CN105185694A - 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管 - Google Patents

多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管 Download PDF

Info

Publication number
CN105185694A
CN105185694A CN201510516303.3A CN201510516303A CN105185694A CN 105185694 A CN105185694 A CN 105185694A CN 201510516303 A CN201510516303 A CN 201510516303A CN 105185694 A CN105185694 A CN 105185694A
Authority
CN
China
Prior art keywords
laser
amorphous silicon
intensity
mask plate
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510516303.3A
Other languages
English (en)
Inventor
李栋
陆小勇
张帅
刘政
龙春平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOE Technology Group Co Ltd
Original Assignee
BOE Technology Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOE Technology Group Co Ltd filed Critical BOE Technology Group Co Ltd
Priority to CN201510516303.3A priority Critical patent/CN105185694A/zh
Publication of CN105185694A publication Critical patent/CN105185694A/zh
Priority to PCT/CN2016/078561 priority patent/WO2017028543A1/en
Priority to US15/305,588 priority patent/US20170186611A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0988Diaphragms, spatial filters, masks for removing or filtering a part of the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • H01L21/0268Shape of mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/7866Non-monocrystalline silicon transistors
    • H01L29/78672Polycrystalline or microcrystalline silicon transistor
    • H01L29/78675Polycrystalline or microcrystalline silicon transistor with normal-type structure, e.g. with top gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明是关于一种多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管,属于激光技术领域。所述方法包括:在基板上形成非晶硅薄膜;使非晶硅薄膜被不同强度的激光照射以进行激光退火,使非晶硅薄膜转变为多晶硅薄膜,其中,不同强度的激光中强度小于第一强度的激光在非晶硅薄膜上照射区域包括阵列排布的子区域,位于每个子区域的非晶硅薄膜在强度小于第一强度的激光照射下不完全熔融,以形成晶核。本发明通过使非晶硅薄膜被不同强度的激光照射以进行激光退火,解决了相关技术中晶界排列不规则导致的使用多晶硅薄膜制成的电子元件的电学性能较低的问题;达到了能够形成晶界排列规则的多晶硅薄膜的效果。

Description

多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管
技术领域
本发明涉及激光技术领域,特别涉及一种多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管。
背景技术
多晶硅是单质硅的一种形态。将非晶硅熔融之后并在过冷条件下凝固可以形成多晶硅。目前,多晶硅被广泛应用于形成多晶硅薄膜。
相关技术中有一种多晶硅薄膜的形成方法,在该方法中,首先在基板上形成非晶硅薄膜,再利用激光照射该非晶硅薄膜进行激光退火,该非晶硅薄膜会被激光熔融,之后冷却时会由非晶硅薄膜中的杂质作为晶核形成晶粒,最终非晶硅薄膜会转变为多晶硅薄膜。
发明人在实现本发明的过程中,发现上述方式至少存在如下缺陷:由于非晶硅薄膜中杂质分布不均匀,因而上述方法形成的多晶硅薄膜中晶核的排列不均匀,由不均匀的晶核形成的晶粒之间的界面(晶界)排列不规则,而晶界排列不规则会导致使用多晶硅薄膜制成的电子元件(如薄膜晶体管)的电学性能较低。
发明内容
为了解决相关技术中晶界排列不规则导致的使用多晶硅薄膜制成的电子元件的电学性能较低的问题,本发明提供了一种多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管。所述技术方案如下:
根据本发明的第一方面,提供一种多晶硅薄膜形成方法,所述方法包括:
在基板上形成非晶硅薄膜;
使所述非晶硅薄膜被不同强度的激光照射以进行激光退火,使所述非晶硅薄膜转变为多晶硅薄膜,其中,所述不同强度的激光中强度小于第一强度的激光在所述非晶硅薄膜上照射区域包括阵列排布的子区域,位于每个所述子区域的非晶硅薄膜在强度小于所述第一强度的激光照射下不完全熔融,以形成晶核。
可选的,所述使所述非晶硅薄膜被不同强度的激光照射以进行激光退火,使所述非晶硅薄膜转变为多晶硅薄膜,包括:
使同激光透过掩膜版得到所述不同强度的激光,其中,所述掩膜版上设置有阵列排布的聚光组件,透过所述聚光组件的激光的强度沿所述聚光组件的中心向外的方向递减,所述掩膜版上透过的激光的强度小于所述第一强度的区域为暗光区域,所述暗光区域透过的激光能够使所述非晶硅薄膜不完全熔融;
使用所述不同强度的激光照射所述非晶硅薄膜进行激光退火,使所述非晶硅薄膜转变为多晶硅薄膜。
可选的,所述在基板上形成非晶硅薄膜之前,所述方法还包括:
在所述基板上形成阻隔层,所述阻隔层用于阻止所述非晶硅薄膜与所述基板接触。
根据本发明的第二方面,提供一种掩膜版,所述掩膜版上设置有阵列排布的聚光组件,用于使激光透过所述掩膜版得到不同强度的激光;
所述不同强度的激光中强度小于第一强度的激光的分布区域包括阵列排布的子区域。
可选的,所述聚光组件呈矩阵状排布,激光透过所述掩膜版照射非晶硅薄膜能够形成矩形的晶粒。
可选的,所述聚光组件呈交叉错位阵列排布,激光透过所述掩膜版照射非晶硅薄膜能够形成六边形的晶粒。
可选的,所述聚光组件为波带片。
可选的,所述聚光组件为凸透镜。
可选的,所述聚光组件为四边形聚光组件,所述四边形聚光组件呈圆形聚光。
可选的,述聚光组件为四边形聚光组件,所述四边形聚光组件呈四边形聚光。
根据本发明的第三方面,提供一种多晶硅薄膜,包括根据第一方面形成的多晶硅薄膜。
根据本发明的第四方面,提供一种薄膜晶体管,包括第三方面所述的多晶硅薄膜。
本发明实施例提供的技术方案可以包括以下有益效果:
通过使非晶硅薄膜被不同强度的激光照射以进行激光退火,其中不同强度的激光能够在非晶硅薄膜上形成阵列排布的晶核,解决了相关技术中晶界排列不规则导致的使用多晶硅薄膜制成的电子元件的电学性能较低的问题;达到了能够形成晶界排列规则的多晶硅薄膜,且使用该多晶硅薄膜的电学元件的电学性能较高的效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是本发明实施例示出的一种多晶硅薄膜形成方法的流程图;
图2-1是本发明实施例示出的另一种多晶硅薄膜形成方法的流程图;
图2-2是图2-1所示实施例中激光退火的示意图;
图3-1是本发明实施例提供的一种掩膜版的结构示意图;
图3-2是通过图3-1所示掩膜版在非晶硅薄膜上形成的晶核的示意图;
图3-3是通过图3-1所示掩膜版形成的多晶硅薄膜的示意图;
图3-4是本发明实施例提供的另一种掩膜版的结构示意图;
图3-5是通过图3-4所示掩膜版在非晶硅薄膜上形成的晶核的示意图;
图3-6是通过图3-4所示掩膜版形成的多晶硅薄膜的示意图;
图3-7是图3-6所示的多晶硅薄膜作为TFT的半导体层的示意图;
图3-8是本发明实施例提供的另一种掩膜版的结构示意图;
图3-9是本发明实施例提供的另一种掩膜版的结构示意图。
通过上述附图,已示出本发明明确的实施例,后文中将有更详细的描述。这些附图和文字描述并不是为了通过任何方式限制本发明构思的范围,而是通过参考特定实施例为本领域技术人员说明本发明的概念。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是本发明实施例示出的一种多晶硅薄膜形成方法的流程图。该多晶硅薄膜形成方法可以包括如下几个步骤:
步骤101,在基板上形成非晶硅薄膜。
步骤102,使非晶硅薄膜被不同强度的激光照射以进行激光退火,使非晶硅薄膜转变为多晶硅薄膜,其中,不同强度的激光中强度小于第一强度的激光在非晶硅薄膜上照射区域包括阵列排布的子区域,位于每个子区域的非晶硅薄膜在强度小于第一强度的激光照射下不完全熔融,以形成晶核。
综上所述,本发明实施例提供的多晶硅薄膜形成方法,通过使非晶硅薄膜被不同强度的激光照射以进行激光退火,其中不同强度的激光能够在非晶硅薄膜上形成阵列排布的晶核,解决了相关技术中晶界排列不规则导致的使用多晶硅薄膜制成的电子元件的电学性能较低的问题;达到了能够形成晶界排列规则的多晶硅薄膜,且使用该多晶硅薄膜的电学元件的电学性能较高的效果。
图2-1是本发明实施例示出的另一种多晶硅薄膜形成方法的流程图。该多晶硅薄膜形成方法可以包括如下几个步骤:
步骤201,在基板上形成阻隔层,阻隔层用于阻止非晶硅薄膜与基板接触。
在通过本发明实施例提供的方法形成多晶硅薄膜时,可以首先在基板上形成阻隔层,该阻隔层可以用于阻止非晶硅薄膜与基板接触,该阻隔层可以用不与熔融状态的非晶硅薄膜反应的材质构成。
由于后续步骤中熔融状态的非晶硅薄膜可能会与基板产生反应,这会对基板产生损伤,且会使之后得到的多晶硅薄膜中产生较多的杂质。因而该阻隔层能够起到保护非晶硅薄膜和基板的作用。此外,阻隔层还能够保持熔融状态的非晶硅薄膜的温度,以避免熔融状态的非晶硅薄膜冷却速度过快而造成晶粒过小,而晶粒过小会对使用非晶硅薄膜制成的电学元件的电学性能产生负面影响。
步骤202,在形成有阻隔层的基板上形成非晶硅薄膜。
在基板上形成阻隔层之后,可以在形成有阻隔层的基板上形成非晶硅薄膜。示例性的,可以通过PECVD(等离子增强化学气相沉积,PlasmaEnhancedChemicalVaporDeposition)法来在基板上形成非晶硅薄膜。
步骤203,使激光透过掩膜版得到不同强度的激光。
在形成有阻隔层的基板上形成非晶硅薄膜之后,可以对非晶硅薄膜进行激光退火。在进行激光退火时,首先可以使激光器(能够发射激光的装置)发出的激光透过掩膜版以得到不同强度的激光。其中,掩膜版上可以设置有阵列排布的聚光组件,透过聚光组件的激光的强度沿聚光组件的中心向外的方向递减,掩膜版上透过的激光的强度小于第一强度的区域为暗光区域,暗光区域透过的激光能够使非晶硅薄膜不完全熔融。其中聚光组件可以是波带片(如菲涅尔波带片)或凸透镜,聚光组件为四边形,可以呈圆形聚光,或者聚光组件可以呈四边形聚光。
需要说明的是,强度小于第一强度的激光照射在非晶硅薄膜上时,非晶硅薄膜无法完全熔融,而强度大于第一强度的激光照射在非晶硅薄膜上时,非晶硅薄膜能够完全熔融。
还需要说明的是,激光器发射的激光在掩膜版上的同一时刻的照射区域可以为条形区域,通过改变激光的出射方向能够使该条形区域在掩膜版上扫射。此外,该条形区域不同位置的激光强度可以相同,也可以不相同,只需要保证透过掩膜版上暗光区域的激光的强度小于第一强度,透过掩膜版上除暗光区域外的其它区域的激光强度大于第一强度即可,本发明实施例对此不作出限制。
步骤204,使用不同强度的激光照射非晶硅薄膜进行激光退火,使非晶硅薄膜转变为多晶硅薄膜。
在得到不同强度激光之后,可以使用不同强度的激光照射非晶硅薄膜进行激光退火,使非晶硅薄膜转变为多晶硅薄膜。在使用不同强度的激光照射非晶硅薄膜进行激光退火时的示意图可以如图2-2所示,其中阻隔层23形成于基板24上,非晶硅薄膜22形成于阻隔层23上,激光e1透过掩膜版21形成不同强度的激光e2,并照射在非晶硅薄膜22上,非晶硅薄膜22中会形成晶核h。
激光退火技术具有使材料快速升温和冷却的特点,能够避免高温处理对衬底的损伤和长时间高温加热引起的衬底与薄膜间杂质的扩散,已经成为调整材料微观结构的重要手段。在本发明实施例中,可以使用准分子激光器来对非晶硅薄膜进行激光退火,激光退火的过程可以为:激光照射在非晶硅薄膜表面使非晶硅薄膜的温度升高,其中非晶硅薄膜上被强度小于第一强度的激光照射的区域不完全熔融,未完全熔融的非晶硅会形成晶核;除强度小于第一强度的激光照射的区域外的其它区域的非晶硅薄膜完全熔融。之后可以停止激光照射,进入冷却阶段,熔融的非晶硅薄膜会以晶核为中心开始向外生长形成晶粒,通常晶核向外生长的速度一致,因此规则排布的晶核能够形成晶界排列规则的晶粒,当熔融的非晶硅薄膜全部转变为排列规则的晶粒时,非晶硅薄膜转变为多晶硅薄膜。
需要补充说明的是,本发明实施例提供的多晶硅薄膜形成方法,通过在非晶硅薄膜与基板之间形成阻隔层,达到了保护基板与非晶硅薄膜的效果,而且避免了非晶硅薄膜冷却速度过快而造成晶粒过小的问题。
综上所述,本发明实施例提供的多晶硅薄膜形成方法,通过使非晶硅薄膜被不同强度的激光照射以进行激光退火,其中不同强度的激光能够在非晶硅薄膜上形成阵列排布的晶核,解决了相关技术中晶界排列不规则导致的使用多晶硅薄膜制成的电子元件的电学性能较低的问题;达到了能够形成晶界排列规则的多晶硅薄膜,且使用该多晶硅薄膜的电学元件的电学性能较高的效果。
图3-1是本发明实施例提供的一种掩膜版的结构示意图。图3-1是以聚光组件呈圆形聚光的示意图。
该掩膜版300上可以设置有阵列排布的聚光组件310,用于使激光透过掩膜版300得到不同强度的激光。其中不同强度的激光中强度小于第一强度的激光的分布区域包括阵列排布的子区域。
可选的,聚光组件310呈矩阵状排布,每个聚光组件310的中心处透过的激光强度将是最强的,且距离聚光组件310的中心越远,透过的激光强度就越弱。可选的,聚光组件310呈圆形聚光,中心z透过的激光的强度最弱,该激光的强度小于第一强度,无法完全熔融非晶硅,而未熔融的非晶硅会成为晶核。即中心z附近的区域为暗光区域。可以理解,聚光组件310遍布整个掩膜版,相应的在每4个相邻的聚光组件310所夹的中心z处以z为中心形成会形成下凹结构,从而也保证了中心z附近的区域光线强度小于第一强度。
示例性的,通过该掩膜版300能够在非晶硅薄膜上形成如图3-2所示的矩阵状排布的晶核h,在熔融的非晶硅薄膜冷却时会以晶核h为中心向外生长形成晶粒,通常每个晶核h向各个方向的生长速度都相同,因而晶粒之间的晶界为相邻的晶核h之间连线的垂直平分线,在非晶硅薄膜转变为多晶硅薄膜后,多晶硅薄膜的结构可以如图3-3所示,其中每个晶粒l都为矩形。
需要说明的是,在进行激光退火时,强度小于第一强度的激光照射在非晶硅薄膜上时,非晶硅薄膜无法完全熔融,而强度大于第一强度的激光照射在非晶硅薄膜上时,非晶硅薄膜能够完全熔融。
可选的,如图3-4所示,其为本发明实施例提供的另一种掩膜版的结构示意图。在图3-4中,聚光组件呈交叉错位阵列排布,其中每4个相邻的聚光组件310所夹的中心z透过的激光的强度将是最弱的,该激光的强度小于第一强度,无法熔融非晶硅,而未熔融的非晶硅会成为晶核。示例性的,通过该掩膜版300能够在非晶硅薄膜上形成如图3-5所示的交叉错位阵列排布的晶核h,在熔融的非晶硅薄膜冷却时会以晶核h为中心向外生长形成晶粒,且晶粒之间的晶界为相邻的晶核h之间连线的垂直平分线,在非晶硅薄膜转变为多晶硅薄膜后,多晶硅薄膜的结构可以如图3-6所示,其中每个晶粒l都为六边形。
需要说明的是,六边形的晶粒的空间对称性较高,在利用六边形晶粒的多晶硅薄膜形成TFT(Thin-filmtransistor,薄膜晶体管)中的半导体层时,如图3-7所示,在源极s和漏极d之间形成的沟道g为弯曲的沟道时,六边形的晶粒能够提高沟道各处的均匀性(如晶核的数量或晶界的数量),而半导体层的电学性能也会相应的提高。
可选的,聚光组件还可以呈四边形,四边形聚光组件形成的掩膜版可以如图3-8所示,图3-8中聚光组件310为四边形,具体为矩形,相应的,聚光组件310遍布整个掩膜版。聚光组件310的中心x为矩形对角线的交点,在每一个聚光组件310中,透过的激光强度沿中心x向外的方向递减,这样4个相邻的矩形拼接而成的大矩形的中心z为一个下凹结构,透过的激光强度将是最弱的,即中心z附近的区域为暗光区域,中心z附近的区域透过的激光强度无法使非晶硅薄膜完全熔融。通过图3-8所示掩膜版形成的多晶硅薄膜的结构可以如图3-2所示。
可选的,四边形聚光组件形成的掩膜版还可以如图3-9所示,图3-9中聚光组件为平行四边形。其中,聚光组件310的中心x为平行四边形对角线的交点。4个相邻的平行四边形拼接而成的大平行四边形的中心z透过的激光强度将是最弱的,即中心z附近的区域为暗光区域,中心z附近的区域透过的激光强度无法使非晶硅薄膜完全熔融。通过图3-9所示掩膜版形成的多晶硅薄膜的结构可以如图3-5所示。需要说明的是,聚光组件还可以是其它可能的形状,本发明实施例不作出限制。
可选的,聚光组件为波带片(如菲涅尔波带片)或凸透镜,波带片和凸透镜都能够起到聚光的作用,使聚光组件透过的激光的强度更大,此外,波带片和凸透镜的参数可以根据情况进行调整,以满足对激光强度的需求。
需要说明的是,虽然激光透过本发明实施例提供的掩膜版进行激光退火生成的多晶硅薄膜中会存在非晶硅的晶核,但是该非晶硅晶核通常只会存在于薄膜靠近基板的一侧(这一侧距离掩膜版较远,激光强度较弱),而将该多晶硅薄膜作为TFT中的半导体层时,沟道通常形成于多晶硅薄膜远离基板的一侧,因而非晶硅晶核并不会影响多晶硅薄膜的电学性能。
需要补充说明的是,本发明实施例提供的掩膜版,通过设置阵列排布的聚光组件,使透过掩膜版的激光能够在非晶硅薄膜上形成阵列排布的晶核,最终形成晶界规则排布的晶粒,而晶界规则排布能够提高多晶硅薄膜各处的载流子迁移率和阈值电压的均匀性,即晶界规则排布提高了多晶硅薄膜的电学性能。
需要补充说明的是,本发明实施例提供的掩膜版,通过将聚光组件呈交叉错位阵列排布,使激光透过该掩膜版照射非晶硅薄膜能够形成六边形的晶粒,达到了提高多晶硅薄膜制成的TFT的电学性能的效果。
综上所述,本发明实施例提供的掩膜版,使透过该掩膜版的激光能够在非晶硅薄膜上形成阵列排布的晶核,解决了相关技术中晶界排列不规则导致的使用多晶硅薄膜制成的电子元件的电学性能较低的问题;达到了能够形成晶界排列规则的多晶硅薄膜,且使用该多晶硅薄膜的电学元件的电学性能较高的效果。
本发明实施例还提供一种多晶硅薄膜,包括根据图1或图2所示实施例形成的多晶硅薄膜。
本发明实施例还提供一种薄膜晶体管,包括图3-3或图3-6所示的多晶硅薄膜。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

1.一种多晶硅薄膜形成方法,其特征在于,所述方法包括:
在基板上形成非晶硅薄膜;
使所述非晶硅薄膜被不同强度的激光照射以进行激光退火,使所述非晶硅薄膜转变为多晶硅薄膜,其中,所述不同强度的激光中强度小于第一强度的激光在所述非晶硅薄膜上照射区域包括阵列排布的子区域,位于每个所述子区域的非晶硅薄膜在强度小于所述第一强度的激光照射下不完全熔融,以形成晶核。
2.根据权利要求1所述方法,其特征在于,所述使所述非晶硅薄膜被不同强度的激光照射以进行激光退火,使所述非晶硅薄膜转变为多晶硅薄膜,包括:
使激光透过掩膜版得到所述不同强度的激光,其中,所述掩膜版上设置有阵列排布的聚光组件,透过所述聚光组件的激光的强度沿所述聚光组件的中心向外的方向递减,所述掩膜版上透过的激光的强度小于所述第一强度的区域为暗光区域,所述暗光区域透过的激光能够使所述非晶硅薄膜不完全熔融;
使用所述不同强度的激光照射所述非晶硅薄膜进行激光退火,使所述非晶硅薄膜转变为多晶硅薄膜。
3.根据权利要求1或2所述的方法,其特征在于,所述在基板上形成非晶硅薄膜之前,所述方法还包括:
在所述基板上形成阻隔层,所述阻隔层用于阻止所述非晶硅薄膜与所述基板接触。
4.一种掩膜版,其特征在于,所述掩膜版上设置有阵列排布的聚光组件,用于使同一强度的激光透过所述掩膜版得到不同强度的激光;
所述不同强度的激光中强度小于第一强度的激光的分布区域包括阵列排布的子区域。
5.根据权利要求4所述的掩膜版,其特征在于,
所述聚光组件呈矩阵状排布,激光透过所述掩膜版照射非晶硅薄膜能够形成矩形的晶粒。
6.根据权利要求4所述的掩膜版,其特征在于,
所述聚光组件呈交叉错位阵列排布,激光透过所述掩膜版照射非晶硅薄膜能够形成六边形的晶粒。
7.根据权利要求4至6任一所述的掩膜版,其特征在于,
所述聚光组件为波带片。
8.根据权利要求4至6任一所述的掩膜版,其特征在于,
所述聚光组件为凸透镜。
9.根据权利要求4至6任一所述的掩膜版,其特征在于,
所述聚光组件为四边形聚光组件,所述四边形聚光组件呈圆形聚光。
10.根据权利要求4至6任一所述的掩膜版,其特征在于,
所述聚光组件为四边形聚光组件,所述四边形聚光组件呈四边形聚光。
11.一种多晶硅薄膜,其特征在于,包括根据权利要求1至3任一权利要求形成的多晶硅薄膜。
12.一种薄膜晶体管,其特征在于,包括权利要求11所述的多晶硅薄膜。
CN201510516303.3A 2015-08-20 2015-08-20 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管 Pending CN105185694A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510516303.3A CN105185694A (zh) 2015-08-20 2015-08-20 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管
PCT/CN2016/078561 WO2017028543A1 (en) 2015-08-20 2016-04-06 Polycrystalline silicon thin film and method thereof, optical film, and thin film transistor
US15/305,588 US20170186611A1 (en) 2015-08-20 2016-04-06 Polycrystalline silicon thin film and method thereof, optical film, and thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510516303.3A CN105185694A (zh) 2015-08-20 2015-08-20 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管

Publications (1)

Publication Number Publication Date
CN105185694A true CN105185694A (zh) 2015-12-23

Family

ID=54907694

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510516303.3A Pending CN105185694A (zh) 2015-08-20 2015-08-20 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管

Country Status (3)

Country Link
US (1) US20170186611A1 (zh)
CN (1) CN105185694A (zh)
WO (1) WO2017028543A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028543A1 (en) * 2015-08-20 2017-02-23 Boe Technology Group Co., Ltd. Polycrystalline silicon thin film and method thereof, optical film, and thin film transistor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2993195A1 (en) * 2014-09-05 2016-03-09 Huntsman International Llc A method for improving fracture toughness of polyisocyanurate comprising reaction products

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555449B1 (en) * 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
CN1498989A (zh) * 2002-11-01 2004-05-26 ��ʽ����Һ���ȶ˼����������� 结晶装置和结晶方法
US20040232432A1 (en) * 2003-05-21 2004-11-25 Takeshi Sato Method of manufacturing an active matrix substrate and an image display device using the same
JP2005108919A (ja) * 2003-09-29 2005-04-21 Fujitsu Display Technologies Corp 薄膜トランジスタ基板の製造方法及びそれに用いるレーザアニール装置
US20050105551A1 (en) * 2000-09-21 2005-05-19 Michael Tate Asymmetric data path media access controller
CN1638044A (zh) * 2003-12-29 2005-07-13 京东方显示器科技公司 多晶硅薄膜晶体管的多晶硅膜的形成方法
CN1637596A (zh) * 2003-12-29 2005-07-13 Lg.菲利浦Lcd株式会社 激光掩模以及利用其结晶的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08236443A (ja) * 1995-02-28 1996-09-13 Fuji Xerox Co Ltd 半導体結晶の成長方法および半導体製造装置
JP2000260707A (ja) * 1999-03-05 2000-09-22 Sanyo Electric Co Ltd 多結晶シリコン膜の形成方法
JP2005533365A (ja) * 2001-11-07 2005-11-04 アプライド マテリアルズ インコーポレイテッド マスクレスの光子−電子スポット格子アレイ印刷装置
JP4347545B2 (ja) * 2002-06-28 2009-10-21 株式会社 液晶先端技術開発センター 結晶化装置および結晶化方法
JP4347546B2 (ja) * 2002-06-28 2009-10-21 株式会社 液晶先端技術開発センター 結晶化装置、結晶化方法および光学系
KR100606450B1 (ko) * 2003-12-29 2006-08-11 엘지.필립스 엘시디 주식회사 주기성을 가진 패턴이 형성된 레이저 마스크 및 이를이용한 결정화방법
JP2005294801A (ja) * 2004-03-11 2005-10-20 Advanced Lcd Technologies Development Center Co Ltd レーザー結晶化装置及びレーザー結晶化方法
WO2006084230A2 (en) * 2005-02-04 2006-08-10 Massachusetts Institute Of Technology Phase-shift masked zone plate array lithography
DE102008003916A1 (de) * 2007-01-23 2008-07-24 Carl Zeiss Smt Ag Projektionsbelichtungsanlage für die Mikrolithographie mit Messvorrichtung sowie Verfahren zum Messen einer Bestrahlungsstärkeverteilung
CN102505139A (zh) * 2011-10-11 2012-06-20 广东中显科技有限公司 一种多晶硅薄膜的制造方法
CN105185694A (zh) * 2015-08-20 2015-12-23 京东方科技集团股份有限公司 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6555449B1 (en) * 1996-05-28 2003-04-29 Trustees Of Columbia University In The City Of New York Methods for producing uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors using sequential lateral solidfication
US20050105551A1 (en) * 2000-09-21 2005-05-19 Michael Tate Asymmetric data path media access controller
CN1498989A (zh) * 2002-11-01 2004-05-26 ��ʽ����Һ���ȶ˼����������� 结晶装置和结晶方法
US20040232432A1 (en) * 2003-05-21 2004-11-25 Takeshi Sato Method of manufacturing an active matrix substrate and an image display device using the same
JP2005108919A (ja) * 2003-09-29 2005-04-21 Fujitsu Display Technologies Corp 薄膜トランジスタ基板の製造方法及びそれに用いるレーザアニール装置
CN1638044A (zh) * 2003-12-29 2005-07-13 京东方显示器科技公司 多晶硅薄膜晶体管的多晶硅膜的形成方法
CN1637596A (zh) * 2003-12-29 2005-07-13 Lg.菲利浦Lcd株式会社 激光掩模以及利用其结晶的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017028543A1 (en) * 2015-08-20 2017-02-23 Boe Technology Group Co., Ltd. Polycrystalline silicon thin film and method thereof, optical film, and thin film transistor

Also Published As

Publication number Publication date
US20170186611A1 (en) 2017-06-29
WO2017028543A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
CN100374950C (zh) 用于硅层结晶的可变掩膜器件及使用该器件的结晶方法
CN102714149B (zh) 用于形成低温多晶硅膜的装置和方法
CN106783536B (zh) 激光退火设备、多晶硅薄膜和薄膜晶体管的制备方法
CN1614756A (zh) 半导体器件及其制造方法
JP2009135448A5 (zh)
CN101184871A (zh) 薄膜的线扫描顺序横向固化
US9691619B2 (en) Laser annealing device with multiple lasers
TW201250854A (en) Ultrafast laser annealing with reduced pattern density effects in integrated circuit fabrication
US10608115B2 (en) Laser beam irradiation device, thin-film transistor, and method of manufacturing thin-film transistor
US20080293258A1 (en) Crystallization apparatus and crystallization method
CN103038862B (zh) 激光退火方法及其装置
KR20180123524A (ko) 박막 트랜지스터의 제조 방법 및 그 제조 방법에 사용하는 마스크
CN105185694A (zh) 多晶硅薄膜形成方法、掩膜版、多晶硅薄膜和薄膜晶体管
JP2009267095A (ja) 半導体製造方法
US20090134394A1 (en) Crystal silicon array, and manufacturing method of thin film transistor
US20120240843A1 (en) On Demand Thin Silicon
JP2008270243A (ja) 半導体デバイスの製造方法
KR20080025539A (ko) 측면 결정화된 반도체층의 제조방법 및 이를 이용한 박막트랜지스터의 제조방법
JP2013157549A (ja) レーザアニール装置及びレーザアニール方法
CN1332426C (zh) 薄膜半导体的制造方法
US7772135B2 (en) Method for forming poly-silicon film
CN106898540A (zh) 半导体制造方法与半导体层
JP2014139991A (ja) レーザアニール方法、レーザアニール装置
CN109964304A (zh) 激光照射装置、薄膜晶体管以及薄膜晶体管的制造方法
US20200020530A1 (en) Laser irradiation device, method of manufacturing thin film transistor, program, and projection mask

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151223