CN105552185B - 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法 - Google Patents

一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法 Download PDF

Info

Publication number
CN105552185B
CN105552185B CN201610071423.1A CN201610071423A CN105552185B CN 105552185 B CN105552185 B CN 105552185B CN 201610071423 A CN201610071423 A CN 201610071423A CN 105552185 B CN105552185 B CN 105552185B
Authority
CN
China
Prior art keywords
light emitting
inorganic
emitting diode
full
quantum dots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610071423.1A
Other languages
English (en)
Other versions
CN105552185A (zh
Inventor
曾海波
李建海
许蕾梦
宋继中
董宇辉
薛洁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201610071423.1A priority Critical patent/CN105552185B/zh
Publication of CN105552185A publication Critical patent/CN105552185A/zh
Application granted granted Critical
Publication of CN105552185B publication Critical patent/CN105552185B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种基于无机钙钛矿材料的全无机量子点发光二极管,由ITO玻璃、p型氧化物半导体材料NiO空穴传输层、无机钙钛矿CsPbX3量子点发光层、n型氧化物半导体材料电子传输层和阴极电极材料组成。通过以下步骤制备:首先在ITO玻璃上通过沉积P型无机氧化物材料作空穴传输层,然后旋涂无机卤化物钙钛矿量子点,再通过磁控溅射沉积n型无机氧化物作电子传输层,最后通过热蒸发沉积发光二极管的金属电极,得到发光均匀的全无机CsPbX3钙钛矿量子点发光二极管。本发明制备的全无机量子点发光二极管发光光谱半高宽窄,色纯度高,稳定性好,性能优异,具有广泛的应用价值。

Description

一种基于无机钙钛矿材料的全无机量子点发光二极管及其制 备方法
技术领域
本发明涉及一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法,属于量子点电致发光器件技术领域。
背景技术
发光二极管(LED)在显示、照明及背光源等领域应用广泛,因其优异的发光效率和器件性能已逐渐取代传统的荧光灯成为新一代的光源。有机发光二极管(OLED)与量子点发光二极管(QLED)被认为是未来LED发展的两大主要方向。独特量子效应赋予半导体量子点材料发光波长可调、发射光谱峰半高宽窄、量子效率高等特点,半导体量子点材料在发光二极管、显示和太阳能电池等领域具有良好应用前景。目前为止,大部分量子点发光二极管的发光层均采用镉基量子点,其制备过程繁琐,稳定性亟待提高。最近,无机钙钛矿量子点(CsPbX3,X=Cl,Br,I)优异的光电性能引起了广泛的关注,便捷的溶液合成、高量子效率(大于80%)及窄发光峰(小于30nm)使无机钙钛矿材料成为新的研究热点,有望突破QLED领域中的应用难题。
常见的QLED中的空穴传输层和电子传输层材料多采用有机材料。文献1(HighlyEfficient Quantum-Dot Light-Emitting Diodes with DNA-CTMA as a Combined Hole-Transporting and Electron-Blocking Layer,ACS Nano 2009,3,737-743)利用PEDOT:PSS,TPD,DNA-CTMA做空穴传输层,TPBi,Alq3做电子传输层,然而这些有机材料十分昂贵,且易受到大气环境中氧气和水分的影响而降低性能,导致QLED制备过程要求严格,增加了成本。与有机传输层材料相比,无机材料具有更高的电子、空穴迁移率,且在空气中有良好的稳定性,因此无机载流子传输层材料在发光二极管中具有巨大的应用潜力。
发明内容
本发明的目的在于提供一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法。
为了实现上述目的,本发明的技术方案如下:一种基于无机钙钛矿材料的全无机量子点发光二极管,包括ITO玻璃、p型氧化物半导体材料NiO空穴传输层、无机钙钛矿CsPbX3量子点发光层、n型氧化物半导体材料电子传输层和阴极电极材料组成,所述阴极电极材料为Ag或者Al,所述的全无机量子点发光二极管由如下步骤制备:
步骤1,在洁净的ITO玻璃表面沉积p型氧化物半导体材料NiO作空穴传输层,并进行热处理;
步骤2,取CsPbX3量子点的分散液旋涂在经步骤1处理后的器件表面;
步骤3,于步骤2旋涂后的表面磁控溅射沉积n型氧化物半导体材料作电子传输层,最后热蒸发沉积阴极电极材料得到全无机量子点发光二极管。
优选地,步骤1中,所述的沉积空穴传输层采用旋涂法或磁控溅射法,所述的p型氧化物半导体材料NiO的沉积厚度为25~50nm,热处理温度为300℃~450℃。
优选地,步骤2中,所述的CsPbX3量子点中的X为Cl、Br、I元素或者任意二者组合,CsPbX3量子点的分散液为CsPbX3量子点分散在正辛烷溶剂中,分散液的浓度为10~15mg/mL,旋涂速度为1500~2000r/min,旋涂时间为45~60s。
优选地,步骤3中,所述的n型氧化物半导体材料为ZnO或TiO2,沉积厚度为40~60nm;所述阴极电极材料为Ag或者Al,沉积厚度为80~100nm。
与现有技术相比,本发明的优点是:本发明采用全无机的器件结构,采用氧化物半导体材料作为电子传输层和空穴传输层,降低成本的同时提高了器件稳定性;同时采用无机钙钛矿CsPbX3量子点作为发光层,提高其发光效率,本发明制得的发光二极管亮度高且性能优异,具有广泛的应用价值。
附图说明
图1为本发明的发光二极管的结构示意图。
图2为实施例2制备的发光二极管的电流密度随外加电压变化关系图。
图3为实施例3制备的发光二极管的电致发光图谱。
具体实施方式
下面通过实施例和附图对本发明作进一步说明。
本发明的一种基于无机钙钛矿材料的全无机量子点发光二极管,结构如图1所示,包括ITO玻璃、沉积在ITO玻璃表面的p型氧化物半导体材料NiO空穴传输层、无机钙钛矿CsPbX3量子点发光层、n型氧化物半导体材料电子传输层和阴极电极材料,制备方法如下:首先在清洁的ITO玻璃上通过旋涂或磁控溅射沉积25~50nm的p型氧化物NiO作空穴传输层,300℃~450℃热处理后再旋涂无机钙钛矿CsPbX3量子点发光层,再通过磁控溅射沉积40~60nm的n型氧化物ZnO或TiO2作电子传输层,最后热蒸发沉积80~100nm的阴极电极材料Ag或者Al,最终得到发光均匀的全无机CsPbX3钙钛矿量子点发光二极管。
实施例1
步骤1,取ITO玻璃经丙酮,乙醇及去离子水清洗后真空烘干,通过磁控溅射沉积20nm厚的NiO作空穴传输层,在空气中经350℃处理15min;
步骤2,取适量10mg/mL高温合成的CsPbBr3量子点分散液旋涂在经步骤1处理后器件表面,转速为1500r/min,旋涂时间45s;
步骤3,于步骤2旋涂后的表面通过磁控溅射沉积40nm厚的ZnO作电子传输层,再热蒸发沉积一层80nm的Ag(或者Al)电极,制得基于CsPbBr3的全无机量子点发光二极管。
实施例2
步骤1,取ITO玻璃经丙酮,乙醇及去离子水清洗后真空烘干,通过磁控溅射沉积40nm厚的NiO作空穴传输层,在空气中经450℃处理10min;
步骤2,取适量15mg/mL高温合成的CsPbBr3量子点分散液旋涂在经步骤1处理后器件表面,转速为2000r/min,旋涂时间45s;
步骤3,于步骤2旋涂后的表面通过磁控溅射沉积50nm厚的ZnO作电子传输层,再热蒸发沉积一层100nm的Ag(或者Al)电极,制得基于CsPbBr3的全无机量子点发光二极管,器件的电流密度与施加电压关系图如图2所示,可以看出器件的启动电压较低,符合节能降耗的需求。
实施例3
步骤1,取ITO玻璃经丙酮,乙醇及去离子水清洗后真空烘干,通过磁控溅射沉积20nm厚的NiO作空穴传输层,在空气中经350℃处理15min;
步骤2,取适量10mg/mL高温合成的CsPbBr3量子点分散液旋涂在经步骤1处理后器件表面,转速为1500r/min,旋涂时间45s;
步骤3,于步骤2旋涂后的表面通过磁控溅射沉积40nm厚的TiO2作电子传输层,再热蒸发沉积一层80nm的Ag(或者Al)电极,制得基于CsPbBr3的全无机量子点发光二极管。
本实施例制备的全无机量子点发光二极管器件的电致发光(EL)光谱如图3所示,具有很纯的发光峰,无其他杂峰,且发射峰的半高宽狭窄,只有30nm左右。
实施例4
步骤1,取ITO玻璃经丙酮,乙醇及去离子水清洗后真空烘干,通过磁控溅射沉积20nm厚的NiO作空穴传输层,在空气中经350℃处理15min;
步骤2,取适量10mg/mL高温合成的CsPbIBr2量子点分散液旋涂在经步骤1处理后器件表面,转速为1500r/min,旋涂时间45s;
步骤3,于步骤2旋涂后的表面通过磁控溅射沉积40nm厚的ZnO作电子传输层,再热蒸发沉积一层80nm的Ag(或者Al)电极,制得基于CsPbIBr2的全无机量子点发光二极管。

Claims (5)

1.一种基于无机钙钛矿材料的全无机量子点发光二极管,其特征在于,由ITO玻璃、p型氧化物半导体材料NiO空穴传输层、无机钙钛矿CsPbX3量子点发光层、n型氧化物半导体材料电子传输层和阴极电极材料组成,通过以下步骤制得:
步骤1,在洁净的ITO玻璃表面沉积p型氧化物半导体材料NiO作空穴传输层,并进行热处理;
步骤2,取CsPbX3量子点的分散液旋涂在经步骤1处理后的器件表面;
步骤3,于步骤2旋涂后的表面磁控溅射沉积n型氧化物半导体材料作电子传输层,最后热蒸发沉积阴极电极材料得到全无机量子点发光二极管,所述的n型氧化物半导体材料为ZnO或TiO2
2.根据权利要求1所述的全无机量子点发光二极管,其特征在于,所述的阴极电极材料为Ag或者Al。
3.根据权利要求1所述的全无机量子点发光二极管,其特征在于,步骤1中,所述的沉积空穴传输层采用旋涂法或磁控溅射法,所述的p型氧化物半导体材料NiO的沉积厚度为25~50nm,热处理温度为300℃~450℃。
4.根据权利要求1所述的全无机量子点发光二极管,其特征在于,步骤2中,所述的CsPbX3量子点中的X为Cl、Br、I元素或者任意二者组合,CsPbX3量子点的分散液为CsPbX3量子点分散在正辛烷溶剂中,分散液的浓度为10~15mg/mL,旋涂速度为1500~2000r/min,旋涂时间为45~60s。
5.根据权利要求1所述的全无机量子点发光二极管,其特征在于,步骤3中,所述的n型氧化物半导体材料为ZnO或TiO2,沉积厚度为40~60nm;所述的阴极电极材料为Ag或者Al,沉积厚度为80~100nm。
CN201610071423.1A 2016-02-01 2016-02-01 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法 Expired - Fee Related CN105552185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610071423.1A CN105552185B (zh) 2016-02-01 2016-02-01 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610071423.1A CN105552185B (zh) 2016-02-01 2016-02-01 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN105552185A CN105552185A (zh) 2016-05-04
CN105552185B true CN105552185B (zh) 2018-11-13

Family

ID=55831262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610071423.1A Expired - Fee Related CN105552185B (zh) 2016-02-01 2016-02-01 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN105552185B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830618A (zh) * 2019-01-18 2019-05-31 南京理工大学 一种基于CsPbI3材料的无机钙钛矿白光发光二极管

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017200732A1 (en) * 2016-05-20 2017-11-23 Brown University Method for manufacturing perovskite solar cells and multijunction photovoltaics
TWI626768B (zh) * 2016-08-01 2018-06-11 國立成功大學 發光二極體及其製造方法
CN106450042B (zh) * 2016-09-26 2020-03-31 Tcl集团股份有限公司 一种金属氧化物、qled及制备方法
CN106450021A (zh) * 2016-11-24 2017-02-22 南方科技大学 一种有机电致发光器件及其制备方法
CN107146854A (zh) * 2017-05-11 2017-09-08 安徽熙泰智能科技有限公司 一种钙钛矿发光二极管的硅基微显示器件及其制备方法
CN107170908B (zh) * 2017-05-23 2019-09-10 华灿光电(浙江)有限公司 一种发光二极管的外延片及制备方法
CN107275523A (zh) * 2017-06-13 2017-10-20 苏州大学 一种纯无机钙钛矿发光二极管器件的制备方法
CN107863424B (zh) * 2017-11-13 2019-06-21 吉林大学 一种基于钙钛矿薄膜的全无机发光器件及其制备方法
CN109004091B (zh) * 2018-06-11 2020-06-30 南京理工大学 一种基于室温钙钛矿材料的量子点发光二极管及其制备方法
JP7169126B2 (ja) * 2018-08-30 2022-11-10 エルジー ディスプレイ カンパニー リミテッド 塗布型有機電界発光素子
CN110492012B (zh) * 2019-08-26 2022-04-12 京东方科技集团股份有限公司 一种量子点发光器件及其制备方法、显示面板、显示装置
CN110649133A (zh) * 2019-09-26 2020-01-03 河南科技大学 基于InN电子传输层的全无机钙钛矿LED发光器件
CN110718648A (zh) * 2019-10-18 2020-01-21 南昌航空大学 基于无机空穴传输材料钙钛矿量子点发光二极管的原位合成制作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050627A (zh) * 2012-11-29 2013-04-17 中国乐凯胶片集团公司 一种有机太阳能电池及其制备方法
CN103346221A (zh) * 2013-05-25 2013-10-09 浙江大学 一种无机金属氧化物作为电子传输层的量子点发光二极管及其制备方法
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105206718A (zh) * 2015-09-25 2015-12-30 南京理工大学 一种溶液法制备的CsPbX3无机钙钛矿量子点发光二极管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050627A (zh) * 2012-11-29 2013-04-17 中国乐凯胶片集团公司 一种有机太阳能电池及其制备方法
CN103346221A (zh) * 2013-05-25 2013-10-09 浙江大学 一种无机金属氧化物作为电子传输层的量子点发光二极管及其制备方法
CN103904178A (zh) * 2014-04-11 2014-07-02 浙江大学 量子点发光器件
CN105206718A (zh) * 2015-09-25 2015-12-30 南京理工大学 一种溶液法制备的CsPbX3无机钙钛矿量子点发光二极管

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers;J.M.CARUGE, et.al;《nature photonics》;20080316;第2卷;第247-249页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830618A (zh) * 2019-01-18 2019-05-31 南京理工大学 一种基于CsPbI3材料的无机钙钛矿白光发光二极管

Also Published As

Publication number Publication date
CN105552185A (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
CN105552185B (zh) 一种基于无机钙钛矿材料的全无机量子点发光二极管及其制备方法
Tokmoldin et al. A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer
CN110190195B (zh) 一种基于复合界面传输材料的钙钛矿光伏-发光-光探测多功能器件及其制备方法
TWI503050B (zh) 用於透光裝置的導電結構
CN102610725B (zh) 一种半导体量子点发光二极管及其制备方法
CN108963087A (zh) 量子点电致发光器件及显示器
Gu et al. Silicon-quantum-dot light-emitting diodes with interlayer-enhanced hole transport
CN105576139A (zh) 一种量子点电致发光二极管及其制备方法、显示器
CN105161635A (zh) 一种具有自组装电子传输层的qled器件及其制备方法
CN106803546A (zh) 一种量子点发光二极管及其制备方法
CN111048672B (zh) 一种基于钙钛矿电致发光的白光led及其制备方法
CN109390489A (zh) 发光二极管及其制备方法与应用
Wang et al. Solution-processed sodium hydroxide as the electron injection layer in inverted bottom-emission organic light-emitting diodes
CN109390491A (zh) 发光二极管及其制备方法与应用
CN103247731A (zh) 一种基于纳米材料的新型光控发光二极管
CN112467058B (zh) 一种三元激基复合物复合材料主体及其oled器件制备
CN105762294A (zh) 利用铱配合物的白光有机电致发光器件及其制备方法
Feng et al. Organometal halide perovskite as hole injection enhancer in organic light-emitting diode
CN104103764A (zh) 有机电致发光器件及其制作方法
CN104103768A (zh) 有机电致发光器件及其制作方法
CN1564641A (zh) 一种有机电致发光器件
CN104300084A (zh) 有机电致发光器件及其制备方法
WO2023082970A1 (zh) 复合材料及制备方法、电致发光器件
Choi et al. P‐9.2: Role of interlayers in inorganic perovskite thin films LEDs
Wang et al. Organic Light Emitting Devices with Nano-ZnO Thin Films as Cathode Buffer Layer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181113