第一电极451和第二电极452提供在栅绝缘层430上以电连接到2D材料层440的两侧。第一电极451和第二电极452可以分别是源电极和漏电极。替代地,第一电极451和第二电极452可以分别是漏电极和源电极。第一电极451和第二电极452可以包括导电材料,像栅电极420一样。如下面所述的,第一电极451和第二电极452可以通过利用喷墨印刷或者另外的沉积方法来形成。
图9是示出根据示例实施方式的电子器件500的截面图。形成肖特基结的二极管器件被示出为图9中的电子器件500。
参照图9,电子器件500包括彼此间隔开的第一电极551和第二电极552以及连接第一电极551和第二电极552的2D材料层540。第一和第二电极551和552可以包含金属。第一和第二电极551和552可以通过利用喷墨印刷或者另外的沉积方法而形成。
2D材料层540可以形成为使得具有半导体特性的2D纳米材料(未示出)中的至少一些彼此交叠。2D材料层540可以通过利用如上所述的喷墨印刷而形成。已经说明了2D材料层540,因此将不会给出其详细说明。2D材料层540还可以包括导电材料(未示出)诸如石墨烯、导电颗粒、导电纳米管或导电纳米线。2D材料层540还可以包括掺杂剂(未示出)。当2D材料层540通过使用喷墨印刷形成时,掺杂剂可以被包括在墨水中。包括在2D材料层540中的2D纳米材料441可以被预先掺杂有杂质。
因而,由于2D材料层540具有半导体特性,所以2D材料层540可以与包括金属的第一电极551和第二电极552形成肖特基结。也就是,肖特基结可以形成在第一电极551与2D材料层540之间的边界540a以及第二电极552与2D材料层540之间的边界540b处。
图10是示出根据示例实施方式的电子器件600的截面图。形成p-n结的二极管器件被示出为图10中的电子器件600。
参照图10,电子器件600包括彼此间隔开的第一电极651和第二电极652以及连接第一电极651和第二电极652的2D材料层640。第一电极651和第二电极652可以包括导电材料。第一电极651和第二电极652可以通过利用喷墨印刷或者另外的沉积方法而形成。
2D材料层640可以包括第一导电类型材料层641和第二导电类型材料层642。第一导电类型材料层641提供为电连接第一电极651和第二导电类型材料层642,第二导电类型材料层642提供为电连接第二电极652和第一导电类型材料层641。因此,第一和第二导电类型材料层641和642可以提供为彼此部分地交叠。第一和第二导电类型材料层641和642可以通过利用例如喷墨印刷而形成。
第一导电类型材料层641可以包括2D纳米材料和第一导电类型掺杂剂(未示出)。2D纳米材料可以提供为使得2D纳米材料中的至少一些彼此交叠。第一导电类型掺杂剂可以是p型杂质或者n型杂质。当第一导电类型材料层641通过利用喷墨印刷形成时,第一导电类型掺杂剂可以与2D纳米材料一起被包括在墨水中。2D纳米材料可以被预先掺杂有第一导电类型掺杂剂然后可以与墨水混合。
第二导电类型材料层642可以包括2D纳米材料(未示出)和第二导电类型掺杂剂(未示出)。2D纳米材料可以提供为使得2D纳米材料中的至少一些彼此交叠。第二导电类型掺杂剂可以是n型杂质或者p型杂质。具体地,当第一导电类型掺杂剂是p型杂质时,第二导电类型掺杂剂可以是n型杂质。当第一导电类型掺杂剂是n型杂质时,第二导电类型掺杂剂可以是p型杂质。当第二导电类型材料层642通过利用喷墨印刷形成时,第二导电类型掺杂剂可以与2D纳米材料一起被包括在墨水中。2D纳米材料可以被预先掺杂有第二导电类型掺杂剂然后可以与墨水混合。如上所述,p-n结可以形成在2D材料层640的第一导电类型材料层641与第二导电类型材料层642之间的边界处。
图11是示出根据示例实施方式的电子器件700的截面图。检测特定气体的传感器器件被示出为图11中的电子器件700。
参照图11,电子器件700包括彼此间隔开的第一电极751和第二电极752以及连接第一电极751和第二电极752的2D材料层740。第一电极751和第二电极752可以包括导电材料。第一电极751和第二电极752可以通过利用喷墨印刷或者另外的沉积方法而形成。
2D材料层740可以形成为使得具有半导体特性的2D纳米材料(未示出)中的至少一些彼此交叠。2D材料层740可以通过利用如上所述的喷墨印刷而形成。已经说明了2D材料层740,因此将不会给出其详细说明。因而,包括具有半导体特性的2D纳米材料的2D材料层740可以用作选择性地吸收特定气体诸如氢气或氧气的气体吸收体。因此,在图11的电子器件700中,当特定气体被2D材料层740吸收时,可以通过利用第一电极751和第二电极752来检测是否存在特定气体。
如上所述,根据示例实施方式,由于包括具有半导体特性的2D纳米材料的2D材料层被用作沟道层,所以可以提高电子器件诸如晶体管器件的操作效率。2D材料层可以应用于各种电子器件诸如二极管器件和传感器器件。当2D材料层通过使用喷墨印刷而形成时,电子器件可以制造为具有大的面积。此外,由于电子器件的所有元件通过利用喷墨印刷而形成,所以电子器件可以被简单地制造。
应当理解,这里描述的示例实施方式应当被认为仅是描述的含义而不是为了限制的目的。对根据示例实施方式的每个器件或者方法内的特征或方面的描述应当通常被认为可用于根据示例实施方式的其他器件或者方法中的其他相似的特征或方面。尽管已经具体示出并描述了一些示例实施方式,但是本领域普通技术人员将理解,可以在其中进行形式和细节上的变化而没有背离权利要求书的精神和范围。
本申请要求于2014年12月30日在韩国知识产权局提交的韩国专利申请No.10-2014-0194323的优先权,其公开内容通过引用整体结合于此。

Claims (23)

1.一种电子器件,包括:
第一电极;
第二电极,与所述第一电极间隔开;
二维材料层,连接到所述第一电极和所述第二电极,所述二维材料层包括在所述第一电极和所述第二电极之间呈现半导体特性的多个二维纳米材料,所述二维纳米材料中的至少一些彼此无序地交叠,
其中所述多个二维纳米材料的每个包括过渡金属二硫属化物、磷烯、锗烯和硅烯中的至少一种,
其中所述二维材料层通过喷射包括溶剂和所述二维纳米材料的墨水来形成墨水图案以及干燥所述墨水图案而形成。
2.如权利要求1所述的电子器件,其中所述二维材料层还包括导电材料。
3.如权利要求2所述的电子器件,其中所述导电材料包括石墨烯、导电颗粒、导电纳米管和导电纳米线中的至少一个。
4.如权利要求1所述的电子器件,其中所述二维材料层还包括掺杂剂。
5.如权利要求1所述的电子器件,其中所述二维纳米材料掺杂有杂质。
6.如权利要求1所述的电子器件,其中所述二维材料层是所述电子器件的沟道层。
7.如权利要求6所述的电子器件,还包括:
栅绝缘层,在所述二维材料层上;和
栅电极,在所述栅绝缘层上。
8.如权利要求6所述的电子器件,还包括:
栅电极,在基板上;
栅绝缘层,在所述栅电极上,所述二维材料层在所述栅绝缘层上。
9.如权利要求1所述的电子器件,其中肖特基结形成在所述第一电极和所述第二电极中的至少一个与所述二维材料层之间。
10.如权利要求1所述的电子器件,其中p-n结形成在所述二维材料层的第一导电类型材料层与第二导电类型材料层之间。
11.如权利要求1所述的电子器件,其中所述多个二维纳米材料的每个包括至少一层。
12.一种制造电子器件的方法,该方法包括:
通过喷墨印刷在基板上形成二维材料层,所述二维材料层包括在第一电极和第二电极之间呈现半导体特性的多个二维纳米材料,所述多个二维纳米材料中的至少一些彼此无序地交叠;和
形成连接到所述二维材料层的第一电极和第二电极,
其中所述多个二维纳米材料包括过渡金属二硫属化物、磷烯、锗烯和硅烯中的至少一种,以及
其中形成所述二维材料层包括:
通过喷射墨水到所述基板上而形成墨水图案,所述墨水包括溶剂和所述二维纳米材料;和
干燥所述墨水图案。
13.如权利要求12所述的方法,其中所述墨水中的所述二维纳米材料与所述溶剂的混合比率在从1μg/mL至100mg/mL的范围。
14.如权利要求12所述的方法,其中所述墨水还包括导电材料。
15.如权利要求12所述的方法,其中所述墨水还包括掺杂剂。
16.如权利要求12所述的方法,其中所述二维纳米材料掺杂有杂质。
17.如权利要求12所述的方法,其中所述第一电极和所述第二电极通过喷墨印刷而形成。
18.如权利要求12所述的方法,还包括:
在所述二维材料层上形成栅绝缘层;和
在所述栅绝缘层上形成栅电极。
19.如权利要求18所述的方法,其中所述栅绝缘层和所述栅电极通过喷墨印刷而形成。
20.一种制造电子器件的方法,该方法包括:
形成二维材料层,所述二维材料层包括在第一电极和第二电极之间呈现半导体特性的多个二维纳米材料,所述二维纳米材料中的至少一些彼此无序地交叠;
形成连接到所述二维材料层的第一部分的第一电极;和
形成连接到所述二维材料层的第二部分的第二电极,所述第二电极与所述第一电极间隔开,
其中所述多个二维纳米材料包括过渡金属二硫属化物、磷烯、锗烯和硅烯中的至少一种,以及
其中所述二维材料层通过喷射包括溶剂和所述二维纳米材料的墨水来形成墨水图案以及干燥所述墨水图案而形成。
21.如权利要求20所述的方法,还包括:
在基板上形成栅电极;以及
在所述基板上形成栅绝缘层,其中,
形成所述栅绝缘层包括以下之一:在所述栅电极的顶部上形成所述栅绝缘层和在所述栅电极与所述基板之间形成栅绝缘层,
所述栅绝缘层在所述二维材料层与所述栅电极之间延伸。
22.如权利要求20所述的方法,其中形成所述第一电极包括:在所述二维材料层的所述第一部分处形成所述二维材料层与所述第一电极之间的肖特基结。
23.如权利要求20所述的方法,其中
所述二维材料层包括在所述二维纳米材料周围的导电材料和掺杂剂中的至少之一,并且
所述导电材料包括石墨烯、导电颗粒、导电纳米管和导电纳米线中的一个。
CN201510765524.4A 2014-12-30 2015-11-11 电子器件及其制造方法 Active CN105742358B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140194323A KR102412965B1 (ko) 2014-12-30 2014-12-30 2차원 물질층을 포함하는 전자소자 및 잉크젯 프린팅을 이용한 전자소자의 제조방법
KR10-2014-0194323 2014-12-30

Publications (2)

Publication Number Publication Date
CN105742358A CN105742358A (zh) 2016-07-06
CN105742358B true CN105742358B (zh) 2021-02-05

Family

ID=56165172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510765524.4A Active CN105742358B (zh) 2014-12-30 2015-11-11 电子器件及其制造方法

Country Status (4)

Country Link
US (2) US9922825B2 (zh)
JP (1) JP6727790B2 (zh)
KR (1) KR102412965B1 (zh)
CN (1) CN105742358B (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412965B1 (ko) * 2014-12-30 2022-06-24 삼성전자주식회사 2차원 물질층을 포함하는 전자소자 및 잉크젯 프린팅을 이용한 전자소자의 제조방법
CN104576758A (zh) * 2015-01-22 2015-04-29 合肥京东方光电科技有限公司 薄膜晶体管、阵列基板及其制作方法
US10269791B2 (en) * 2015-03-16 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Field-effect transistors having transition metal dichalcogenide channels and methods of manufacture
US10217819B2 (en) * 2015-05-20 2019-02-26 Samsung Electronics Co., Ltd. Semiconductor device including metal-2 dimensional material-semiconductor contact
US20170117417A1 (en) 2015-07-13 2017-04-27 Board Of Regents, The University Of Texas System Integration of air-sensitive two-dimensional materials on arbitrary substrates for the manufacturing of electronic devices
US20170045473A1 (en) * 2015-08-11 2017-02-16 Electronics And Telecommunications Research Institute Gas sensor and method of manufacturing the same
KR102465353B1 (ko) 2015-12-02 2022-11-10 삼성전자주식회사 전계 효과 트랜지스터 및 이를 포함하는 반도체 소자
US10648959B2 (en) * 2016-05-05 2020-05-12 University Of Southern California Black phosphorus gas sensor
KR101792953B1 (ko) 2016-07-01 2017-11-20 건국대학교 산학협력단 2차원 반도체, 이의 제조 방법, 및 이를 포함하는 반도체 소자
US9991122B2 (en) * 2016-08-31 2018-06-05 Micron Technology, Inc. Methods of forming semiconductor device structures including two-dimensional material structures
CN106293253B (zh) * 2016-09-23 2019-05-28 京东方科技集团股份有限公司 触控传感器及其制作方法和触控传感器单元
US9704965B1 (en) * 2016-09-27 2017-07-11 International Business Machines Corporation Semiconductor device with self-aligned carbon nanotube gate
CN106449918B (zh) * 2016-11-10 2019-02-01 同济大学 半导体异质结构光电子器件的逻辑应用方法
CN108336151B (zh) 2017-01-20 2020-12-04 清华大学 肖特基二极管、肖特基二极管阵列及肖特基二极管的制备方法
CN108336142B (zh) * 2017-01-20 2020-09-25 清华大学 薄膜晶体管
CN108336128B (zh) 2017-01-20 2020-12-04 清华大学 薄膜晶体管
CN108336091B (zh) * 2017-01-20 2021-01-05 清华大学 薄膜晶体管
CN106784009B (zh) * 2017-01-22 2019-06-25 温州大学 基于pet柔性衬底的背栅黑磷场效应晶体管及制备方法
CN108423637B (zh) 2017-02-15 2022-11-22 松下知识产权经营株式会社 光电转换材料以及使用该光电转换材料的太阳能电池
US10269564B2 (en) * 2017-03-17 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming a semiconductor device using layered etching and repairing of damaged portions
CN107424911B (zh) * 2017-04-25 2020-07-31 郑州轻工业学院 具有垂直结构的SnSe2/MoSe2新型异质结的制备方法及其场效应性能改性方法
US10263107B2 (en) * 2017-05-01 2019-04-16 The Regents Of The University Of California Strain gated transistors and method
WO2018217682A1 (en) 2017-05-23 2018-11-29 Alpha Assembly Solutions Inc. Graphene enhanced and engineered materials for membrane touch switch and other flexible electronic structures
US10263080B2 (en) 2017-05-24 2019-04-16 Qualcomm Incorporated Transistor with fluorinated graphene spacer
US10354955B2 (en) * 2017-06-19 2019-07-16 Qualcomm Incorporated Graphene as interlayer dielectric
US10418490B2 (en) * 2017-07-04 2019-09-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd Field effect transistor and manufacturing method thereof
WO2019078861A1 (en) * 2017-10-19 2019-04-25 Hewlett-Packard Development Company, L.P. PRINTABLE AMMONIUM CHALCOGENOMETALLATE FLUIDS
US10658470B2 (en) * 2017-11-14 2020-05-19 Taiwan Semiconductor Manufacturing Co., Ltd. Device with doped phosphorene and method for doping phosphorene
KR101960809B1 (ko) * 2018-01-12 2019-03-21 한국표준과학연구원 단전자 펌프를 포함하는 반도체 소자
CN110970308B (zh) * 2018-09-30 2023-07-21 中国科学院苏州纳米技术与纳米仿生研究所 薄膜晶体管及其异质结有源层的制作方法
KR102118608B1 (ko) * 2018-10-26 2020-06-04 한국과학기술연구원 이차원 나노물질과 더블레이어절연층 수직구조 기반 스위칭 소자
US11158807B2 (en) * 2019-10-18 2021-10-26 Taiwan Semiconductor Manufacturing Company, Ltd. Field effect transistor and method of manufacturing the same
KR20210094332A (ko) 2020-01-21 2021-07-29 삼성전자주식회사 2d 채널을 포함하는 트랜지스터
KR20210121948A (ko) 2020-03-31 2021-10-08 삼성전자주식회사 2차원 물질기반 배선 도전층 콘택구조, 이를 포함하는 전자소자 및 그 제조방법
US20210349091A1 (en) * 2020-04-17 2021-11-11 Adam Khan System and method for transistor pathogen detector
KR102418527B1 (ko) * 2020-08-11 2022-07-06 연세대학교 산학협력단 스트레인이 가해진 2차원 물질 제조 방법
KR102581497B1 (ko) * 2021-04-12 2023-09-21 포항공과대학교 산학협력단 반도체성 2차원 물질 기반 트랜지스터 제조방법
WO2024053396A1 (ja) * 2022-09-05 2024-03-14 音羽電機工業株式会社 電界強度を測定可能なセンサ装置及び電界強度を測定する方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4443944B2 (ja) * 2004-01-20 2010-03-31 独立行政法人科学技術振興機構 トランジスタとその製造方法
WO2007061428A2 (en) * 2004-12-27 2007-05-31 The Regents Of The University Of California Components and devices formed using nanoscale materials and methods of production
WO2009023051A1 (en) * 2007-05-14 2009-02-19 Northwestern University Ceramic composite thin films
WO2009143604A1 (en) * 2008-05-30 2009-12-03 University Of Alberta Molecular signature for fibrosis and atrophy
JP5453045B2 (ja) * 2008-11-26 2014-03-26 株式会社日立製作所 グラフェン層が成長された基板およびそれを用いた電子・光集積回路装置
US8053782B2 (en) * 2009-08-24 2011-11-08 International Business Machines Corporation Single and few-layer graphene based photodetecting devices
WO2011066205A1 (en) * 2009-11-25 2011-06-03 E. I. Du Pont De Nemours And Company Aqueous process for producing crystalline copper chalcogenide nanoparticles, the nanoparticles so-produced, and inks and coated substrates incorporating the nanoparticles
SG184904A1 (en) * 2010-05-05 2012-11-29 Univ Singapore Hole doping of graphene
IT1401734B1 (it) * 2010-06-29 2013-08-02 St Microelectronics Srl Dispositivo elettronico comprendente uno strato di interfaccia di connessione basato su nanotubi, e procedimento di fabbricazione
WO2012028642A1 (en) 2010-09-03 2012-03-08 Thrane & Thrane A/S An assembly comprising a movable and brakable/dampable part and a method for braking a movable part
GB2483288A (en) * 2010-09-03 2012-03-07 Trinity College Dublin Exfoliation process for forming semiconducting nanoflakes
US9608101B2 (en) * 2011-01-04 2017-03-28 Ecole Polytechnique Federale De Lausanne (Epfl) Semiconductor device
US20140042390A1 (en) * 2011-02-16 2014-02-13 The Regents Of University Of California Interpenetrating networks of carbon nanostructures and nano-scale electroactive materials
US9318591B2 (en) * 2011-03-22 2016-04-19 The University Of Manchester Transistor device and materials for making
SG195119A1 (en) * 2011-05-23 2013-12-30 Univ Singapore Method of transferring thin films
KR101285475B1 (ko) 2011-06-01 2013-07-12 제주대학교 산학협력단 P-n 접합 Zn0 LED 및 그 제조방법
US10761043B2 (en) * 2011-07-22 2020-09-01 The Trustees Of The University Of Pennsylvania Graphene-based nanopore and nanostructure devices and methods for macromolecular analysis
US10175195B2 (en) * 2011-07-27 2019-01-08 The Board Of Trustees Of The University Of Illinois Nanopore sensors for biomolecular characterization
KR101280119B1 (ko) 2011-09-26 2013-06-28 서울대학교산학협력단 잉크젯 프린팅을 이용한 그래핀 시트의 패턴과 광대역 다이폴 안테나로의 응용
KR101335683B1 (ko) 2011-10-06 2013-12-03 한국전기연구원 2차원 나노소재에 의해 전도성이 향상된 1차원 전도성 나노소재기반 전도성 필름
US8642432B2 (en) * 2011-12-01 2014-02-04 International Business Machines Corporation N-dopant for carbon nanotubes and graphene
US9299932B2 (en) * 2011-12-28 2016-03-29 Sony Corporation Solid-state assembly of layers and an electric device comprising such assembly
US8564027B2 (en) * 2012-01-27 2013-10-22 International Business Machines Corporation Nano-devices formed with suspended graphene membrane
US8790814B2 (en) * 2012-02-16 2014-07-29 Nanotek Instruments, Inc. Inorganic nano sheet-enabled lithium-exchanging surface-mediated cells
KR101634338B1 (ko) * 2012-04-26 2016-06-28 광주과학기술원 발광 다이오드 및 이의 제조방법
TWI441947B (zh) * 2012-07-20 2014-06-21 Academia Sinica 電化學石墨烯及包含其之電極複合材料與鋰電池
KR101391306B1 (ko) 2012-07-27 2014-05-02 이엘케이 주식회사 인쇄법을 적용하는 터치 스크린 패널의 제조 방법 및 이에 의해 제조된 터치 스크린 패널
US8735271B2 (en) * 2012-08-24 2014-05-27 International Business Machines Corporation Gate tunable tunnel diode
GB201218952D0 (en) * 2012-10-22 2012-12-05 Cambridge Entpr Ltd Functional inks based on layered materials and printed layered materials
JP6236778B2 (ja) * 2012-12-19 2017-11-29 株式会社リコー 金属酸化物膜形成用塗布液、金属酸化物膜、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法
US9685559B2 (en) * 2012-12-21 2017-06-20 The Regents Of The University Of California Vertically stacked heterostructures including graphene
KR101919426B1 (ko) * 2013-01-08 2018-11-19 삼성전자주식회사 그래핀 전자 소자 및 그 제조 방법
KR101532310B1 (ko) 2013-02-18 2015-06-29 삼성전자주식회사 2차원 소재 적층 플렉서블 광센서
US9379232B2 (en) 2013-02-18 2016-06-28 Quantum Devices, Llc Magneto-electric voltage controlled spin transistors
US9899480B2 (en) * 2013-03-15 2018-02-20 University Of Notre Dame Du Lac Single transistor random access memory using ion storage in two-dimensional crystals
US9063063B2 (en) * 2013-03-15 2015-06-23 The United States Of America, As Represented By The Secretary Of The Navy Low-dimensional material chemical vapor sensors
ITVI20130077A1 (it) * 2013-03-20 2014-09-21 St Microelectronics Srl Un materiale riempitivo a base di grafene con una elevata conducibilita' termica per il collegamento di chips in dispositivi a microstruttura
EP2989440A4 (en) * 2013-04-25 2017-01-04 The Trustees Of The University Of Pennsylvania Opioid detection based on high quality graphene transistor arrays and a synthetic mu receptor
US9449873B2 (en) * 2013-06-19 2016-09-20 Infineon Technologies Ag Method for processing a carrier and an electronic component
US9472686B2 (en) * 2013-08-02 2016-10-18 Northwestern University Gate-tunable P-N heterojunction diode, and fabrication method and application of same
WO2015031461A1 (en) * 2013-08-28 2015-03-05 Massachusetts Institute Of Technology Seed for metal dichalcogenide growth by chemical vapor deposition
IN2013CH04799A (zh) * 2013-10-24 2015-05-08 Empire Technology Dev Llc
US10267763B2 (en) * 2013-12-04 2019-04-23 The Regents Of The University Of Michigan Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapor detection
US10099938B2 (en) * 2013-12-12 2018-10-16 Samsung Electronics Co., Ltd. Electrically conductive thin films
US9548394B2 (en) * 2014-04-22 2017-01-17 Uchicago Argonne, Llc All 2D, high mobility, flexible, transparent thin film transistor
KR102245295B1 (ko) * 2014-10-08 2021-04-27 삼성전자주식회사 실리신 물질층 및 이를 포함하는 전자 소자
US10269981B2 (en) * 2014-11-17 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-channel field effect transistors using 2D-material
US9859513B2 (en) * 2014-11-25 2018-01-02 University Of Kentucky Research Foundation Integrated multi-terminal devices consisting of carbon nanotube, few-layer graphene nanogaps and few-layer graphene nanoribbons having crystallographically controlled interfaces
KR102308620B1 (ko) 2014-11-27 2021-10-05 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102412965B1 (ko) * 2014-12-30 2022-06-24 삼성전자주식회사 2차원 물질층을 포함하는 전자소자 및 잉크젯 프린팅을 이용한 전자소자의 제조방법
US9515257B2 (en) * 2015-02-20 2016-12-06 Northwestern University Gate-tunable atomically-thin memristors and methods for preparing same and applications of same
US9793214B1 (en) * 2017-02-21 2017-10-17 Texas Instruments Incorporated Heterostructure interconnects for high frequency applications

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
An atlas of two-dimensional materials;Pere Miro;《Chemical Society Reviews》;20140305;全文 *
Black phosphorus field-effect transistors;Likai Li;《nature nanotechnology》;20140331;全文 *
Graphene-like two-dimensional materials;Mingsheng Xu;《Graphene-like two-dimensional materials》;20130103;全文 *
High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus;Jingsi Qiao;《Nature Communications》;20140721;全文 *
Progress,challenges,and opportunities in two-dimensional materials beyond graphene;Sheneve Z. Butler;《ACS Nano》;20130306;全文 *

Also Published As

Publication number Publication date
US9922825B2 (en) 2018-03-20
US20160190244A1 (en) 2016-06-30
US20180090317A1 (en) 2018-03-29
US10460935B2 (en) 2019-10-29
JP2016127267A (ja) 2016-07-11
JP6727790B2 (ja) 2020-07-22
KR20160081102A (ko) 2016-07-08
KR102412965B1 (ko) 2022-06-24
CN105742358A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
CN105742358B (zh) 电子器件及其制造方法
US9269775B2 (en) Tunneling devices and methods of manufacturing the same
KR101156620B1 (ko) 그라핀 채널층을 가지는 전계 효과 트랜지스터
US9105556B2 (en) Tunneling field-effect transistor including graphene channel
US8946789B2 (en) Semiconductor device, method of manufacturing the same, and electronic device including the semiconductor device
US10090386B2 (en) Graphene-metal bonding structure, method of manufacturing the same, and semiconductor device having the graphene-metal bonding structure
JP5249021B2 (ja) 亜鉛酸化物をベースとした半導体材料を含む薄膜トランジスタ
US9306005B2 (en) Electronic device including graphene
US8253124B2 (en) Semiconductor element
US8847313B2 (en) Transparent electronics based on transfer printed carbon nanotubes on rigid and flexible substrates
Lieb et al. Ionic‐Liquid Gating of InAs Nanowire‐Based Field‐Effect Transistors
US9466805B2 (en) Semiconductor devices and methods of manufacturing the same
WO2010010766A1 (ja) 電界効果型トランジスタおよび回路装置
US9899473B2 (en) Method of forming nanostructure, method of manufacturing semiconductor device using the same, and semiconductor device including nanostructure
TW200843118A (en) Ambipolar transistor design
US9306021B2 (en) Graphene devices and methods of fabricating the same
Li et al. Printed flexible thin-film transistors based on different types of modified liquid metal with good mobility
US8823077B2 (en) Semiconductor device and method of manufacturing the same
Tong et al. Printed flexible thin-film transistors
성낙현 Electrohydrodynamic Jet-Printed Transistors and Applications with Single-Walled Carbon Nanotubes
KR100988322B1 (ko) 탄소나노튜브 쇼트키 다이오드 및 그 제조 방법
JP5360696B2 (ja) 有機半導体装置の製造方法
KR20180039588A (ko) 유기 전계 효과 트랜지스터 및 이를 제작하는 방법
Kuo et al. Novel transport mechanism of SiGe dot MOS tunneling diodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant