CN105283429B - 堇青石铝镁酞酸盐组合物及包含该组合物的陶瓷制品 - Google Patents

堇青石铝镁酞酸盐组合物及包含该组合物的陶瓷制品 Download PDF

Info

Publication number
CN105283429B
CN105283429B CN201380071634.XA CN201380071634A CN105283429B CN 105283429 B CN105283429 B CN 105283429B CN 201380071634 A CN201380071634 A CN 201380071634A CN 105283429 B CN105283429 B CN 105283429B
Authority
CN
China
Prior art keywords
ceramic
oxide
temperature
weight
sintering aid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380071634.XA
Other languages
English (en)
Other versions
CN105283429A (zh
Inventor
A·M·迪文斯-道彻尔
P·D·特珀谢
E·M·维连诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN105283429A publication Critical patent/CN105283429A/zh
Application granted granted Critical
Publication of CN105283429B publication Critical patent/CN105283429B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/2429Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material of the honeycomb walls or cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24491Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24492Pore diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2425Honeycomb filters characterized by parameters related to the physical properties of the honeycomb structure material
    • B01D46/24494Thermal expansion coefficient, heat capacity or thermal conductivity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Filtering Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

公开了包含复合堇青石铝镁酞酸盐陶瓷组合物的陶瓷体和用于制造这种陶瓷体的方法。

Description

堇青石铝镁酞酸盐组合物及包含该组合物的陶瓷制品
本申请根据35U.S.C.§120要求2012年11月30日提交的美国专利申请系列号第13/690,096号的优先权,本文以该申请为基础并将其全部内容结合于此。
背景
技术领域
本发明的示例性实施方式涉及陶瓷组合物,并且涉及包含堇青石铝镁酞酸盐的复合陶瓷组合物。
背景技术
具有低热膨胀和由此具有高耐热冲击性的耐火材料在使用中存在高热梯度的应用中使用,所述应用为例如催化转化器基材和柴油机颗粒过滤器。由于其低热膨胀、高熔点和低成本,用于这些应用的一种材料是堇青石。在柴油机颗粒过滤器领域中,已认识到需要较高的热容来改善再生期间过滤器的耐久性。具有高体积热容的材料降低了吸附给定量的热所需的材料的体积。较小的材料体积可降低排气流的压降,并增加灰尘储存的开孔体积。然而,仍然需要低热膨胀。钛酸铝是一种可被制备为具有低热膨胀的材料,并且也具有比堇青石更高的体积热容。
纯钛酸铝在约1250℃以下是亚稳定的。当在烧制后的冷却期间形成微裂和粒度大时,AT的热膨胀是低的。这些大颗粒和微裂会使材料在机械上脆弱。微裂导致热膨胀曲线可能会有大的滞后,产生高的瞬时热膨胀值,尤其是在冷却时。AT基复合物的烧制温度通常较高,一般大于1400℃。最后,AT显示具有高热循环生长,碱金属元素的存在放大该热循环生长。
为了降低分解速度,可以在钛酸铝中加入添加剂,诸如多铝红柱石、MgTi2O5和Fe2TiO5。MgTi2O5往往在还原条件下降低分解速度,并且仅在氧化条件下以高水平(>10%)降低分解速度。Fe2TiO5往往在氧化条件下降低分解速度,并且在还原条件下增加分解速度。
已在AT中加入第二相(second phase)如多铝红柱石以提高复合体的强度,因为在多铝红柱石晶体之间通常不会发生微开裂。多铝红柱石也具有相当高的体积热容。其他第二相也已用于AT复合物,包括碱性和碱土长石。然而,多铝红柱石和碱性长石的热膨胀比最优热膨胀高。
背景部分中公开的上述信息仅用于增强对本发明技术背景的理解,并且因此可能含有不构成现有技术任意部分的信息或现有技术对本领域普通技术人员的可能启示。
发明概述
本发明的示例性实施方式提供了包含堇青石-铁板钛矿(cordierite-pseudobrookite)的复合陶瓷组合物。
本发明的示例性实施方式也提供了包含堇青石铝镁酞酸盐复合组合物的柴油机颗粒过滤器。
本发明的示例性实施方式也提供了一种制造复合堇青石铝镁酞酸盐陶瓷制品的方法。
本发明的其他特征将列于以下的说明书中,并且部分对于说明书而言显而易见,或者可由本发明的实践而得到。
一个示例性实施方式公开了一种陶瓷制品,其包含铁板钛矿相;包含堇青石的第二相;以及烧结助剂的,该铁板钛矿相主要包含氧化铝、氧化镁和二氧化钛,该烧结助剂包含氧化钙和氧化锶中的至少一种。
一种示例实施方式批露了一种制品,所述制品包括复合组合物,该复合组合物包含钛酸铝和二钛酸镁的固溶体以及包括堇青石的第二晶体相。以氧化物为基准的重量%表示的制品组成是:4至10%MgO;40至55%Al2O3;25至44%TiO2;5至25%SiO2,和烧结助剂,该烧结助剂包含氧化钙和氧化锶中的至少一种。
一种示例实施方式还批露了一种柴油机颗粒过滤器,所述柴油机颗粒过滤器包括复合组合物,该复合组合物包含钛酸铝和二钛酸镁的固溶体以及包括堇青石的第二晶体相。以氧化物为基准的重量%表示的颗粒过滤器组成是:4至10%MgO;40至55%Al2O3;25至44%TiO2;5至25%SiO2,和烧结助剂,该烧结助剂包含氧化钙和氧化锶中的至少一种。在一个示例性实施方式中,柴油机颗粒过滤器包含具有多个轴向延伸的端部堵塞的进口和出口小室的蜂窝体结构。
一个示例性实施方式也公开了一种制造复合堇青石铝镁酞酸盐陶瓷制品的方法。本发明包括:使包含氧化镁源、二氧化硅源、氧化铝源、二氧化钛源和至少一种烧结助剂的无机批料组合物混合,其中该烧结助剂包含氧化钙和氧化锶中的至少一种。将该无机批料组合物与一种或多种加工助剂混合到一起以形成增塑的陶瓷前体批料组合物,该加工助剂选自下组:增塑剂、润滑剂、粘合剂、成孔剂和溶剂。将增塑的陶瓷前体批料组合物成形为生坯体。所述方法包括在将生坯体有效地转化成陶瓷制品的条件下烧制生坯体,该陶瓷制品包含第一晶体相和第二晶体相,所述第一晶体相主要由钛酸铝和二钛酸镁的固溶体组成,所述第二晶体相包含堇青石。
应理解,前面的一般性描述和以下的详细描述都只是示例和说明性的,并且对要求保护的发明提供进一步解释。
附图说明
附图用来帮助进一步理解本发明,纳入说明书中,构成说明书的一部分,附图显示了本发明的实施方式,与说明书一起用来解释本发明的原理。
图1示出大致稳定的相组合沿钛酸铝(Al2TiO5)和堇青石(Mg2Al4Si5O18)之间的伪二元接合点(pseudo-binary join)随温度和组成的变化。
图2A和2B显示了在1325℃下在四元MgO-Al2O3-TiO2-SiO2***内以二钛酸镁、钛酸铝和堇青石为端点的伪三元剖面中的大致相关系。
图3显示了对照钛酸铝陶瓷组合物和相图的堇青石/多铝红柱石/铁板钛矿区域中的组合物在1100℃下长度随时间的变化。
图4证明了对照钛酸铝陶瓷组合物和表1的堇青石/多铝红柱石/铁板钛矿组合物在950至1250℃的温度下100小时后在25-1000℃中的热膨胀系数的变化。
图5显示了按照本发明的示例性实施方式制成的堇青石/多铝红柱石/铁板钛矿壁流过滤器的压降随烟炱负荷变化代表性数据。
图6显示具有约55克/升氧化铝涂层(washcoat)的公开陶瓷体的示例性实施方式的微结构。
图7显示了本发明的示例性实施方式的热膨胀系数(CTE)随相对稀土成本(1%Y2O3=1)的变化。
图8显示了表示最高(第一次保持)温度82、低(第二次保持)温84和中间(第三次保持)温度86的时间-温度(t-T)图80的示例性实施方式的示意图。
具体实施方式
应理解,出于本发明的目的,“X、Y和Z中的至少一个”可表示仅X,仅Y,仅Z,或X、Y和Z中两项或多项的任意组合(例如,XYZ、XYY、YZ、ZZ)。
在提供具有改善的强度同时保持低CTE的复合AT陶瓷体的努力中,以堇青石作为第二相是比多铝红柱石更好的选择,因为堇青石的热膨胀系数比多铝红柱石更小。然而,堇青石和纯钛酸铝在任何温度下都不处于热力学平衡。提供具有低CTE、高强度和良好的热稳定性的堇青石和AT基复合陶瓷代表了对现有技术的进步。
本发明的一个示例性实施方式提供一种包含第一晶体相和第二晶体相的复合陶瓷体,该第一晶体相主要包含钛酸铝和二钛酸镁的固溶体(MgTi2O5-Al2TiO5),且该第二晶体相包含堇青石。陶瓷体的组成的特征在于包含,以氧化物为基准的重量%计:4至10%MgO;40至55%Al2O3;25至42%TiO2;5至25%SiO2,0至5%CeO2,以及0.15至1%CaO和0.1至2%SrO中的至少一种。在这些或其他示例性实施方式中,本发明的陶瓷体组合物以氧化物的重量分数表示,并且氧化物组合包含,以氧化物为基准,a(Al2TiO5)+b(MgTi2O5)+c(2MgO.2Al2O3.5SiO2)+d(3Al2O3.2SiO2)+e(MgO.Al2O3)+f(2MgO.TiO2)+g(CaO)+h(SrO)+i(X)+j(Fe2O3.TiO2)+k(TiO2)+l(Al2O3),其中X可以是CeO2、Y2O3和La2O3中的至少一种,并且a、b、c、d、e、f、g、h、i、j、k和l是各组分的重量分数使得(a+b+c+d+e+f+g+h+i+j+k+l)=1.00。为此,各组分的重量分数可以是以下的相应范围:0.3≤a≤0.75,0.075≤b≤0.3,0.02≤c≤0.5,0.0≤d≤0.4,0.0≤e≤0.25,0.0≤f≤0.1,0.0≤g≤0.01,0.0≤h≤0.02,0.0015≤(g+h),0.0≤i≤0.05,0.0≤j≤0.05,0.0≤k≤0.20,和0.0≤l≤0.10。会认识到用于限定这些陶瓷的氧化物组合的氧化物和氧化物组合不必以相应的游离氧化物或晶体相存在于陶瓷体中,除非这些晶体相在本发明中专门鉴定为这些陶瓷的特征。也会认识到虽然a、b、c、d、e、f、g、h、i、j、k和l的总和是1.00,但是其表示氧化物和氧化物组合的比例。即,除了表示的氧化物和氧化物组合的比例以外,复合陶瓷体可包含其他杂质。这将在以下公开的实施例中是显而易见的。
固溶体钛酸铝和二钛酸镁相优选显示铁板钛矿晶体结构。为此,铁板钛矿相的组成可取决于加工温度和陶瓷的总体批料组成以及,如此可由平衡条件确定。然而,在示例性实施方式中,铁板钛矿相的组成包含约15重量%至35重量%的MgTi2O5。另外,虽然铁板钛矿相的总体积也可能变化,在另一个示例性实施方式中,总体积的范围可以是总陶瓷组合物的约50至95体积%。
任选地,复合陶瓷体还可包含一种或多种选自下组的相:多铝红柱石、假蓝宝石、二氧化钛多晶型物如金红石或锐钛矿、刚玉、以及尖晶石固溶体(MgAl2O4-Mg2TiO4)。当存在时,尖晶石相的组成也将取决于加工温度和总体批料组成。然而,在一个示例性实施方式中,尖晶石相可包含至少约95%的MgAl2O4
而且,陶瓷组合物也可包含一种或多种烧结助剂或添加剂,从而降低烧制温度和扩大形成陶瓷组合物所需的烧制窗。烧结助剂可以例如总组合物的0.15至5重量%的量存在并且可包含,例如,一种或多种金属氧化物,如CaO、SrO、CeO2、Y2O3和La2O3
在一个示例性实施方式中,当以0.5至4.0重量%,例如1.0至2.0重量%的量加入时,已发现氧化钇(Y2O3)和/或氧化镧(La2O3)是特别好的烧结添加剂。为此,氧化钇或镧系氧化物可以氧化相存在,或可与陶瓷体的一种或多种其他金属氧化物组分形成新相。相似地,以二价或三价铁氧化物或与其他氧化物组合,例如Fe2TiO5形式存在的来自合适铁源的铁氧化物可以一定量存在于一些实施方式中,以Fe2TiO5计算,0至3重量%Fe2TiO5。Fe2TiO5的存在可用于减缓在氧化性大气中的分解。当陶瓷体中同时存在Fe2TiO5和尖晶石相时,尖晶石固溶体还可在固溶体中额外含有二价铁和/或三价铁。此外,烧结助剂可包含氧化铈(CeO2)或者氧化铈与一种或更多种其它金属氧化物如Y2O3和La2O3的组合。例如,烧结助剂可包含与氧化钇组合的氧化铈,与氧化镧组合的氧化铈,或与氧化钇和氧化镧组合的氧化铈。
在美国专利申请号12/305,767中,其全部内容通过引用纳入本文,具有高孔隙率和低热膨胀的堇青石、多铝红柱石、铁板钛矿复合物被描述当向批料中加入氧化钇时有宽的烧制窗。本发明认识到对的宽烧制窗的需求同时避免氧化钇和其他稀土元素的高成本。
按照本发明的一个示例性实施方式,烧结助剂可包含氧化钙(CaO),氧化锶(SrO),氧化钙与氧化锶组合,氧化钙与一种或多种其他金属氧化物如氧化铈、氧化钇(Y2O3)和氧化镧(La2O3)的组合,氧化锶与一种或多种其他金属氧化物如氧化铈、Y2O3和La2O3的组合,或氧化钙和氧化锶与一种或多种其他金属氧化物如氧化铈、Y2O3和La2O3的组合。例如,烧结助剂可包含氧化钙,氧化钙与氧化钇的组合,氧化钙与氧化镧的组合,氧化钙与氧化铈的组合,氧化钙与氧化钇和氧化镧的组合,氧化钙与氧化钇和氧化铈的组合,氧化钙与氧化铈和氧化镧的组合,或氧化钙与氧化钇、氧化镧和氧化铈的组合。例如,烧结助剂可包含氧化锶,氧化锶与氧化钇的组合,氧化锶与氧化镧的组合,氧化锶与氧化铈的组合,氧化锶与氧化钇和氧化镧的组合,氧化锶与氧化钇和氧化铈的组合,氧化锶与氧化铈和氧化镧的组合,或氧化锶与氧化钇、氧化镧和氧化铈的组合。例如,烧结助剂可包含氧化钙和氧化锶,氧化钙和氧化锶与氧化钇的组合,氧化钙和氧化锶与氧化镧的组合,氧化钙和氧化锶与氧化铈的组合,氧化钙和氧化锶与氧化钇和氧化镧的组合,氧化钙和氧化锶与氧化钇和氧化铈的组合,氧化钙和氧化锶与氧化铈和氧化镧的组合,或氧化钙和氧化锶与氧化钇、氧化镧和氧化铈的组合。即,烧结助剂可包含,例如,CaO和SrO中的至少一种与Y2O3、CeO2和La2O3中的至少一种的组合。
发明人已经发现,与单独氧化钇或含其他稀土元素的氧化钇相比,含有一种或多种其他金属氧化物,如氧化铈、Fe2TiO5、氧化钇和氧化镧的氧化钙、氧化锶或氧化钙和氧化锶的混合物以更低的稀土成本产生相似的CTE、孔隙率、孔径和孔径分布。
在一个示例性实施方式中,氧化钙的量的范围可以是约0.15至约1.0重量%和/或氧化锶的量的范围可以是约0.1至约2.0重量%。例如,氧化钙的量的范围可以是0.2至0.9重量%、0.25至0.75重量%和0.4至0.6重量%。例如,氧化锶的量的范围可以是0.16至1.8重量%、0.2至1.6重量%和0.3至1.5重量%。
如上所述,在一个示例性实施方式中,氧化钙和/或氧化锶与一种或多种其他金属氧化物,如氧化铈、氧化钇和氧化镧,的混合物可以是烧结助剂。该混合物的量的范围可以是0.15至5.0重量%。例如,该混合物的量的范围可以是0.3至3.0重量%、0.4至2.5重量%、0.5至1.5重量%和2.5至4.5重量%。
按照本发明的一个示例性实施方式,陶瓷体包含约10至25重量%堇青石,约5至30重量%多铝红柱石,约50至70重量%的主要由Al2TiO5-MgTi2O5固溶体组成的铁板钛矿相,以及约0.15至3.0重量%的CaO和SrO添加物中的至少一种。按照本发明的另一个示例性实施方式,陶瓷体包含约10至25重量%堇青石,约5至30重量%多铝红柱石,约50至70重量%的主要由Al2TiO5-MgTi2O5固溶体组成的铁板钛矿相,约0.1至3.0重量%的CeO2添加物,以及约0.15至1.0重量%的CaO和约0.1至2.0重量%的SrO中的至少一种添加物。
在一些情况下,本发明的陶瓷体的示例性实施方式包含较高水平的总孔隙率。例如,可提供包含由汞孔隙仪测定的至少40%、至少45%、至少50%或者甚至至少60%的总孔隙率%P的陶瓷体。
除较高的总孔隙率外,本发明的陶瓷体还包括相对较窄的孔径分布,由极小的较小和/或较大孔径的百分数来证明。因此,相对孔径分布可由孔分数表示,本文中使用的孔分数是通过汞孔隙仪测定的孔隙体积除于100的百分数。例如,d50的数值表示基于孔隙容积的中值孔径,按微米测量;因此,d50是陶瓷中50%的开孔中渗入汞时的孔直径。d90的数值是90%的孔隙容积由其直径小于d90数值的孔构成时的孔直径;因此,d90还等于陶瓷中10体积%的开孔中渗入汞时的孔直径。另外,d10的数值是10%的孔隙容积由其直径小于d10数值的孔构成时的孔直径,因此,d10等于陶瓷中90体积%开孔中渗入汞时的孔直径。d10和d90值也用微米为单位表示。
在一个实施方式中,本陶瓷制品中存在的孔的中值孔径d50是至少10μm,更优选至少14μm,或者更优选至少16μm。在另一个实施方式中,本陶瓷制品中存在的孔的中值孔径d50不超过30μm,并且更优选不超过25μm,并且更优选不超过20μm。在另一个实施方式中,本陶瓷制品中存在的孔的中值孔径d50的范围可以是10μm至30μm,更优选18μm至25μm,更优选14μm至25μm,并且更优选16μm至20μm。为此,当本发明的陶瓷体用于柴油机排放过滤应用时,前述的孔隙率值和中值孔径值的组合可提供低的干净和烟炱负荷的压降同时保持可用的过滤效率。
在一个实施方式中,该陶瓷制品的示例性实施方式的较窄的孔径分布由比中值孔径d50更小并进一步定量为孔的分数的孔径分布宽度来证明。本文中,小于中值孔径d50的孔径分布宽度可由“d因数”或“df”值表示,该值表示(d50-d10)/d50的量。为此,本发明的陶瓷体可包含不超过0.50、0.40、0.35,或者甚至不超过0.30的d因数值。在一些示例性实施方式中,所公开的陶瓷体的d因数值不超过0.25或甚至不超过0.20。为此,较低的df值表示低分数的细孔,并且当在柴油机过滤应用中使用该陶瓷体时,低df值也有益于确保低烟炱负荷压降。
在另一个示例性实施方式中,公开的陶瓷制品的较窄的孔径分布也可以由比中值孔径d50更小或更大(coarser)、且进一步定量为孔的分数的孔径分布宽度来证明。本文中,小于或大于中值孔径d50的孔径分布宽度由“d宽度”或“dB”值表示,该值表示(d90-d10)/d50的量。为此,在一个示例性实施方式中,本发明的陶瓷结构的db值小于1.50,小于1.25,小于1.10,或者甚至小于1.00。在一些示例性实施方式中,db值不超过0.8,更优选不超过0.7,并且更优选不超过0.6。较低的db值可在柴油机过滤应用中提供较高的过滤效率和较高的强度。
该陶瓷体的另一个示例性实施方式显示低的热膨胀系数,从而产生出色的耐热冲击性(TSR)。如本领域技术人员能理解的,TSR与热膨胀系数(CTE)成反比。即,具有低热膨胀的陶瓷体通常具有较高的耐热冲击性,并能承受宽温度波动,例如在柴油机排放过滤器应用中所遇到的宽温度波动。因此,在一个示例性实施方式中,本发明的陶瓷制品的特征在于,在至少一个方向上具有较低的热膨胀系数(CTE),并且由膨胀测定法测定为在25℃至1000℃的温度范围中,小于或等于约25.0×10-7/℃、小于或等于20.0×10-7/℃、小于或等于15.0×10-7/℃、小于或等于10.0×10-7/℃、或甚至小于或等于8.0×10-7/℃。
而且,应该理解,示例性实施方式能显示任何所需要的上述性质的组合。例如,在一个实施方式中,CTE(25-1000℃)优选不超过12×10-7/℃(并且优选不超过10×10-7/℃),孔隙率%P为至少45%,中值孔径为至少14μm(并且优选至少18μm),并且df值不超过0.35(并且优选不超过0.30)。更优选地,这种示例性的陶瓷体的db值不超过1.0,并且更优选不超过0.85,并且更优选不超过0.75。在另一个示例性实施方式中,CTE(25-1000℃)不超过18×10-7/℃并且孔隙率%p为至少40%。例如,CTE(25-1000℃)不超过18×10-7/℃并且孔隙率%p为至少60%。在另一个示例中,CTE(25-1000℃)不超过12×10-7/℃并且孔隙率%p为至少40%。在另一个示例中,CTE(25-1000℃)不超过12×10-7/℃并且孔隙率%p为至少60%。
本发明陶瓷体可具有适合特定应用的任意形状或几何结构。在陶瓷体特别适合的高温过滤应用如柴油机颗粒过滤中,优选陶瓷体具有多孔结构,如蜂窝整体件的多孔结构。例如,在一个示例性实施方式中,陶瓷体可包含具有进口和出口端或端面的蜂窝体结构,并且有许多从进口端延伸至出口端的小室,所述小室具有多孔的壁。蜂窝体结构的小室密度可以进一步为70个小室/英寸2(10.9个小室/厘米2)至400个小室/英寸2(62个小室/厘米2)。在一个实施方式中,一部分小室在进口端或面端用和蜂窝体结构相同或类似组成的糊料堵塞,如在美国专利第4,329,162号中所述(通过引用纳入本文)。只在小室的端部进行堵塞,堵塞深度通常约为5-20毫米,虽然也可以改变该堵塞深度。一部分的小室在出口端堵塞,但这些小室不对应于在进口端堵塞的那些孔。因此,每个小室仅在一端堵塞。优选的排列方式是在指定表面以棋盘模式每隔一个小室进行堵塞。
这种堵塞构形使废气流与基材的多孔壁有更密切的接触。废气流通过在进口端的开口小室流入基材,然后通过多孔的小室壁,再通过出口端的开口小室从该结构排出。在此描述类型的过滤器称作“壁流”过滤器,因为交替堵塞通道产生的流动路径要求被处理的废气从多孔陶瓷的小室壁通过,然后从过滤器排出。
本发明的示例性实施方式也提供了一种从包含特定无机粉末化原料的陶瓷形成前体批料组合物制造复合堇青石铝镁酞酸盐陶瓷制品的方法。通常,该方法首先包括提供包含氧化镁源、二氧化硅源、氧化铝源和二氧化钛源的无机批料组合物。然后将该无机批料组合物与一种或多种加工助剂混合到一起以形成增塑的陶瓷前体批料组合物,该加工助剂选自下组:增塑剂、润滑剂、粘合剂、成孔剂和溶剂。增塑的陶瓷前体批料组合物可以是成形的或者另外形成生坯体,可选进行干燥,并且随后在足以将生坯体有效转化成陶瓷制品的条件下烧制。
氧化镁源例如但不限于可以选自以下材料中的一种或多种:MgO、Mg(OH)2、MgCO3、MgAl2O4、Mg2SiO4、MgSiO3、MgTiO3、Mg2TiO4、MgTi2O5、滑石和煅烧滑石。或者,氧化镁源可选自以下的一种或多种:镁橄榄石、橄榄石、绿泥石或蛇纹石。优选地,氧化镁源的中值粒径不超过35μm,并且优选不超过30μm。为此,如本文所述,通过激光衍射技术,如通过Microtrac粒度分析仪,测量全部粒径。
氧化铝源例如但不限于可以选自形成氧化铝的来源,诸如刚玉、Al(OH)3、勃姆石、水铝石、过渡氧化铝,诸如γ-氧化铝或ρ-氧化铝。或者,氧化铝源可以是氧化铝和另一种金属氧化物如MgAl2O4、Al2TiO5、多铝红柱石、高岭土、煅烧高岭土、叶腊石、蓝晶石等的化合物。在一个实施方式中,氧化铝源的加权平均中值粒度优选范围是10μm至60μm,并且更优选范围是15μm至30μm。在另一个实施方式中,氧化铝源可以是一种或多种氧化铝形成源与一种或多种氧化铝和另一种金属氧化物的化合物的组合。
除了上述的含氧化镁或氧化铝的化合物以外,二氧化钛源可以是TiO2粉末。
提供的二氧化硅源可以是SiO2粉末,诸如石英、隐晶石英、熔凝硅石、硅藻土、低碱沸石或胶态二氧化硅。另外,二氧化硅源也可以含氧化镁和/或氧化铝的化合物提供,包括,例如堇青石、绿泥石等。在另一个实施方式中,二氧化硅源的中值粒径优选为至少5μm,更优选至少10μm,并且更优选至少20μm。
如上所述,在前体批料组合物中可任选加入一种或多种烧结助剂或添加剂,以降低烧制温度和扩大形成陶瓷组合物所需的烧制窗。烧结助剂可以,例如,以总组合物的0.15至5重量%的量存在,并且可包含,例如,一种或多种金属氧化物,如CaO和SrO中的至少一种,或CaO和SrO中的至少一种与CeO2、Y2O3和La2O3中的一种或多种的组合。可向前体批料组合物中加入烧结助剂,其可为例如碳酸盐、硅酸盐、铝酸盐、水合物等形式。在一个示例性实施方式中,已经发现当以约0.15至1.0重量%,并且更优选以约0.25至0.75重量%的量加入氧化钙(CaO)时,其是特别良好的烧结添加剂。在一个示例性实施方式中,已经发现当以约0.1至2.0重量%,并且更优选以约0.5至1.5重量%的量加入氧化锶(SrO)时,其是特别良好的烧结添加剂。相似地,当以0至3重量%的量加入Fe2TiO5时,其可用于减缓氧化性大气中的分解。
此外,陶瓷前体批料组合物可包含其他添加剂,例如表面活性剂、润滑油和成孔材料。可用作成形助剂的表面活性剂的非限制性示例是C8-C22脂肪酸和/或它们的衍生物。可与这些脂肪酸一起使用的其他表面活性剂组分是C8至C22脂肪酯、C8至C22脂肪醇及其组合。示例性的表面活性剂是硬脂酸、月桂酸、肉豆蔻酸、油酸、亚油酸、棕榈酸及其衍生物、妥尔油、硬脂酸与月桂基硫酸铵的组合、以及所有这些的组合。在一个示例性实施方式中,表面活性剂是月桂酸、硬脂酸、油酸、妥尔油及其组合。在一些实施方式中,表面活性剂的量是约0.25重量%至约2重量%。
可用作成形助剂的润滑油的非限制性例子可以是,轻质矿物油、玉米油、高分子量聚丁烯、多元醇酯、轻质矿物油和蜡乳液的掺混物、石蜡在玉米油中的掺混物、以及这些的组合。在一些实施方式中,润滑油的量是约1重量%至约10重量%。在一个示例性实施方式中,润滑油以约3重量%至约6重量%的量存在。
如果需要,所述前体组合物可以含有成孔剂以便调节用于特定应用的烧制体的孔隙率和孔径分布。成孔剂是易挥发材料,在对生坯体进行干燥或加热期间通过燃烧能使成孔剂蒸发或发生汽化以获得所需的通常较高的孔隙率和/或较大的中值孔径。合适的成孔剂可包括,但不限于,碳;石墨;淀粉;木材,壳或坚果粉;聚合物如聚乙烯珠粒;蜡等。当使用时,颗粒成孔剂可具有10μm至70μm,并且更优选15μm至50μm范围的中值粒径。
形成陶瓷的无机批料组分与任选的任意烧结助剂和/或成孔剂可以与液态赋形剂和成形助剂充分混合,这些成形助剂在原料成形为生坯体时赋予原料以塑性成形性和生坯强度。通过挤出进行成形时,最常使用纤维素醚粘结剂,如甲基纤维素、羟丙基甲基纤维素、甲基纤维素衍生物和/或它们的任意组合,作为临时性有机粘结剂,并且硬脂酸钠可作为润滑剂。成形助剂的相对量可以根据如所用原料的特性和量等的因素而变化。例如,成形助剂的常规用量约为:约2至约10重量%,优选约3至约6重量%的甲基纤维素,以及约0.5至约1重量%,优选约0.6重量%的硬脂酸钠、硬脂酸、油酸或妥尔油。原料和成形助剂通常以干的形式混合在一起,然后与作为载剂的水混合。水的用量可随批料而变化,因此可以通过预先测试具体批料的可挤出性来确定。
液体载剂组分可依据使用的材料的类型变化,以对加工性以及与陶瓷批料混合物中的其他组分的相容性进行优化。通常,液体载剂含量一般为增塑的组合物的15重量%至50重量%。在一个实施方式中,液体载剂组分可包含水。在另一个实施方式中,应理解,根据陶瓷批料组合物的组分部分,可以使用有机溶剂例如甲醇、乙醇或它们的混合物作为液体载剂。
可以通过比如典型陶瓷制造技术,诸如单轴向压制或等静压压制、挤出、流铸和注塑,从增塑的前体组合物形成或成形生坯体。当陶瓷制品是蜂窝体几何形状时,优选挤出,如对于催化转化器流通基材或柴油机颗粒壁流过滤器。所得的生坯体可任选地经干燥,然后在有效将生坯体转化成陶瓷制品的条件下在气加热窑或电加热窑中或通过微波加热进行烧制。例如,将生坯体有效地转化成陶瓷制品的烧制条件可包括在1250℃至1450℃,例如1300℃至1350℃,或1330℃至1380℃范围的最高均热温度下加热生坯体,并且维持该最高均热温度充足的时间以将生坯体转化成陶瓷制品,之后以足以不对烧结制品造成热冲击的速度冷却。
另外,有效烧制条件可包括在1240至1350℃(优选1270至1330℃)范围的第一均热温度下加热生坯体,保持第一均热温度2至10小时(优选4至8小时),然后在1270至1450℃(优选1300-1350℃)范围的第二均热温度下加热生胚体,并保持第二均热温度2至10小时(优选4至8小时),同样之后以足以不对烧结制品造成热冲击的速度冷却。
为了获得壁流过滤器,如本领域已知的,对蜂窝体结构的一部分小室在进口端或面进行堵塞。只在小室的端部进行堵塞,堵塞深度通常约为1-20毫米,但是可以改变堵塞深度。一部分的小室在出口端堵塞,但这些小室不对应于在进口端堵塞的那些小室。因此,每个小室仅在一端堵塞。优选的排列方式是在指定表面以棋盘模式每隔一个小室进行堵塞。
可参考由本发明人中的至少一位制备并在前述美国专利申请12/305,767中所示的MgO-Al2O3-TiO2-SiO2***的相平衡图得到对本发明根本发现的更深入理解。当然会认为在这种图中包含的相区(phase field)之间的许多边界代表平衡计算和外推的结果而不是实际相分析的结果。虽然已经由实验确认相区本身,代表相区之间边界的精确温度和组成是近似的。在任何情况中,图1的相图显示稳定的相组合沿钛酸铝(Al2TiO5)和堇青石(Mg2Al4Si5O18)之间的伪二元接合点随温度和组成的变化。基本上,该图表示高温下堇青石和AT的混合物会倾向于形成其他相,包括多铝红柱石、二氧化钛、液体、和具有铁板钛矿晶体结构的固溶体相。
可由对该图的研究衍生出两个显著的特征。首先,为了铁板钛矿相与堇青石处于平衡状态,对固溶体的组成有一般的限制,具体地,纯AT会倾向于不与堇青石处于平衡状态。使用FactsageTM(由Thermfact和GTT-Technologies公司供应)计算的图2A和2B描述了1325℃下四元MgO-Al2O3-TiO2-SiO2***内具有二钛酸镁、钛酸铝和堇青石的端点的三元剖面中的相关系,显示在该温度下与堇青石C处于平衡中的铁板钛矿相PB含至少约25重量%的二钛酸镁。图2A显示了表示1325℃下的铁板钛矿PB、堇青石C、多铝红柱石M、假蓝宝石Sap、二氧化钛T和液相关系的堇青石-铁板钛矿相图。图2B显示了表示1325℃下的铁板钛矿PB、堇青石C、多铝红柱石M、假蓝宝石Sap、二氧化钛T和液相关系的具有10重量%多铝红柱石的堇青石-铁板钛矿相图。
第二,图1显示了液体在相当低的温度(约1390℃,该***中的最低共熔液体在远低于该温度下存在)下出现在图中。
实施例
以下将参照关于本发明的某些示例性和具体实施方式进一步描述本发明的示例性实施方式,这些实施方式仅仅是说明性的,不用来构成限制。根据一些实施例,制备一系列的具有通用无机批料组合物的本发明的陶瓷制品,如表1所提供,以端元相的重量百分比表示,并且如表2所提供,以单一组分氧化物的重量百分比表示,排除任何烧结添加剂。
表1
表2
表3-5提供了按照表1和表2的通用组成制备的复合钛酸铝-二钛酸镁堇青石实施例的数据。所列的是用于制备样品的原料、成孔剂和烧结助剂(括号内为中值粒径)。已通过研磨组分粉末和水以及有机粘合剂,之后挤出、干燥并烧制来制备提供的实施例。所有挤出的样品用箔包裹并经热空气干燥。随后通过在电加热窑中以60℃/小时加热至第一均热温度并保持6小时,然后以60℃/小时加热至第二均热温度并另外保持6小时来烧制样品。在表3-5中也提供了均热温度。下面会进一步描述这些实施例。除非另有说明,所有的测量都在具有200小室/平方英寸和406μm(16密耳)壁厚度的蜂窝片上进行。除非另有说明,所有的样品都在电炉中在空气中烧制。通过膨胀测定法与蜂窝体通道平行测量CTE。孔隙率和孔径分布获自汞孔隙率测定。
表3-5中也提供了“1000℃的最大△L”,其定义为:将由于热膨胀试样从室温被加热至1000℃的热膨胀而获得的1000℃的△L/L值减去在热膨胀试样从1000℃冷却至△L/L的最小值存在的较低温度期间出现的△L/L的最小值。1000℃的最大△L的值在表3-5中表示为百分比值;因此,例如,1000℃时0.15%的最大△L等于0.15×10-2的△L值,其也等于1500ppm,或1500×10-6英寸/英寸。1000℃时的最大△L值是加热和冷却期间热膨胀曲线(△L/L对于温度)之间的滞后程度的测量值。
除了表3-5中的性质数据测量以外,进行了几项专门测量以表征钛酸铝-二钛酸镁和堇青石复合材料的热稳定性,并且测定其用作柴油机颗粒过滤器时的压降表现。
热稳定性(分解速度)通过两种方法来评估。在第一种方法中,将钛酸铝-二钛酸镁和堇青石复合材料以及对照的钛酸铝组合物的试样保持在1100℃下并且在长达100小时的时间内监测它们的长度。铁板钛矿相的分解伴随着体积减小(收缩,或长度负变化)。图3所示的结果证明了钛酸铝-二钛酸镁和堇青石复合材料的优越稳定性,其铁板钛矿相的分解速度至多是对照钛酸铝组合物的十分之一。在评价分解速度的第二种方法中,在将样品在950至1250℃的温度下等温保持100小时之前和之后,测量钛酸铝-二钛酸镁和堇青石复合材料以及对照钛酸铝组合物的CTE。由于铁板钛矿相的分解减少了微裂的量,使CTE升高,热处理后CTE的增加是分解程度的指标。图4显示了结果,并证明钛酸铝-二钛酸镁和堇青石复合体的改善的热稳定性。
在裸和催化过滤器上测量由代表性复合堇青石和钛酸铝-二钛酸镁陶瓷以及钛酸铝对照陶瓷形成的干净的和烟炱负荷的过滤器的压降。复合堇青石和钛酸铝-二钛酸镁陶瓷过滤器的孔道几何参数是300/12。在常规初步聚合物溶液钝化之后,使用用于涂层的AL-20胶态氧化铝进行涂层涂覆。这种压降测试的代表性结果示于图5,其中发现复合堇青石和钛酸铝-二钛酸镁陶瓷经涂层涂覆后的压降的增加%低于对照钛酸铝过滤器。由此测试的涂层涂覆的过滤器的微结构示于图6。
表3至表5中的数据还说明了本发明的复合堇青石和钛酸铝-二钛酸镁陶瓷体所能达到的性质的一些示例性范围。表3中的实施例1-7表示不含烧结添加剂的基线四元三相组合物(表1和表2)。这些实施例显示可用对于柴油机颗粒过滤器应用合适的孔隙率(44-52%)和中值孔径(15-27μm)实现低热膨胀(6至20×10-7/℃)。df值的范围是0.24至0.45。这些组合物的最优最高烧结温度为大约1355至1360℃。实施例4-7中使用的更大的氧化铝产生更高的孔径和更低的烧制收缩。
表4中的实施例8-15显示了向实施例1-3中的基本组合物中加入约2重量%的Y2O3获得更低的1290-1320℃的烧制温度,以及具有高孔隙率(41-50%)和低热膨胀(10至14×10-7/℃)的更宽的烧制温度范围。中值孔径是16至22μm,并且df值降至0.17至0.31。收缩随烧制温度的变化也更低。这使得能用更宽的加工窗来达到所需的性质。最优烧制温度为约1310℃。
表5中的实施例16-22证明向实施例1-3的基本组合物中加入仅约1%的Y2O3追加添加物将烧制温度降至1310-1350℃,并且最优为约1320℃。较低水平的添加剂产生在基本四元组合物和2重量%添加剂之间的烧制温度和烧制加工窗。柴油机颗粒过滤器应用的物理性质仍然出色。
实施例23-39和50-56证明了与仅用氧化钇相比,使用氧化铈,氧化铈和氧化钇的混合物,氧化铈、氧化钇和氧化镧的混合物,氧化铈和氧化镧的混合物,或氧化镧的烧结助剂以更低的稀土成本产生相似的CTE、孔隙率、孔径和孔径分布。
表3
表4
表5
表6中的实施例23-26和表13中的实施例41-49包含氧化钇作为烧结助剂。表6中的实施例27-30和表13中的实施例50-55包含氧化铈。表6中的实施例31和32同时含有氧化钇和氧化铈。表10中的实施例38和39与表13中的实施例56包含氧化镧作为烧结助剂。表10中的实施例40不含额外烧结助剂。这些实施例的制剂示于表6、10和13。实施例23-32都使用4%石墨和22%淀粉(作为追加添加物加入表6中的无机材料中),并且将4.5%的甲基纤维素和1%的妥尔油作为追加添加物加到所有其他批料组分中。这些实施例与去离子水混合,挤出成具有300小室/平方英寸和330μm(13密耳)壁厚度的蜂窝结构,干燥并在气烧制窑中烧至1350℃,持续16小时。实施例23-32的烧制工件的性质以及添加剂基于对1%Y2O3成本标准化的现有市价的相对成本估计示于表6。
表7列出了稀土材料的一些代表性价格,它至少比所有其它批料材料高10倍。
图7显示了表6的比较例23-26和实施例27-32的热膨胀系数(CTE)随相对稀土成本(1%Y2O3=1)的变化。如表7所示,氧化铈或氧化钇和氧化铈的混合物实现低于给定值,例如低于12×10-7/℃的CTE的成本低于单独的氧化钇,同时保留相似的孔径、孔隙率和孔径分布(表6)。使用这种陶瓷可能降低至少50%的稀土成本。
这些较低成本的组合物显示与较高成本的组合物相似的随烧制温度的性质稳定性。表8显示了在电加热窑中以1320、1330、1340、1350和1360℃的温度烧制12小时后,实施例24、25、28和32的性质。通过阿基米德法测量孔隙率(Arch孔隙率)。
表6
表6(续)
表7
表8
实施例33-40和57-68通过干式共混大量表9所示的组合物批料和添加表10所示的添加剂并再次干式共混来制备。在模具中压制各批料的粉末以在烧制前形成8×8×65mm的条。表11至表16提供根据表9和表10的通用组成制造的本发明的实施例的数据。提供的数据参数示于上述表3-5。
表11中的实施例33和34使用氧化铈作为烧结助剂。表11中所示的实施例35-39使用氧化镧(La2O3)或La2O3与氧化铈的混合物。表10中的比较例40使用不含烧结助剂添加剂的批料组合物。在电加热窑中1330℃烧制12小时后的实施例33-39的性质示于表11。这些结果与单独的CeO2或Y2O3相似,但是热膨胀系数比单独的CeO2或Y2O3高约3×10-7/℃。
表15显示实施例33和40的性质随着16小时保持时间内的烧制温度而变化,其显示CeO2提供了宽的烧制窗。
为了进一步降低成本,可使用CaO、SrO以及CaO和/或SrO与CeO2的混合物来实现与氧化钇和/或氧化钇与单独镧系氧化物相比可接受的孔隙率、孔径分布、CTE值和烧制窗性质,以及与氧化钇和/或单独镧系氧化物相比较低的相对稀土成本。在电加热窑中1330℃烧结12小时后的实施例57-61的性质示于表12。实施例69-72的性质示于表14。当与表11中的实施例33相比时,实施例58-61和69-72显示可向这一类组合物中加入CaO以实现与用CeO2或Y2O3所达到的相似的孔隙率、孔径和孔径分布,和与之相比高4-5×10-7/℃的热膨胀系数(具有不到十分之一的添加剂成本百分比)。
表10所示的实施例62-66使用SrO或SrO与氧化铈的混合物作为烧结助剂。在电加热窑中1330℃烧结12小时后的实施例62-66的性质示于表12。这些结果与以CaO作为烧结助剂相似,但是具有比单独CeO2高5-7x10-7/℃的热膨胀系数。然而,使用SrO的成本是使用Y2O3的相对成本的约0.1%。
表16显示了在1310、1320、1330、1340、1350和1360℃烧制16小时后实施例60、61、65和66的性质。表16显示实施例60、61、65和66的性质随着16小时保持时间内的烧制温度的变化,其显示CaO和SrO提供了宽的烧制窗。
在目前为止所述的复合钛酸铝-二钛酸镁和堇青石的示例性实施方式中,加入CaO和SrO作为烧结助剂与CeO2添加物相比似乎产生更高的热膨胀系数(CTE)。发明人发现在烧制后,将含CaO和SrO添加物的组合物再加热至低于初始烧制温度但是高于烧制后(post-fire)阈值温度的温度,产生较低的热膨胀系数(CTE)。表17中显示了观察到的热膨胀系数降低。发明人发现烧制后阈值温度为约1000℃并且该温度是时间依赖性的。表17显示了在所示的热处理变化之后,相对于烧至相同最高温度和时间(1330℃下持续12小时)但是直接以200℃/小时的恒定速度冷却至室温的相同组合物,实施例33、61和65从室温(RT)到1000℃的CTE变化,其中RT为约23至25℃。
进行了对所述复合钛酸铝-二钛酸镁和堇青石组合物的示例性实施方式的进一步测试。通过探索时间和温度的范围进一步确定降低CTE的热处理的范围。图8显示了时间-温度(t-T)图80的示例性实施方式的示意图,其中图示说明了最高(第一次保持)温度82、低(第二次保持)温84和中间(第三次保持)温度86。最高(第一次保持)温度82处的时间是第一保持时间t1,低(第二次保持)温84处的时间是第二保持时间t2,且中间(第三次保持)温度86处的时间是第三保持时间t3。按照图8所示的示例性实施方式,最高温度82为T1,低温84为T2,并且中间温度86为T3。T3超过阈值温度(未显示)并低于T1。阈值温度(未显示)是低于T1并高于T2的温度。
表18用低温和中间温度84和86以及时间(t)的范围显示了实施例33和61的CTE数据。表19显示了实施例34、60、61、67和68在烧至1320℃持续16小时之后的性质以及在再加热至1250℃/小时之后的CTE。表17、18和19的时间-温度数据显示,时间和低温84都对最终CTE有影响。示例性实施方式的复合钛酸铝-二钛酸镁和堇青石材料组合物应冷却至低于约400℃以得到烧制后热处理的显著影响。表17和表18的时间-温度数据也显示在中间温度86下低至2小时的时间可从刚烧制的值显著降低CTE。
例如,低温84的范围可以是25℃至500℃,低温84的时间t2的范围可以是1小时至48小时,中间温度86的范围可以是850℃至1350℃,并且中间温度86的时间t3的范围可以是1小时至24小时。最高温度可以是1250℃至1450℃,例如,1330℃至1380℃,并且均热时间t1的范围可以是2至24小时。
表20包括实施例53、54、57和58的用X射线衍射(XRD)测定的以重量%表示的分析的相和铁板钛矿组成。这些分析的样品都在1365℃烧制。由XRD测定的铁板钛矿相的晶格参数确定铁板钛矿组成。由对XRD图的Rietveld精修来确定相分布。
对本领域技术人员而言显而易见的是,可以在不偏离本发明的精神或范围的情况下对本发明进行各种修改和变动。因此,本发明应涵盖对本发明的这些修改和变动,只要这些修改和变动在所附权利要求及其等同方案的范围之内。
表9
表10
表11
表12
表12(续)
表13
表13(续)
表14
表15
表15(续)
表16
表16(续)
表16(续)
表16(续)
表17
表18
表19
表20

Claims (27)

1.一种包含第一晶体相和第二晶体相的陶瓷制品,所述第一晶体相主要包含钛酸铝和二钛酸镁的固溶体,所述第二晶体相包含堇青石,以氧化物为基准的重量%表示,所述陶瓷制品的组成如下:4-10%MgO;40-55%Al2O3;25-44%TiO2;5-25%SiO2和烧结助剂,所述烧结助剂包含(i)含量为0.1至2.0重量%的氧化锶,以及(ii)氧化钇、氧化镧和氧化铈中的至少一种,
其中,所述陶瓷制品包括:
总孔隙率大于40体积%;
中值孔径d50的范围是10μm至30μm;
df小于0.50;以及
热膨胀系数,在25℃至1000℃测定为小于或等于25.0×10-7/℃。
2.如权利要求1所述的陶瓷制品,其特征在于,所述烧结助剂还包含氧化铈。
3.如权利要求1或2所述的陶瓷制品,其特征在于,所述烧结助剂还包括氧化钇和氧化镧中的至少一种。
4.如权利要求1所述的陶瓷制品,其以氧化物为基准表示的组成如下:a(Al2TiO5)+b(MgTi2O5)+c(2MgO·2Al2O3·5SiO2)+d(3Al2O3·2SiO2)+e(MgO·Al2O3)+f(2MgO·TiO2)+g(CaO)+h(SrO)+i(X)+j(Fe2O3·TiO2)+k(TiO2)+l(Al2O3),其中X是CeO2、Y2O3和La2O3中的至少一种,并且a、b、c、d、e、f、g、h、i、j、k和l是各组分的重量分数,使得(a+b+c+d+e+f+g+h+i+j+k+l)=1.00,并且其中0.3≤a≤0.75,0.075≤b≤0.3,0.02≤c≤0.5,0.0≤d≤0.4,0.0≤e≤0.25,0.0≤f≤0.1,0.0015≤g≤0.01,0.001≤h≤0.02,0.0015≤(g+h),0.0≤i≤0.05,0.0≤j≤0.05,0.0≤k≤0.2,并且0.0≤l≤0.1。
5.如权利要求4所述的陶瓷制品,其特征在于,0.0025≤g≤0.0075。
6.如权利要求4所述的陶瓷制品,其特征在于,0.005≤h≤0.015。
7.如权利要求4-6中任一项所述的陶瓷制品,其特征在于,所述烧结助剂还包含氧化铈。
8.如权利要求1所述的陶瓷制品,其特征在于,所述烧结助剂包含钙。
9.如权利要求1所述的陶瓷制品,其特征在于,所述陶瓷制品在25-1000℃范围内测得的热膨胀系数小于或等于14×10-7/℃。
10.如权利要求1所述的陶瓷制品,其特征在于,相对于无机批料组合物的总重量,以氧化物为基准的重量%计,所述烧结助剂的量的范围是0.15至2重量%。
11.如权利要求1所述的陶瓷制品,其特征在于,以氧化物为基准的重量%表示的组成如下:5%至10%MgO、40%至50%Al2O3、30%至35%TiO2、和10%至20%SiO2
12.如权利要求1所述的陶瓷制品,其特征在于,所述陶瓷制品的中值孔径d50的范围是15μm至25μm。
13.一种柴油机微粒过滤器,其包括如权利要求1所述的陶瓷制品,其特征在于,所述柴油机微粒过滤器包含蜂窝体结构,该蜂窝体结构具有多个轴向延伸的端部堵塞的进口室和出口室。
14.一种陶瓷制品,其包括:
铁板钛矿相,其主要包含氧化铝、氧化镁和二氧化钛;
包含堇青石的第二相;和
烧结助剂,其包括(i)含量为0.1至2.0重量%的氧化锶,以及(ii)氧化钇、氧化镧和氧化铈中的至少一种,
其中,所述陶瓷制品包括:
总孔隙率大于40体积%;
中值孔径d50的范围是10μm至30μm;
df小于0.50;以及
热膨胀系数,在25℃至1000℃测定为小于或等于25.0×10-7/℃。
15.如权利要求14所述的陶瓷制品,其特征在于,所述陶瓷制品还包含镧系氧化物和氧化钇中的至少一种。
16.如权利要求15所述的陶瓷制品,包含氧化铈。
17.如权利要求14所述的陶瓷制品,其特征在于,所述烧结助剂包含钙。
18.一种制造陶瓷制品的方法,所述方法包括:
提供包含氧化镁源、二氧化硅源、氧化铝源、二氧化钛源和至少一种烧结助剂的无机批料组合物;
将所述无机批料组合物与一种或多种加工助剂混合到一起以形成增塑的陶瓷前体批料组合物,所述加工助剂选自下组:增塑剂、润滑剂、粘合剂、成孔剂和溶剂;
将所述增塑的陶瓷前体批料组合物成形为生坯体;并且
在将所述生坯体有效地转化成陶瓷制品的条件下烧制所述生坯体,所述陶瓷制品包含铁板钛矿相和第二相,所述铁板钛矿相主要包含氧化铝、氧化镁和二氧化钛,且所述第二相包含堇青石,
其中所述烧结助剂包含(i)含量为0.1至2.0重量%的氧化锶,以及(ii)氧化钇、氧化镧和氧化铈中的至少一种,
其中,所述陶瓷制品包括:
总孔隙率大于40体积%;
中值孔径d50的范围是10μm至30μm;
df小于0.50;以及
热膨胀系数,在25℃至1000℃测定为小于或等于25.0×10-7/℃。
19.如权利要求18所述的方法,其特征在于,所述烧结助剂还包含镧系氧化物和氧化钇中的至少一种。
20.如权利要求19所述的方法,其特征在于,所述镧系氧化物包含氧化铈。
21.如权利要求18所述的方法,其特征在于,所述烧结助剂包含钙。
22.如权利要求18-21中任一项所述的方法,其特征在于,相对于所述无机批料组合物的总重量,以氧化物为基准的重量%计,所述至少一种烧结助剂的量的范围是0.15至2重量%。
23.如权利要求22所述的方法,其特征在于,通过挤出使所述增塑的陶瓷前体批料组合物成形。
24.如权利要求18所述的方法,其特征在于,将所述生坯体有效地转化成陶瓷制品的烧制条件包括在1250℃至1450℃范围的第一保持温度下加热所述生坯体,并且将所述第一保持温度保持第一保持时间,所述第一保持时间足够将所述生坯体转化成陶瓷制品。
25.如权利要求24所述的方法,其特征在于,所述第一保持温度的范围是1330℃至1380℃,并且所述第一保持时间的范围是2至24小时。
26.如权利要求24所述的方法,其特征在于,所述烧制条件还包括:
将烧制的陶瓷体冷却至第二保持温度并保持第二保持时间,所述第二保持温度低于所述第一保持温度;
将所述陶瓷体加热至第三保持温度并保持第三保持时间,所述第三保持温度高于阈值温度并低于所述第一保持温度,其中所述第三保持温度高于所述第二保持温度;并且
将所述陶瓷体冷却至室温(RT)。
27.如权利要求26所述的方法,其特征在于,所述第二保持温度的范围是25℃至500℃,所述第二保持时间的范围是1小时至48小时,所述第三保持温度的范围是850℃至1350℃,并且所述第三保持时间的范围是1小时至24小时。
CN201380071634.XA 2012-11-30 2013-11-25 堇青石铝镁酞酸盐组合物及包含该组合物的陶瓷制品 Active CN105283429B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/690,096 2012-11-30
US13/690,096 US9079799B2 (en) 2012-11-30 2012-11-30 Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
PCT/US2013/071665 WO2014085320A1 (en) 2012-11-30 2013-11-25 Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same

Publications (2)

Publication Number Publication Date
CN105283429A CN105283429A (zh) 2016-01-27
CN105283429B true CN105283429B (zh) 2018-07-03

Family

ID=49724698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380071634.XA Active CN105283429B (zh) 2012-11-30 2013-11-25 堇青石铝镁酞酸盐组合物及包含该组合物的陶瓷制品

Country Status (5)

Country Link
US (1) US9079799B2 (zh)
EP (1) EP2925702B1 (zh)
JP (1) JP6263198B2 (zh)
CN (1) CN105283429B (zh)
WO (1) WO2014085320A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10501375B2 (en) 2006-06-30 2019-12-10 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US8956436B2 (en) 2006-06-30 2015-02-17 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US10526249B2 (en) * 2012-11-30 2020-01-07 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US9868670B2 (en) 2014-09-05 2018-01-16 Corning Incorporated High cordierite-to-mullite ratio cordierite-mullite-aluminum magnesium titanate compositions and ceramic articles comprising same
WO2015042499A2 (en) * 2013-09-23 2015-03-26 Corning Incorporated High cordierite-to-mullite ratio cordierite-mullite-aluminum magnesium titanate compositions and ceramic articles comprising same
EP3468940B1 (en) * 2016-06-13 2023-07-26 Corning Incorporated Aluminum titanate compositions and methods of making aluminum titanate articles
MX2019005471A (es) 2016-11-10 2019-10-02 Corning Inc Materiales ceramicos compuestos, articulos y metodo de fabricacion.
US11891339B2 (en) 2018-08-31 2024-02-06 Corning Incorporated Cordierite-indialite-pseudobrookite structured ceramic bodies, batch composition mixtures, and methods of manufacturing ceramic bodies therefrom
EP3880342B1 (en) * 2018-11-16 2024-06-12 Corning Incorporated Cordierite-containing ceramic bodies, batch composition mixtures, and methods of manufacturing cordierite-containing ceramic bodies
CN110885237B (zh) * 2019-12-08 2022-02-01 浙江理工大学 一种低温烧结氧化铝陶瓷支撑体的制备方法
WO2022026236A1 (en) 2020-07-30 2022-02-03 Corning Incorporated Aluminum titanate-feldspar ceramic bodies, batch mixtures, and methods of manufacture
US11731907B2 (en) 2020-08-04 2023-08-22 Applied Materials, Inc. Ceramic material with high thermal shock resistance and high erosion resistance
CN112723903A (zh) * 2020-12-31 2021-04-30 松山湖材料实验室 钛酸铝-莫来石复合陶瓷及其制备方法、多孔介质燃烧器及陶瓷过滤器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124029A (zh) * 2004-07-29 2008-02-13 康宁股份有限公司 窄孔径分布的钛酸铝体及其制备方法
CN101479213A (zh) * 2006-06-30 2009-07-08 康宁股份有限公司 堇青石铝镁钛酸盐组合物及包含该组合物的陶瓷制品
CN101754939A (zh) * 2007-05-31 2010-06-23 康宁股份有限公司 形成钛酸铝陶瓷的批料混合物和具有成孔剂的生坯

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE557975A (zh) 1956-06-04 1957-11-30
DE1238376B (de) 1964-01-29 1967-04-06 Rosenthal Ag Temperaturwechselbestaendige keramische Stoffe
US3531307A (en) 1967-02-23 1970-09-29 Intern Pipe & Ceramics Corp Ceramic article and method for producing same
JPS5334812A (en) 1976-09-14 1978-03-31 Asahi Glass Co Ltd Aluminummtitanate bodies stable at high temperature
JPS5689844A (en) 1979-12-25 1981-07-21 Asahi Glass Co Ltd Ceramic honeycomb and its production
JPS605545B2 (ja) 1980-03-19 1985-02-12 日本碍子株式会社 低膨脹セラミックスおよびその製法
JPS573767A (en) 1980-06-04 1982-01-09 Nippon Toki Kk High temperature-stable high strength aluminium titanate sintered body
US4329162A (en) 1980-07-03 1982-05-11 Corning Glass Works Diesel particulate trap
US4304603A (en) 1980-08-11 1981-12-08 Corning Glass Works Glass-ceramic compositions designed for radomes
JPS5851908B2 (ja) 1981-02-28 1983-11-18 工業技術院長 コ−デイエライト焼結体の製法
US4483944A (en) 1983-07-27 1984-11-20 Corning Glass Works Aluminum titanate-mullite ceramic articles
JPS60141668A (ja) 1983-12-28 1985-07-26 日本碍子株式会社 セラミックハニカム構造体を接合若しくはコーティングまたは封着するためのセラミック材料組成物
JPS6221756A (ja) 1985-07-22 1987-01-30 日本碍子株式会社 チタン酸アルミニウム―ムライト系セラミック体の製造方法
DE3772061D1 (de) 1986-01-28 1991-09-19 Matsushita Electric Ind Co Ltd Verfahren zur herstellung von keramischen koerpern mit waermestossbestaendigkeit.
JPS63197551A (ja) 1987-02-12 1988-08-16 Ngk Insulators Ltd セラミツク触媒担体
JP2651170B2 (ja) 1987-12-22 1997-09-10 鐘紡株式会社 セラミツクス多孔体
US4855265A (en) 1988-04-04 1989-08-08 Corning Incorporated High temperature low thermal expansion ceramic
JPH02311360A (ja) 1989-05-26 1990-12-26 Daido Steel Co Ltd チタン酸アルミニウム焼結体
EP0463437B2 (de) 1990-06-22 1998-12-02 Bayer Ag Sinterformkörper auf Basis von Aluminiumtitanat, Verfahren zu ihrer Herstellung sowie deren Verwendung
JP2533992B2 (ja) 1991-08-28 1996-09-11 日本碍子株式会社 アルミニウムチタネ―トセラミックス及びその製造方法
JPH0640766A (ja) 1992-07-23 1994-02-15 Isuzu Ceramics Kenkyusho:Kk 高強度低熱膨張セラミックス
JPH0656551A (ja) 1992-08-06 1994-03-01 Matsushita Electric Ind Co Ltd コージライト多孔質耐熱材の製造方法
US5290739A (en) 1992-09-22 1994-03-01 Corning Incorporated High temperature stabilized mullite-aluminum titanate
CA2167991C (en) 1995-01-25 1999-12-14 Kazuhiko Kumazawa Honeycomb regenerator
US5491116A (en) 1995-04-03 1996-02-13 Corning Incorporated Fine-grained glass-ceramics
JP3096814B1 (ja) 1999-11-08 2000-10-10 勉 福田 チタン酸アルミニウム焼結体の製造方法
CN1156412C (zh) 2000-07-13 2004-07-07 胡勇波 复合材料蜂窝陶瓷及其制造方法
DE60139569D1 (de) 2000-11-06 2009-09-24 Corning Inc Katalysator zur reinigung von abgasen
JP3600933B2 (ja) 2000-11-08 2004-12-15 オーセラ株式会社 チタン酸アルミニウム系焼結体の製造方法
JP2002167268A (ja) * 2000-11-29 2002-06-11 Kyocera Corp コージェライト質焼結体とその製造方法
JP3489030B1 (ja) 2002-04-26 2004-01-19 勉 福田 チタン酸アルミニウム系焼結体の製造方法
JP4750415B2 (ja) 2002-07-31 2011-08-17 コーニング インコーポレイテッド チタン酸アルミニウムベースのセラミック製品
US6849181B2 (en) 2002-07-31 2005-02-01 Corning Incorporated Mullite-aluminum titanate diesel exhaust filter
CN100427432C (zh) 2002-11-01 2008-10-22 王世来股份有限公司 制备钛酸铝镁烧结体的方法
CN1816379B (zh) 2003-07-11 2010-11-24 王世来股份有限公司 废气净化蜂窝状过滤器及其制造方法
US8685363B2 (en) 2003-07-29 2014-04-01 Ohcera Co., Ltd. Honeycomb carrier for exhaust gas clarification catalyst and method for production thereof
ATE430616T1 (de) 2003-08-22 2009-05-15 Ohcera Co Ltd Wabenfilter zur reinigung von abgas und verfahren zu dessen herstellung
JP2005105704A (ja) 2003-09-30 2005-04-21 Daiwa House Ind Co Ltd 墜落防止開口部ステージ用のフレーム
US8557216B2 (en) 2004-04-28 2013-10-15 Ohcera Co., Ltd. Magnesium aluminum titanate crystal structure and method for producing same
US7648548B2 (en) 2006-05-10 2010-01-19 Corning Incorporated High porosity cordierite composition
US8956436B2 (en) * 2006-06-30 2015-02-17 Corning Incorporated Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
JP2010522106A (ja) * 2007-03-20 2010-07-01 コーニング インコーポレイテッド セラミック・フィルタのための低収縮率施栓用混合物、栓を施されたハニカム・フィルタおよびその製造方法
EP2030957A1 (en) * 2007-08-28 2009-03-04 Corning Incorporated Fugitive pore former for porous ceramic articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124029A (zh) * 2004-07-29 2008-02-13 康宁股份有限公司 窄孔径分布的钛酸铝体及其制备方法
CN101479213A (zh) * 2006-06-30 2009-07-08 康宁股份有限公司 堇青石铝镁钛酸盐组合物及包含该组合物的陶瓷制品
CN101754939A (zh) * 2007-05-31 2010-06-23 康宁股份有限公司 形成钛酸铝陶瓷的批料混合物和具有成孔剂的生坯

Also Published As

Publication number Publication date
JP2016500046A (ja) 2016-01-07
US9079799B2 (en) 2015-07-14
EP2925702A1 (en) 2015-10-07
JP6263198B2 (ja) 2018-01-17
US20140150389A1 (en) 2014-06-05
WO2014085320A1 (en) 2014-06-05
EP2925702B1 (en) 2022-04-27
CN105283429A (zh) 2016-01-27

Similar Documents

Publication Publication Date Title
CN105283429B (zh) 堇青石铝镁酞酸盐组合物及包含该组合物的陶瓷制品
CN102690117B (zh) 堇青石铝镁钛酸盐组合物及包含该组合物的陶瓷制品
US10450233B2 (en) Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
JP4459052B2 (ja) ムライト・チタン酸アルミニウム製ディーゼル微粒子フィルタ
US11078121B2 (en) High cordierite-to-mullite ratio cordierite-mullite-aluminum magnesium titanate compositions and ceramic articles comprising same
EP1911732B1 (en) Process for producing ceramic honeycomb structure
KR101093467B1 (ko) 배기가스 정화 허니컴 필터 및 그 제조방법
JP6469684B2 (ja) チタン酸アルミニウム組成物、それから構成されたセラミック物品、およびその製造方法
JP6275140B2 (ja) コージェライト−チタン酸アルミニウムマグネシウム組成及びこれを有するセラミック品
KR20040099329A (ko) 고온에서 사용할 수 있는 스트론튬 펠드스파 알루미늄티타네이트
JP6611707B2 (ja) コージエライト対ムライトの比率が高いコージエライト・ムライト・チタン酸アルミニウムマグネシウム組成物およびそれから構成されたセラミック物品
US10526249B2 (en) Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same
US20190322590A9 (en) Cordierite aluminum magnesium titanate compositions and ceramic articles comprising same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant