CN105161958A - 可扩展的大功率光纤激光器 - Google Patents

可扩展的大功率光纤激光器 Download PDF

Info

Publication number
CN105161958A
CN105161958A CN201510295923.9A CN201510295923A CN105161958A CN 105161958 A CN105161958 A CN 105161958A CN 201510295923 A CN201510295923 A CN 201510295923A CN 105161958 A CN105161958 A CN 105161958A
Authority
CN
China
Prior art keywords
module
gain
pump
fiber
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510295923.9A
Other languages
English (en)
Other versions
CN105161958B (zh
Inventor
D·A·V·克莱尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NLight Inc
Original Assignee
NLight Photonics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NLight Photonics Corp filed Critical NLight Photonics Corp
Priority to CN201911126909.0A priority Critical patent/CN110854655A/zh
Publication of CN105161958A publication Critical patent/CN105161958A/zh
Application granted granted Critical
Publication of CN105161958B publication Critical patent/CN105161958B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094042Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a fibre laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

一种模块化和可扩展的大功率光纤激光器***,可配置以产生1kW或1kW以上的激光输出,且包含:彼此分离地安置的一或多个可分离泵浦模块,每一泵浦模块包含通过一或多个基于光纤的泵浦模块泵浦合并器而以光学方式合并的多个光纤耦合组件泵浦源,每一泵浦模块提供一或多个泵浦模块光纤输出端;以及增益模块,其与所述一或多个可分离泵浦模块分离地安置,且包含以光学方式耦合到所述泵浦模块光纤输出端中的相应泵浦模块光纤输出端的一或多个增益模块泵浦光纤输入端,并且包含以光学方式耦合到所述一或多个增益模块泵浦光纤输入端的增益光纤,所述增益光纤经配置以产生与耦合到所述增益光纤的所述泵浦模块光纤输出端的数目和功率有关的可扩展的增益模块光纤输出功率。

Description

可扩展的大功率光纤激光器
技术领域
概括来讲,本发明的领域是大功率光纤激光器(highpowerfiberlaser)。更确切地说,本发明涉及可扩展的大功率连续波和准连续波光纤激光器。
背景技术
常规多千瓦工业光纤激光器***通常使用由多个组件光纤激光器组成的非可扩展架构,所述多个组件光纤激光器的输出端与熔融光纤信号合并器(signalcombiner)合并。总光纤激光器***的输出功率通常在2到6kW的范围中,且个体组件光纤激光器通常具有在0.4到1.0kW的范围中的功率。因此,为了达到超过1kW的总功率,必须合并来自多个光纤激光器(通常2到10个)的输出端。
用于达成大功率光纤激光器输出的这些常规方法具有根据本公开内容而变得显而易见的几个缺点。举例来说,由于合并多个个体光纤激光器***,在光学、电学和机械组件中需要大量冗余,由此增加了***成本、尺寸和复杂度。另外,光纤激光器组件***一般来讲具有有限的现场可维护性,从而在光纤激光器组件***的光学组件出故障的情况下往往需要替换全部光纤激光器组件***。即使当光学组件故障仅局限于光纤组件***的例如破损光纤等一部分,仍发生此类全部替换。要求替换全部光纤激光器组件***会增加用于维修完整多千瓦***的成本。现场替换光纤激光器组件***通常需要极为专用的设备和干净的房间条件,这些条件在工厂环境中不容易得到,从而使维护变得昂贵且具破坏性。
熔融光纤信号合并器引起光学损耗且减低所接收的个体光纤激光器输出端的光束品质。此损耗不利地影响效率,所述效率确定功率消耗和废热产生,且光束品质降级可减小金属切割应用中的速度。此外,信号合并器是昂贵的,其需要昂贵的设备和大量过程开发以及对制造过程的控制,且其可经历不可预测的变化从而影响再现性和可靠性。熔融光纤信号合并器还遭受操作损害(包含来自工件的光学反馈),由此降低了***可靠性。
利用信号合并器来达成高达几千瓦的功率也限制了光纤激光器***的激光功率在现场升级的能力。举例来说,熔融信号合并器可包含用于接收额外组件光纤激光器的空端口。但是,输出光束的光束品质被降级,而不管额外端口是否充填有额外组件光纤激光器***输出端。并且,如果信号合并器已完全充填输入端口,那么升级***输出功率需要用更大功率的组件光纤激光器来替换所述组件光纤激光器中的一个或多个。替换组件光纤激光器是昂贵的,确切地说,因为随之而来的是所被替换的组件光纤激光器、子***或组件的使用受到限制或不能重复使用所被替换的组件光纤激光器、子***或组件。
常规***设计在可如何适应或并入工艺进步方面同样受限制,因为许多关键组件被集成到每个组件光纤激光器中。举例来说,泵浦二极管技术快速取得进步,从而提供增加的功率、亮度和效率以及降低的成本。近年来,有源光纤同样经历了显著的工艺增进。如果泵浦二极管、光纤和电子设备全部集成到单个激光器模块中,那么将这些进步并入到现有光纤激光器中可能是困难的或是不可能的。举例来说,在单个激光器模块内的组件之间的互连将很可能不能达到或不容易改变,且对关键组件的改变将必然伴有大量设计纹波(designripple),从而需要其它组件中相应的改变。类似地,机械或热设计可因改变关键组件而受到影响。因此,常规大功率光纤激光器架构常常必须要么放弃基于工艺进步的升级,要么全力以赴于昂贵且耗时的再设计。
因此,需要这样一种多千瓦光纤激光器架构,其通过去除组件冗余来最小化成本、最小化或去除信号合并器的缺点、在现场维护是容易的且具有成本效益、实现现场可升级性、且充分灵活以适应于工艺进步而无显著成本或设计纹波。
发明内容
根据本发明的一个方面,可配置以产生1kW或1kW以上的激光器输出的模块化和可扩展的大功率光纤激光器***包含:彼此分离地安置的一或多个可分离泵浦模块(seperablepumpmodule),每一泵浦模块包含通过一或多个基于光纤的泵浦模块泵浦合并器(fiber-basedpumpmodulepumpcombiner)而以光学方式合并的多个光纤耦合组件泵浦源,每一泵浦模块提供一或多个泵浦模块光纤输出端;以及增益模块,其与所述一或多个可分离泵浦模块分离地安置,且包含以光学方式耦合到所述泵浦模块光纤输出端中的相应的泵浦模块光纤输出端的一或多个增益模块泵浦光纤输入端,并且包含以光学方式耦合到所述一或多个增益模块泵浦光纤输入端的增益光纤,所述增益光纤经配置以产生与耦合到所述增益光纤的所述泵浦模块光纤输出端的数目和功率有关的可扩展的增益模块光纤输出功率。
根据本发明的另一个方面,大功率光纤激光器***包含:增益模块,其经配置成以一个输出光束波长产生1kW或1kW以上的输出光束;以及一或多个泵浦模块,其以光学方式耦合到所述增益模块,且经配置成以一个泵浦波长产生光从而用于以光学方式泵浦所述增益模块,其中所述增益模块经配置以从所述一或多个泵浦模块接收泵浦光,使得所述输出光束的所述功率根据耦合到所述增益模块的泵浦模块的数目和功率而可扩展。
前述和其它目标、特征以及优点将从以下详细描述变得显而易见,所述详细描述是参考未必按比例绘制的附图而进行的。
附图说明
图1A是根据本发明的一个方面的光纤激光器***的透视图。
图1B是根据本发明的一个方面的图1A中所描绘的光纤激光器***的连接性图。
图2是根据本发明的一个方面的光纤激光器***的示意性平面图示意图。
图3A是根据本发明的一个方面的光纤激光器***的泵浦模块的示意图。
图3B是根据本发明的一个方面的光纤激光器***的泵浦模块的示意图。
图4是根据本发明的一个方面的光纤激光器***的另一泵浦模块的示意图。
图5是根据本发明的一个方面的光纤激光器***的另一泵浦模块的示意图。
图6是根据本发明的一个方面的光纤激光器***的增益模块的示意图。
图7是根据本发明的一个方面的光纤激光器***的另一增益模块的示意图。
图8是根据本发明的一个方面的光纤激光器***的另一增益模块的示意图。
图9是根据本发明的一个方面的光纤激光器***的另一增益模块的示意图。
图10是根据本发明的一个方面的光纤激光器***的另一增益模块的示意图。
图11是根据本发明的一个方面的光纤激光器***的增益模块合并器的后视图。
图12是根据本发明的一个方面的光纤激光器***的另一增益模块合并器的后视图。
图13是根据本发明的一个方面的光纤激光器***的另一增益模块的示意图。
图14是根据本发明的一个方面的合并器级的示意图。
图15是根据本发明的一个方面的光纤激光器***的另一增益模块的示意图。
具体实施方式
图1A中示出高度可配置、模块化和可扩展的连续波或准连续波大功率光纤激光器***1000的第一实施方案的透视图。光纤激光器***1000包含模块化地接收不同***模块的几个分隔间(bay)1001,所述***模块包含***泵浦模块1002和***增益模块1003,每一模块可经配置成可与光纤激光器***1000分离。例如控制模块1004或电力供应器模块等额外模块也可相对于***1000的其它***模块而模块化地安置。可扩展的多千瓦光纤激光器***1000被描绘为呈可选的移动配置,其中多个***模块安置成安装于多个脚轮1005顶上的竖直机架布置,以方便于在工业环境中移动。泵浦模块1002提供以光学方式耦合到一或多个增益模块1003的一或多个泵浦模块光纤输出端1006。光纤激光器***1000包含***输出端1007,所述***输出端提供大约1kW或1kW以上的输出功率以用于各种工业应用,且其可由一或多个增益模块1003提供。可通过在可用***分隔间1001中添加额外泵浦模块1002或通过用新模块调换旧模块升级所安装的泵浦模块1002来扩展***的输出功率。
本文中的实施方案的模块性和可扩展性呈现大量的制造优点。举例来说,可选择许多不同的功率电平而不需要在所选功率电平配置之间进行显著的再设计。具有单个泵浦模块1002和单个增益模块1003的配置可提供特定***输出功率,可通过安装额外泵浦模块1002(见图1中以短划线示出的泵浦模块1002)并将泵浦模块输出端1006拼接到增益模块1003来升级所述特定***输出功率。归因于模块性,可在泵浦模块与增益模块之间分担尺寸和重量,使得单人在现场或在工厂可搬运、实施或维护***的每个泵浦模块和增益模块。这个优点在来自单个光纤激光器的功率增加时(这已是业界中一个不变的趋势)可能特别重要;这种功率扩展趋势可持续下去而不产生过大或过重的模块,因为泵浦模块和增益模块不必收容在单个模块中。激光器***的外观尺寸还可经配置以支持不同部署场景。举例来说,***模块可以如图1示出的竖直方式、水平方式或以另一定向或其组合方式而安装在机架中。模块可彼此物理地分离以有助于集成到期望空间中。
在图1B中,示出了***1010的实施方案的示意图,所述***类似于在图1A中的透视图中示出的***。***1010包含将泵浦能量提供到增益模块1012的多个泵浦模块1011,所述增益模块经配置以产生激光器***输出1013。***1010可包含一或多个扩充槽1014,以提供***1010的例如额外泵浦模块或增益模块等配置改变。冷却***1015耦合到泵浦模块和增益模块,以在其中并总体上向***1010提供热稳定性。***1010由控制器1015来控制,所述控制器经配置以监视并调整泵浦模块、增益模块和冷却***的输出和其它性质。
现参看图2,示出了根据本发明的另一个方面的大功率光纤激光器***20的实施方案。所述光纤激光器***20高度可配置和模块化,使得可从头开始制造***20,以用于在输出功率的预选范围下(例如在1kW或1kW以下与多kW之间)操作和用于升级到更高输出功率或不同性能标准。光纤激光器***20包含一或多个组件泵浦模块22,所述组件泵浦模块中的每一个与其它分离地安置且与***20模块化地分离。每一组件泵浦模块22提供一或多个组件泵浦模块输出端24。光纤激光器***20还包含一或多个增益模块26,所述一或多个增益模块彼此分离地安置且与***20模块化地可分离。一或多个增益模块26以光学方式耦合到一或多个组件泵浦模块输出端24,使得以预定输出功率产生光纤激光器***输出光束28。在图2中示出的实施例中,单个增益模块26通过利用耦合到所述增益模块26的三个泵浦模块22的泵浦功率来提供***输出光束28。用点23示出用于额外模块化可分离的泵浦模块22的槽,而用短划线27示出供耦合到增益模块26的相应的额外泵浦模块输出端。
增益模块26包含增益光纤,所述增益光纤并入到激光振荡器30中从而在相反的光纤布拉格光栅31之间提供激光振荡。在一些实施例中,增益模块26的增益光纤包含被设定尺寸以适应光纤激光器***20的预定最高输出功率的光纤。举例来说,在一些实施例中,所选的最大操作输出功率是在例如1kW、2kW、3kW、4kW、5kW或更高等kW范围中。光纤激光器***20的最大输出功率是由能够拼接到增益模块26的泵浦模块22的数目和输出功率来确定的。因此,可产生光纤激光器输出光束28而不使用多个冗余振荡器或放大器***、冗余支持机械和电学组件且不使用信号合并器来合并多个冗余组件光纤激光器输出。
泵浦模块22和增益模块26的独立和模块化本质允许每一个被独立地进行维护。举例来说,如果在增益模块26中发生光纤故障,那么可替换增益模块26而所安装的泵浦模块中的每一个则保持完好而不进行任何修改或实质性修改。类似地,如果泵浦模块22以某种方式发生故障,那么可替换所述泵浦模块22,从而使每个其它泵浦模块22和增益模块26在适当位置而不对其进行任何修改或实质性修改。本文中的***提供强健性优点,因为更有可能将潜在故障隔离到特定***模块,这些特定***模块可在不替换整个***的情况下加以互换和升级。
在优选实施例中,泵浦模块22包含一或多个半导体二极管激光器模块34,每个半导体二极管激光器模块包含一或多个半导体二极管激光器,所述一或多个半导体二极管激光器提供被合并且耦合到二极管激光器模块的输出端光纤36的一或多个二极管激光器输出光束。多个输出端光纤36以光学方式耦合到泵浦模块泵浦合并器38,以将二极管激光器模块泵浦光合并到泵浦模块输出端24中。泵浦模块泵浦合并器38经配置以在大芯径(core)中传输低亮度多模泵浦光,这与在小芯径中传输高亮度信号光的信号合并器相反。泵浦合并器的制造成本往往小于信号合并器的制造成本,因为例如合并器输出端处的光束品质和光学***损耗等性能需求通常要求不高。
经合并的泵浦光通过一或多个泵浦模块输出端24而从泵浦模块22耦合出来。泵浦模块输出端24以光学方式耦合(例如,通过光纤拼接)到增益模块26从而耦合到其光纤合并器(fibercombiner)40上。光纤合并器40的设计可类似于与每一泵浦模块22相关联的泵浦模块泵浦合并器38。但是,在优选实施例中,增益模块中的合并器可以是传输信号与泵浦光两者的泵浦-信号合并器。如下文中将进一步描述,可在以下各者处使用泵浦-信号合并器:在增益模块增益光纤的后端处、在用以发射对向传播(counter-propagating)泵浦光的增益光纤的前端处、在增益级内或增益级之间(例如,在振荡器与放大器之间或在放大器之间),或其某一组合。在本文的各种实施例中,由于泵浦模块与增益模块之间的光纤拼接头的性能需求往往低于必须传输信号光的拼接头(例如,在常规设计中的组件光纤激光器与信号合并器之间)的性能需求,所以伴随地拼接需求是宽松的,从而允许在不太干净的房间条件下使用市售设备就地将泵浦模块输出端24拼接到光纤合并器40的所选增益模块输入端。相比于将光纤拼接到信号合并器,对于将输出端24拼接到光纤合并器40来说,瞄准灵敏度(alignmentsensitivity)和劈角(cleave-angle)需求更低,这也促进了在工厂或其它现场环境中将光纤拼接到光纤合并器40的可达性。对于玻璃包层光纤来说,泵浦模块输出端24到光纤合并器40的拼接对污物不敏感且因此适合用于现场和工厂环境中。在一些实施例中,泵浦模块输出端24经由可插拔到泵浦模块或增益模块或泵浦模块与增益模块两者中的接头而耦合到增益模块26,从而去除对拼接的需要且进一步提高光纤激光器***的模块性。
除了提高光纤激光器***20的现场可维护性之外,泵浦模块和增益模块的模块化分离还考虑到***20到更高允许的输出功率的现场可升级性。举例来说,额外泵浦模块22可拼接到增益模块的光纤合并器40的开放式泵浦光纤输入端。额外泵浦模块22可与拼接到增益模块26的现有模块22相同或不同,使得可以将***20的激光器输出端28可选择性地扩展到更高功率。类似于维护现有***20,用于将额外泵浦模块22的泵浦模块输出端24拼接到光纤合并器40的光纤输入端的工序是相对简单的,且可在工厂或其它现场环境中执行。泵浦模块与增益模块之间的模块化分离还考虑到***20的可扩展的功率输出,因为泵浦模块之间的物理分离以及增益模块与泵浦模块之间的物理分离减少或消除了模块之间的热串扰。每个模块可具备独立的水冷却端口,使得模块可独立地冷却或并行地或串行地一同冷却。在根据本发明的方面所构建的一个实例大功率光纤激光器***中,可产生3kW光纤激光器输出功率,其中三个1.5kW泵浦模块拼接到增益模块。在另一个实例中,构建或升级光纤激光器***以具有三个2.0kW泵浦模块可提供4kW光纤激光器输出功率。在一些实施例中,可将一或多个备用泵浦模块提供于光纤激光器***20中,以供在另一个泵浦模块发生故障的情况下使用。***20可经配置以在发生故障后立刻切换到备用泵浦模块,或在一或多个其它有源泵浦模块在一段时间内降级时缓慢地切换到备用泵浦模块。泵浦模块的可分离本质进一步允许就地用新泵浦模块替换发生故障的模块而不影响备用泵浦模块或光纤激光器***的操作。
除现场可维护性和现场功率可扩充性之外,***20的模块性还提供对各种技术改进的适应性,从而确保***20和其现有模块与激光器行业中的创新步伐的相容性。举例来说,泵浦二极管技术的改进可提供经升级的泵浦模块22。所述经升级的泵浦模块可替代现有泵浦模块22或可补充现有泵浦模块22加以使用,从而提供改进的***性能、效率、成本或其任何组合,而不需要对还没有升级的组件进行显著的设计改变或替换。类似地,增益模块技术的例如振荡器或放大器架构等改进可提供经升级的增益模块26。所述经升级的增益模块可替代替现有增益模块26而不需要替换或修改泵浦模块。可再次在现场或工厂环境中执行各种替代。
在kW光纤激光器的许多工业应用中,单模输出光束品质并非是必需的。因此,常规架构通常使用信号合并器来合并产生单模信号束的光纤激光器输出端,以产生多模输出光束。在光纤激光器***20的一些实施例中,增益模块26并不产生单模输出端,因为此类输出端对于许多应用来说并非是必需的。因为期望输出端是多模输出端,所以***20可达成此类输出端而不需要单模合并型式的复杂度。并且,因为增益模块26的单模操作并非是必需的,所以将增益模块26的功率扩展到多kW输出端更可理解。允许增益模块26的增益光纤是多模增益光纤有助于以比通过最大化个体光纤激光器的单模输出功率更切实可行的方式进行功率扩展,因为单模功率界限低于多模功率界限。单模光纤激光器通常限于大约1到2kW的功率电平,从而导致需要合并多个光纤激光器以便达到多kW功率电平;将单模功率扩展超出此电平的方法通常必然伴有对于工业激光器***来说非期望的成本、复杂度和/或无效率。
在其它实施方案中,单模***输出端可能是期望的,且增益模块26可被配置成用于单模输出端。单模增益模块26的额定输出功率通常低于具有多模输出端的对等***的额定输出功率。但是,***20的架构的模块性允许用单模增益模块来调换多模增益模块。在一个实施例中,单模增益模块的额定值可为1kW的输出,而多模增益模块的额定值可为3或4kW的输出。
在增益模块26的典型实施例中,输出光束28的光束品质一般来讲取决于增益模块的最大额定功率,使得增益模块26的较高额定功率一般来讲与输出光束28的较低光束品质对应。增益模块26的一些特定实施例的最大额定功率可高于增益模块26的其它特定实施例,且对于相同输出电平来说,较高额定功率模块所提供的输出光束28的光束品质将低于使用较低额定功率模块所提供的输出光束28的光束品质。但是,在本文中的光纤激光器***实施例(其不利用熔融信号合并器使得相对应地避免了输出光束28中非期望的光束品质降级)中,经配置以接收多个泵浦模块输出端24的较高额定功率增益模块26变成有可能。因此,为将多个泵浦模块输出端24接收于增益模块26中所作的准备并不表示针对多kW功率输出端所配置的***20的显著光束品质损害,而是可基于合并单模光纤激光器的输出端来提供比具有类似输出功率的***更好的光束品质。
用于工业材料处理应用的常规kW光纤激光器***通常在2到4kW的功率电平下提供2.3到3.0mm-mrad的光束参数积(BPP,光束品质的标准量度),且BPP一般来讲在更高功率下更大(即,更坏的光束品质)。通过去除根据本发明的各种方面的信号合并器,具有更高光束品质的输出端是有可能的。举例来说,使用当前可用的泵浦二极管,在2到3kW下小于大约1mm-mrad的光束品质是有可能的,且在4到5kW下小于大约2mm-mrad的光束品质是有可能的。
可以多种可选配置来提供模块化泵浦模块。参考图3A,示出了包含多个半导体二极管激光器模块44的泵浦模块42。二极管激光器模块44是光纤耦合型的,使得在激光器模块44中产生的二极管激光器光被导引到输出端光纤46中。多个输出端光纤46与熔融光纤泵浦合并器48合并。合并器通常由玻璃制成,且成锥形或经熔融以将多个光纤输入端折压到更少或一个光纤输出端。耦合到合并器48中的光经合并且被导引到泵浦模块输出端50中。可使用不同类型的二极管激光器模块44,这样可提供不同水平的激光束亮度或辐照度以及功率输出。因此,在一些实施例中,可使用特定类型的更少二极管激光器模块44、特定类型的更多二极管激光器模块44或不同类型的二极管激光器模块44来达成泵浦模块42的相同的期望功率输出。通过合并器48,多个输出端光纤46被合并于单级中,以提供泵浦模块输出端50从而随后光学耦合到增益模块(未图示),所述泵浦模块输出端可以是聚合物包层或玻璃包层或聚合物包层与玻璃包层两者。在图3B中,示出了包含单个半导体二极管激光器模块45的泵浦模块43。二极管激光器模块45提供足够量的光学泵浦功率以用于耦合到泵浦模块输出端50中,而不需要使用泵浦合并器来将多个二极管激光器模块合并于泵浦模块中。
参考图4,示出了泵浦模块52的另一个实例,所述泵浦模块使用呈多级合并器配置的多个二极管激光器模块54。所述二极管模块提供与第一级泵浦光纤合并器58合并的光纤耦合输出端56。合并器58提供第一级合并器输出端60,所述第一级合并器输出端随后耦合于第二级泵浦合并器62中。第二级泵浦合并器62可取决于多级泵浦模块52的亮度、功率或其它需求和特性而与第一级合并器58相同或类似。耦合到第二级合并器62中的光经合并且被提供作为泵浦模块输出端64以用于随后光学耦合到增益模块(未图示),所述泵浦模块输出端可以是聚合物包层或玻璃包层或聚合物包层与玻璃包层两者。
在图5中,示出了提供多个泵浦模块输出端的泵浦模块66的另一个实施方案。泵浦模块66包含将激光器泵浦光提供到对应的光纤耦合输出端光纤70的多个二极管激光器模块68。第一组输出端光纤72耦合到第一泵浦合并器74中。泵浦光通过泵浦合并器74而被合并且被导引到玻璃包层或聚合物包层(或玻璃包层与聚合物包层两者)的第一泵浦模块输出端76。第二组输出端光纤78耦合到第二泵浦合并器80中。所述第二合并器80合并接收到的泵浦光并将光导引到玻璃包层或聚合物包层(或玻璃包层与聚合物包层两者)的第二泵浦模块输出端82。在其它实施方案中,泵浦模块66具有两个以上泵浦模块输出端。如所示出,泵浦输出端76、82包含位于泵浦模块66的边界处的可插拔接头83。接头83可通过允许使用独立接插缆(patchcable)以连接泵浦模块和增益模块或通过简化泵浦模块与增益模块之间的连接而有助于本文中的泵浦模块的模块性。但是,本文中也可以使用光学拼接头来将泵浦模块66的输出端连接到增益模块。
在图6中,示出了增益模块84的替代实施方案。增益模块84包含多个聚合物包层、玻璃包层或玻璃包层与聚合物包层两者的泵浦输入端86,所述泵浦输入端可从泵浦模块输出端(未图示)而被接收或可与泵浦模块输出端(未图示)相同。如所示出,泵浦输入端86经由可插拔接头87而耦合到增益模块84中,不过还可使用光学拼接头。泵浦输入端86以光学方式耦合到增益模块熔融泵浦或泵浦信号合并器88,所述合并器合并接收到的泵浦光并将光耦合到增益模块合并器输出端90中。合并器输出端90的经合并的泵浦光被耦合或拼接到光纤激光振荡器94中,所述光纤激光振荡器将入射的泵浦功率转换到增益模块输出端96。增益模块输出端96可用作***输出端或其可以进一步与额外模块合并。光纤激光器振荡器94一般来讲包含:光学增益光纤98,其中耦合有泵浦光且其中产生增益模块输出端96;高反射器100,其经配置以反射激光能量从而产生输出端96和传输引入的泵浦光;以及部分反射器102,其经配置以传输输出端96的激光能量的至少一部分。高反射器和部分反射器可以是光纤布拉格光栅或其它合适的反射性光学组件。
在图7中,针对主振荡器功率放大器(MOPA)配置而示出了增益模块104的另一个替代实施方案。增益模块104包含耦合到增益模块熔融泵浦信号或泵浦合并器108的多个聚合物包层和/或玻璃包层的泵浦输入端106。合并器108经由泵浦输入端106来接收泵浦光且合并所述泵浦光,并将光束耦合到合并器输出端光纤部分110中。合并器输出端110的经合并的泵浦光被耦合或拼接到光纤激光振荡器112中,所述光纤激光振荡器将入射泵浦能量的第一部分转换为增益模块输出端116的信号能量。光纤激光振荡器112可包含:光学增益光纤114,其中耦合有泵浦光且其中产生增益模块输出端116的信号能量;高反射器118,其经配置以反映信号能量并传输引入的泵浦能量;以及部分反射器120,其经配置以传输至少某一百分比的信号能量。第一放大器124接收信号光,且使用泵浦光能量来放大所述信号光的功率。在其它实施方案中,可将一或多个额外放大器按顺序添加在第一放大器124后面,以改变增益模块输出端116的最大额定功率和光束品质。
在图9中示出的增益模块144的另一个实施方案中,来自一或多个泵浦模块的输出端光纤146在沿增益光纤148的一或多个位置处使用一或多个泵浦信号合并器150而耦合到增益光纤148中以在其中提供侧面泵浦,以便产生增益模块信号输出端152。可在例如图6中示出的振荡器等振荡器配置或如图7中示出的MOPA配置中结合增益光纤148来使用一或多个泵浦信号合并器150。合并器150可用于在各种位置处将光耦合到增益光纤148中,所述位置包含在高反射器与振荡器光纤之间、在振荡器与放大器光纤之间、在放大级之间或其某一组合。此外,可在信号束的方向上以共同传播方式、在与信号束相反的方向上(即,以对向传播方式)或以以上两种方式来发射泵浦光。在提供侧面泵浦的一些实例中,多个增益光纤148并行安置于增益模块中,以便产生一个以上的增益模块输出端152。类似地,应了解,对于本文中的其它各种增益模块实施方案来说,多个增益光纤还可以并行安置于其中以便产生多个增益模块输出端。
在图10中示出了增益模块154的另一个实施例中,振荡器156经双向泵浦(bi-directionallypump)以产生增益模块输出端158。来自一或多个泵浦模块的泵浦光是经由增益模块输入端光纤160在共同传播方向上使用合并器158(例如,位于振荡器的高反射器162前面的泵浦或泵浦信号类型等)或合并器159(例如,位于高反射器162与振荡器之间的泵浦信号类型等)而发射的。另外,来自一或多个泵浦模块的泵浦光是在对向传播方向上使用泵浦信号合并器164(例如,位于其振荡器与部分反射器166之间或在部分反射器后面等)而发射的。
在图8中,示出了增益模块126的实施方案,所述增益模块包含:多个聚合物包层和/或玻璃包层的泵浦输入端128;增益模块合并器130,其以光学方式耦合到输入端128以便从那里接收泵浦光;以及例如振荡器级和放大器级等一或多个增益光纤增益级132,其耦合到增益模块合并器130。增益级132接收泵浦光,且可操作以产生并放大将要提供于增益模块126的输出端136处的信号束。如所示出,偶数或奇数数目个泵浦输入端128(在此情况下为形成7x1合并器的偶数数目为六的输入端)耦合到增益模块合并器130的输入端138。聚合物包层和/或玻璃包层的中心输入端140耦合到合并器输入端138。中心输入端140以光学方式耦合到瞄准激光器142,所述瞄准激光器将光束导引穿过合并器130、增益级132和输出端136以提供瞄准光束,所述瞄准光束可用于指示从增益模块的输出端136射出的光束的方向;所述瞄准光束通常可以为肉眼所见(例如,红色或绿色波长等)。
图11和12说明由各种增益模块所接收并在其中耦合到合并器的泵浦输入端的实例布置情况。图11示出了在图8中所描绘的合并器上的布置情况,其中偶数数目为六的泵浦输入端128耦合到围绕中心输入端140的输入端138,所述中心输入端可以是瞄准激光器输入端或另一个泵浦输入端。在图12中,示出了耦合到合并器172的十九个输入端168的布置情况,这些输入端包含中心输入端170。中心输入端170可用于泵浦或瞄准光束。在例如本文中描述的泵浦信号合并器实施例等其它实施例中,中心输入端可专用于信号传播。在本文中的各种合并器实施例中,未使用的增益模块合并器输入端可成对且方便地一同拼接在增益模块中,以供存储和未来使用以及拼接额外泵浦模块或在移除泵浦模块之后。拼接成的输入端还可以使泵浦光和信号光再循环返回穿过增益模块,从而潜在地提高增益模块效率。通过再循环,原本应该予以管理的光和在未使用的泵浦输入端的终端处散掉的热可例如经由一或多个包层光剥离器而重导向到所设计的散热部位,其中支撑热机械***被配置成操纵并移除热负荷。
在图13中,示出了增益模块180的另一个示例性实施方案,所述增益模块包含:多个泵浦输入端182;以光学方式耦合到输入端182的增益模块合并器184;以及一或多个增益级186,其耦合到增益模块合并器184且其产生增益模块输出端188。聚合物包层和/或玻璃包层的中心光纤输入端190耦合到合并器的输入端192的中心位置。瞄准激光器194直接或使用分束器196而耦合到中心泵浦输入端190。光束捕集器(beamdump)198也耦合到中心泵浦输入端190,且经配置以接收、监视和散热或另外弃置来自增益模块增益光纤的非期望的后向传播光。举例来说,在目标处反射的光可变成经由其输出端188而反耦合到增益模块180中,且造成一或多个增益级186或例如上游泵浦模块等其它组件的损害。
因此,应了解,本文中的一些实施例在工业设置中配置大功率连续波或准连续波光纤激光器方面提供了优于常规方法的特定优点。本文中,可以可扩展和模块化方式来达成1kW或1kW以上的光纤激光器功率电平,使得可以可选择性地获得多千瓦输出功率。泵浦源变成与增益光纤和相应的增益级分离,从而改进可维护性、可制造性和现场可升级性以及利用各种组件技术中的未来的进步。可变的泵浦模块群体和调整群体的容易性提高了在***输出功率方面的***灵活性和可升级性。
在另外的实施例中,参考图14,示出了增益模块200和合并模块202。所述增益模块包含两组或两组以上泵浦输入端204,每一组耦合到相应的增益模块合并器206,且每一合并器耦合到相应的一或多个增益光纤增益级208。所述独立组组件可经配置以产生多个增益模块输出端210,每一增益模块输出端具有kW到多kW输出端电平。独立的多个增益模块输出端210可用于各种直接应用,或其可耦合到合并模块202。所述合并模块利用信号合并器212,所述信号合并器可经模块化以与增益模块200分离或可代替地将其信号合并器212包含作为增益模块200的一部分。可使用内部或外部信号合并器212以合并来自增益模块200的各种单模或多模输出端210,从而产生能够在多kW能谱中提供极高功率输出光束的经合并的光纤输出端214。举例来说,可达成4kW、6kW、8kW、10kW、12kW或甚至更高的平均功率输出。在额外实施例中,独立的增益模块可提供可以合并在位于增益模块200内部或外部的合并级202中的单增益模块输出端。
在另外的实施例中,参考图15,示出了增益模块220,其包含通过多个泵浦输入端224进行末端泵浦(end-pumped)的一对增益光纤222,所述多个泵浦输入端使用合并器226而耦合到对应的增益光纤222。大功率多模或单模增益光纤输出端228耦合到信号合并器230中,所述信号合并器将大功率增益光纤输出端228合并到增益模块220的单个大功率输出端232中。在一个实施例中,增益光纤输出端分别提供4kW的光学功率,这些光学功率与信号合并器230合并以提供大约8kW的增益模块输出。应了解,可针对增益模块220通过改变可扩展的泵浦模块和耦合到增益模块220的其泵浦输入端的数目和类型并且还通过根据本文中的各种实施方案和教导改变增益模块的架构来提供各种输出端功率或输出端功率的范围。人们认为,本发明和其许多伴随优点应从前述描述来理解,且应明了,可在其数个部分中进行各种改变而不脱离本发明的精神和范围或牺牲所有其材料优点,上文所描述的形式仅仅是其示范性实施方案。

Claims (21)

1.一种可配置以产生1kW或1kW以上的激光输出的模块化和可扩展的大功率光纤激光器***,其包括:
彼此分离地安置的一或多个可分离泵浦模块,每一泵浦模块包含通过一或多个基于光纤的泵浦模块泵浦合并器而以光学方式合并的多个光纤耦合组件泵浦源,每一泵浦模块提供一或多个泵浦模块光纤输出端;以及
增益模块,其与所述一或多个可分离泵浦模块分离地安置,且包含以光学方式耦合到所述泵浦模块光纤输出端中的相应的泵浦模块光纤输出端的一或多个增益模块泵浦光纤输入端,并且包含以光学方式耦合到所述一或多个增益模块泵浦光纤输入端的增益光纤,所述增益光纤经配置以产生与耦合到所述增益光纤的所述泵浦模块光纤输出端的数目和功率有关的可扩展的增益模块光纤输出功率。
2.根据权利要求1所述的***,其中所述一或多个增益模块泵浦光纤输入端在可维护的拼接部位处以光学方式耦合到所述相应的泵浦模块光纤输出端。
3.根据权利要求1所述的***,其中所述增益模块包含泵浦或泵浦信号类型的一或多个合并器,所述合并器经配置成以光学方式将所述一或多个增益模块泵浦光纤输入端耦合到所述增益光纤。
4.根据权利要求1所述的***,其中所述增益光纤并入到主光纤振荡器和光纤放大器中。
5.根据权利要求4所述的***,其中所述光纤放大器包含两个或两个以上增益级。
6.根据权利要求1所述的***,其中所述增益光纤并入到光纤振荡器中。
7.根据权利要求1所述的***,其中所述增益光纤是以选自由以下各项组成的群组的一或多种方式泵浦的:共同泵浦、对向泵浦、末端泵浦、侧面泵浦和双向泵浦。
8.根据权利要求3所述的***,其中所述一或多个增益模块泵浦光纤输入端在与其中心轴线同心的中心部位处和在从所述中心轴线径向偏移的一或多个部位处耦合到所述合并器的输入端。
9.根据权利要求8所述的***,其中瞄准光束耦合到瞄准光纤,所述瞄准光纤耦合到所述增益模块泵浦光纤输入端,所述增益模块泵浦光纤输入端耦合到所述中心部位。
10.根据权利要求3所述的***,其中耦合到所述中心部位的所述增益模块泵浦光纤输入端为所述增益光纤中的后向传播光提供光束捕集器输出端。
11.根据权利要求3所述的***,其中所述增益模块泵浦光纤输入端中的至少两个是未使用的且经由拼接而成对。
12.根据权利要求1所述的***,其中所述增益模块输出端提供大约1kW或1kW以上的输出光束。
13.根据权利要求1所述的***,其中所述泵浦源是光纤耦合激光二极管模块,每一者包含多个单发射极二极管激光器,所述单发射极二极管激光器的二极管激光器光束被准直、合并和集中到泵浦源光纤中。
14.根据权利要求1所述的***,其进一步包括冷却***,所述冷却***耦合到所述增益模块和所述一或多个泵浦模块,使得每一模块与每一其它模块热隔绝。
15.根据权利要求1所述的***,其中从所述泵浦源中的每一个到所述增益模块的输出端的路径是全光纤型的。
16.根据权利要求1所述的***,其中所述增益模块包含信号合并器,所述信号合并器经配置以接收所述增益模块中产生的多个信号束且合并所述信号束以形成所述光纤激光器***的大功率输出端。
17.根据权利要求1所述的***,其进一步包括至少另一个所述增益模块。
18.根据权利要求1所述的***,其中所述泵浦模块光纤输出端通过可插拔接头而以光学方式耦合到所述增益模块泵浦光纤输入端。
19.一种大功率光纤激光器***。其包括:
增益模块,其经配置成以一个输出光束波长产生1kW或1kW以上的输出光束;
以及
一或多个泵浦模块,其以光学方式耦合到所述增益模块,且经配置成以一个泵浦波长产生光从而用于以光学方式泵浦所述增益模块;
其中所述增益模块经配置以从所述一或多个泵浦模块接收泵浦光,使得所述输出光束的所述功率根据耦合到所述增益模块的泵浦模块的数目和功率而可扩展。
20.根据权利要求19所述的***,其中所述输出光束是2kW或2kW以上。
21.根据权利要求19所述的***,其中所述一或多个泵浦模块中的每一个包括多个激光二极管模块,所述多个激光二极管模块使用一或多个泵浦模块泵浦合并器而以光学方式耦合到泵浦模块输出端光纤。
CN201510295923.9A 2014-06-02 2015-06-02 可扩展的大功率光纤激光器 Expired - Fee Related CN105161958B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911126909.0A CN110854655A (zh) 2014-06-02 2015-06-02 可扩展的大功率光纤激光器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/293,941 US10069271B2 (en) 2014-06-02 2014-06-02 Scalable high power fiber laser
US14/293,941 2014-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201911126909.0A Division CN110854655A (zh) 2014-06-02 2015-06-02 可扩展的大功率光纤激光器

Publications (2)

Publication Number Publication Date
CN105161958A true CN105161958A (zh) 2015-12-16
CN105161958B CN105161958B (zh) 2019-12-17

Family

ID=54702873

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911126909.0A Pending CN110854655A (zh) 2014-06-02 2015-06-02 可扩展的大功率光纤激光器
CN201510295923.9A Expired - Fee Related CN105161958B (zh) 2014-06-02 2015-06-02 可扩展的大功率光纤激光器

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201911126909.0A Pending CN110854655A (zh) 2014-06-02 2015-06-02 可扩展的大功率光纤激光器

Country Status (2)

Country Link
US (3) US10069271B2 (zh)
CN (2) CN110854655A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299982A (zh) * 2016-09-20 2017-01-04 光惠(上海)激光科技有限公司 可扩型双面高效光纤激光器冷却***
CN117335256A (zh) * 2023-12-01 2024-01-02 上海频准激光科技有限公司 一种光信号功率控制***

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10069271B2 (en) * 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
US10618131B2 (en) 2014-06-05 2020-04-14 Nlight, Inc. Laser patterning skew correction
WO2016004174A1 (en) * 2014-07-03 2016-01-07 Ipg Photonics Corporation Process and system for uniformly recrystallizing amorphous silicon substrate by fiber laser
CN105720463B (zh) 2014-08-01 2021-05-14 恩耐公司 光纤和光纤传输的激光器中的背向反射保护与监控
JP5834125B1 (ja) * 2014-09-29 2015-12-16 株式会社フジクラ 光ファイバモジュール
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US10761276B2 (en) 2015-05-15 2020-09-01 Nlight, Inc. Passively aligned crossed-cylinder objective assembly
CN107924023B (zh) 2015-07-08 2020-12-01 恩耐公司 具有用于增加的光束参数乘积的中心折射率受抑制的纤维
WO2017053985A1 (en) 2015-09-24 2017-03-30 Nlight, Inc. Beam parameter product (bpp) control by varying fiber-to-fiber angle
US10434600B2 (en) 2015-11-23 2019-10-08 Nlight, Inc. Fine-scale temporal control for laser material processing
US11179807B2 (en) 2015-11-23 2021-11-23 Nlight, Inc. Fine-scale temporal control for laser material processing
WO2017143089A1 (en) 2016-02-16 2017-08-24 Nlight, Inc. Passively aligned single element telescope for improved package brightness
WO2017161334A1 (en) 2016-03-18 2017-09-21 Nlight, Inc. Spectrally multiplexing diode pump modules to improve brightness
CN107293930B (zh) * 2016-04-01 2020-01-14 中国兵器装备研究院 集成高功率全光纤激光器
EP3504944B1 (en) * 2016-08-26 2023-06-07 NLIGHT, Inc. Laser power distribution module
US11106046B2 (en) 2016-08-26 2021-08-31 Nlight, Inc. Splice with cladding mode light stripping
WO2018039501A2 (en) * 2016-08-26 2018-03-01 Nlight, Inc. Fiber combiner with input port dump
US10732439B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Fiber-coupled device for varying beam characteristics
US10673197B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based optical modulator
US10673199B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-based saturable absorber
EP3519871A1 (en) 2016-09-29 2019-08-07 NLIGHT, Inc. Adjustable beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms
US10673198B2 (en) 2016-09-29 2020-06-02 Nlight, Inc. Fiber-coupled laser with time varying beam characteristics
JP6844993B2 (ja) * 2016-11-25 2021-03-17 古河電気工業株式会社 レーザ装置及び光源装置
JP6814887B2 (ja) 2016-12-23 2021-01-20 エヌライト,インコーポレーテッド 低コスト光ポンプレーザパッケージ
EP3607389B1 (en) 2017-04-04 2023-06-07 Nlight, Inc. Optical fiducial generation for galvanometric scanner calibration
US10763640B2 (en) * 2017-04-24 2020-09-01 Nlight, Inc. Low swap two-phase cooled diode laser package
US10211593B1 (en) * 2017-10-18 2019-02-19 Luminar Technologies, Inc. Optical amplifier with multi-wavelength pumping
US10998689B2 (en) * 2018-01-19 2021-05-04 Shailendhar Saraf Systems, apparatus, and methods for producing ultra stable, single-frequency, single-transverse-mode coherent light in solid-state lasers
EP3750218A4 (en) 2018-02-06 2021-11-03 Nlight, Inc. DIODE LASER DEVICE WITH FAC LENS BEAM STEERING OUTSIDE THE PLANE
US11158990B2 (en) * 2018-03-13 2021-10-26 Nufern Optical fiber amplifier system and methods of using same
CN108879303B (zh) * 2018-07-20 2023-11-14 中国人民解放军国防科技大学 基于全反射和部分反射的双向光纤端帽的全光纤振荡器
EP3639730A1 (en) * 2018-10-16 2020-04-22 Koninklijke Philips N.V. Supply of a sensor of an interventional device
JP6826089B2 (ja) * 2018-10-30 2021-02-03 ファナック株式会社 ファイバレーザ用光ファイバ、ファイバレーザ及びファイバレーザ用光ファイバの製造方法
US20200295521A1 (en) * 2019-03-11 2020-09-17 Vescent Photonics LLC All Polarization-Maintaining, Passively Mode-Locked Linear Fiber Laser Oscillator
US11876337B2 (en) 2019-10-25 2024-01-16 Clemson University Three-level system fiber lasers incorporating an all-solid photonic bandgap fiber
US20210305763A1 (en) * 2020-03-24 2021-09-30 David Stucker Composite fiber laser assembly
US20220399699A1 (en) * 2020-12-28 2022-12-15 BWT Beijing Ltd. Semiconductor-fiber-laser assembly and fiber laser
CN113300197B (zh) * 2021-05-06 2022-11-01 南京帕卓丽电子科技有限公司 一种多芯光纤通信***以泵浦单元为中心的中继光放大***
CN113675710A (zh) * 2021-08-17 2021-11-19 中国电子科技集团公司第十四研究所 一种分布式光纤放大器及其阵列

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141473A1 (en) * 1998-07-02 2002-10-03 General Scanning, Inc. Controlling laser polarization
US6711918B1 (en) * 2001-02-06 2004-03-30 Sandia National Laboratories Method of bundling rods so as to form an optical fiber preform
US6825974B2 (en) * 2001-11-06 2004-11-30 Sandia National Laboratories Linearly polarized fiber amplifier
US7116887B2 (en) * 2002-03-19 2006-10-03 Nufern Optical fiber
US7317857B2 (en) * 2004-05-03 2008-01-08 Nufem Optical fiber for delivering optical energy to or from a work object
CN101854026A (zh) * 2010-05-18 2010-10-06 中国科学院上海光学精密机械研究所 集成式激光二极管腔内泵浦的全固态激光器
CN103022868A (zh) * 2012-12-25 2013-04-03 中国电子科技集团公司第十一研究所 一种脉冲光纤激光器

Family Cites Families (362)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3388461A (en) 1965-01-26 1968-06-18 Sperry Rand Corp Precision electrical component adjustment method
GB1502127A (en) 1975-01-27 1978-02-22 Xerox Corp Geometrical transformations in optics
US4266851A (en) 1979-11-06 1981-05-12 International Telephone And Telegraph Corporation Coupler for a concentric core optical fiber
US4252403A (en) 1979-11-06 1981-02-24 International Telephone And Telegraph Corporation Coupler for a graded index fiber
US4475789A (en) 1981-11-09 1984-10-09 Canadian Patents & Development Limited Optical fiber power tap
US4475027A (en) 1981-11-17 1984-10-02 Allied Corporation Optical beam homogenizer
US4713518A (en) 1984-06-08 1987-12-15 Semiconductor Energy Laboratory Co., Ltd. Electronic device manufacturing methods
US4953947A (en) 1986-08-08 1990-09-04 Corning Incorporated Dispersion transformer having multichannel fiber
RU2021881C1 (ru) 1986-10-17 1994-10-30 Борд оф Риджентс, Дзе Юниверсити оф Тексас Систем Способ изготовления детали и устройство для его осуществления
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5008555A (en) 1988-04-08 1991-04-16 Eaton Leonard Technologies, Inc. Optical probe with overlapping detection fields
US5082349A (en) 1988-04-25 1992-01-21 The Board Of Trustees Of The Leland Stanford Junior University Bi-domain two-mode single crystal fiber devices
DE3833992A1 (de) 1988-10-06 1990-04-12 Messerschmitt Boelkow Blohm Bestrahlungseinrichtung
JPH0748330B2 (ja) 1989-02-21 1995-05-24 帝国通信工業株式会社 フレキシブル基板内蔵の電子部品樹脂モールドケース及びその製造方法
US5153773A (en) 1989-06-08 1992-10-06 Canon Kabushiki Kaisha Illumination device including amplitude-division and beam movements
ATE114195T1 (de) 1989-08-14 1994-12-15 Ciba Geigy Ag Lichtwellenleitersteckverbindung.
JPH03216287A (ja) 1990-01-19 1991-09-24 Fanuc Ltd レーザ切断加工方法
US5231464A (en) 1990-03-26 1993-07-27 Research Development Corporation Of Japan Highly directional optical system and optical sectional image forming apparatus employing the same
RU2008742C1 (ru) 1991-03-04 1994-02-28 Рыков Вениамин Васильевич Способ легирования полупроводников
GB9106874D0 (en) 1991-04-02 1991-05-22 Lumonics Ltd Optical fibre assembly for a laser system
US6569382B1 (en) 1991-11-07 2003-05-27 Nanogen, Inc. Methods apparatus for the electronic, homogeneous assembly and fabrication of devices
US5252991A (en) 1991-12-17 1993-10-12 Hewlett-Packard Company Media edge sensor utilizing a laser beam scanner
DE4200587C1 (en) 1992-01-11 1993-04-01 Schott Glaswerke, 6500 Mainz, De Light wave applicator for cutting and coagulating biological tissue - applies laser beam via flexible optical fibre having non-constant refractive index profile along its cross=section
US5475415A (en) 1992-06-03 1995-12-12 Eastman Kodak Company Optical head and printing system forming interleaved output laser light beams
JP3175994B2 (ja) 1993-04-15 2001-06-11 松下電工株式会社 レーザ照射方法及びレーザ照射装置、並びに立体回路の形成方法、表面処理方法、粉末付着方法
RU2111520C1 (ru) 1993-07-21 1998-05-20 Фирма "Самсунг Электроникс Ко., Лтд." Оптический процессор с бустерным выходом
US5427733A (en) 1993-10-20 1995-06-27 United Technologies Corporation Method for performing temperature-controlled laser sintering
US5393482A (en) 1993-10-20 1995-02-28 United Technologies Corporation Method for performing multiple beam laser sintering employing focussed and defocussed laser beams
JP3531199B2 (ja) 1994-02-22 2004-05-24 三菱電機株式会社 光伝送装置
US5656186A (en) 1994-04-08 1997-08-12 The Regents Of The University Of Michigan Method for controlling configuration of laser induced breakdown and ablation
US5566196A (en) 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
US5903696A (en) 1995-04-21 1999-05-11 Ceramoptec Industries Inc Multimode optical waveguides, waveguide components and sensors
US5748824A (en) 1995-11-17 1998-05-05 Corning Incorporated Positive dispersion optical waveguide
US5745284A (en) 1996-02-23 1998-04-28 President And Fellows Of Harvard College Solid-state laser source of tunable narrow-bandwidth ultraviolet radiation
US5909306A (en) 1996-02-23 1999-06-01 President And Fellows Of Harvard College Solid-state spectrally-pure linearly-polarized pulsed fiber amplifier laser system useful for ultraviolet radiation generation
US5761234A (en) 1996-07-09 1998-06-02 Sdl, Inc. High power, reliable optical fiber pumping system with high redundancy for use in lightwave communication systems
US5864430A (en) 1996-09-10 1999-01-26 Sandia Corporation Gaussian beam profile shaping apparatus, method therefor and evaluation thereof
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
UA47454C2 (uk) 1996-12-20 2002-07-15 Научний Центр Волоконной Оптікі Прі Інстітутє Общєй Фізікі Россійской Акадєміі Наук Волоконний конвертор діаметра поля моди, спосіб локальної зміни показника заломлення оптичних хвильоводів та спосіб виготовлення заготівок для оптичних хвильоводів
US5986807A (en) 1997-01-13 1999-11-16 Xerox Corporation Single binary optical element beam homogenizer
EP1433760B1 (en) 1997-02-14 2008-05-14 Nippon Telegraph and Telephone Corporation Optical fibre splicing structure
JPH10321502A (ja) 1997-05-16 1998-12-04 Nikon Corp 荷電粒子線投影方法
DE19723269A1 (de) * 1997-06-03 1998-12-10 Heidelberger Druckmasch Ag Festkörperlaser mit einer oder mehreren Pumplichtquellen
JPH11780A (ja) 1997-06-10 1999-01-06 Ishikawajima Harima Heavy Ind Co Ltd レーザ・ウォータジェット複合切断装置
EP0886174A3 (en) 1997-06-18 2001-03-07 Nippon Telegraph And Telephone Corporation White optical pulse source and applications
US5818630A (en) 1997-06-25 1998-10-06 Imra America, Inc. Single-mode amplifiers and compressors based on multi-mode fibers
DE19746171C2 (de) 1997-10-18 2001-05-17 Deutsche Telekom Ag Vorrichtung zum Auskoppeln von Signalen aus einem Lichtwellenleiter
DE19782307T1 (de) 1997-12-26 2001-02-01 Mitsubishi Electric Corp Laserbearbeitungsgerät
WO1999045419A1 (en) 1998-03-04 1999-09-10 Sdl, Inc. Optical couplers for multimode fibers
JP3396422B2 (ja) 1998-04-01 2003-04-14 日本電信電話株式会社 光ファイバの接続方法ならびに接続装置
JP3389101B2 (ja) 1998-06-03 2003-03-24 日本電信電話株式会社 光ファイバ接続部および該光ファイバ接続部を用いた光増幅器
US6490376B1 (en) 1998-09-17 2002-12-03 Metrologic Instruments, Inc. Skew processing of raster scan images
US6275630B1 (en) 1998-11-17 2001-08-14 Bayspec, Inc. Compact double-pass wavelength multiplexer-demultiplexer
US6310995B1 (en) 1998-11-25 2001-10-30 University Of Maryland Resonantly coupled waveguides using a taper
JP2002531937A (ja) * 1998-12-02 2002-09-24 コーニング インコーポレイテッド 脱着可能な集成カード型プラグイン励起レーザ装置
US6483973B1 (en) 1999-04-09 2002-11-19 Fitel Usa Corp. Cladding member for optical fibers and optical fibers formed with the cladding member
TW482705B (en) 1999-05-28 2002-04-11 Electro Scient Ind Inc Beam shaping and projection imaging with solid state UV Gaussian beam to form blind vias
US6839163B1 (en) * 1999-09-01 2005-01-04 Avanex Corporation Apparatus and method for making an optical fiber amplifier
NO994363L (no) 1999-09-09 2001-03-12 Optomed As Fiberoptisk probe for temperaturmÕlinger i biologiske media
CA2293132C (en) 1999-12-24 2007-03-06 Jocelyn Lauzon Triple-clad rare-earth doped optical fiber and applications
US7068900B2 (en) 1999-12-24 2006-06-27 Croteau Andre Multi-clad doped optical fiber
US6330382B1 (en) 2000-01-19 2001-12-11 Corning Incorporated Mode conditioning for multimode fiber systems
US7098084B2 (en) 2000-03-08 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US6496301B1 (en) 2000-03-10 2002-12-17 The United States Of America As Represented By The Secretary Of The Navy Helical fiber amplifier
US6559585B2 (en) 2000-05-26 2003-05-06 Kabushiki Kaisha Toshiba Color cathode ray tube
US6477307B1 (en) 2000-10-23 2002-11-05 Nufern Cladding-pumped optical fiber and methods for fabricating
US7193771B1 (en) 2001-01-04 2007-03-20 Lockheed Martin Coherent Technologies, Inc. Power scalable optical systems for generating, transporting, and delivering high power, high quality laser beams
JP2002214460A (ja) 2001-01-19 2002-07-31 Japan Aviation Electronics Industry Ltd 光導波路デバイスおよびその製造方法
EP1366383A1 (en) 2001-01-25 2003-12-03 Omniguide Communications Inc. Photonic crystal optical waveguides having tailored dispersion profiles
AU2002240145B2 (en) 2001-01-25 2006-06-29 Omniguide, Inc. Low-loss photonic crystal waveguide having large core radius
WO2002061467A2 (en) 2001-01-31 2002-08-08 Omniguide Communications Electromagnetic mode conversion in photonic crystal multimode waveguides
US20020110328A1 (en) * 2001-02-14 2002-08-15 Bischel William K. Multi-channel laser pump source for optical amplifiers
US6542665B2 (en) 2001-02-17 2003-04-01 Lucent Technologies Inc. GRIN fiber lenses
US6426840B1 (en) 2001-02-23 2002-07-30 3D Systems, Inc. Electronic spot light control
US6724528B2 (en) 2001-02-27 2004-04-20 The United States Of America As Represented By The Secretary Of The Navy Polarization-maintaining optical fiber amplifier employing externally applied stress-induced birefringence
JP3399434B2 (ja) 2001-03-02 2003-04-21 オムロン株式会社 高分子成形材のメッキ形成方法と回路形成部品とこの回路形成部品の製造方法
US6777645B2 (en) 2001-03-29 2004-08-17 Gsi Lumonics Corporation High-speed, precision, laser-based method and system for processing material of one or more targets within a field
US20020168139A1 (en) 2001-03-30 2002-11-14 Clarkson William Andrew Optical fiber terminations, optical couplers and optical coupling methods
US6556340B1 (en) * 2001-04-06 2003-04-29 Onetta, Inc. Optical amplifiers and upgrade modules
US7174078B2 (en) 2001-04-11 2007-02-06 Crystal Fibre A/S Dual core photonic crystal fibers (PCF) with special dispersion properties
JP2004535595A (ja) 2001-04-12 2004-11-25 オムニガイド コミュニケーションズ インコーポレイテッド 高屈折率コントラストの光導波路および用途
US7009140B2 (en) 2001-04-18 2006-03-07 Cymer, Inc. Laser thin film poly-silicon annealing optical system
US6597829B2 (en) 2001-04-27 2003-07-22 Robert H. Cormack 1xN optical fiber switch
US6831934B2 (en) 2001-05-29 2004-12-14 Apollo Instruments, Inc. Cladding pumped fiber laser
EP1421419B1 (en) 2001-07-12 2007-09-12 OCG Technology Licensing, LLC Optical fiber
EP1421365A1 (en) 2001-07-19 2004-05-26 Tufts University Optical array device and methods of use thereof for screening, analysis and manipulation of particles
EP1419361A1 (en) 2001-08-23 2004-05-19 Zygo Corporation Dynamic interferometric controlling direction of input beam
KR100439088B1 (ko) 2001-09-14 2004-07-05 한국과학기술원 상호 자기 정렬된 다수의 식각 홈을 가지는 광결합 모듈및 그 제작방법
US6866429B2 (en) 2001-09-26 2005-03-15 Np Photonics, Inc. Method of angle fusion splicing silica fiber with low-temperature non-silica fiber
JP2003129862A (ja) 2001-10-23 2003-05-08 Toshiba Corp タービン翼の製造方法
US20040097103A1 (en) 2001-11-12 2004-05-20 Yutaka Imai Laser annealing device and thin-film transistor manufacturing method
WO2003044914A1 (en) 2001-11-16 2003-05-30 Optical Power Systems Inc. Multi-wavelength raman fiber laser
EP1456919B1 (en) 2001-11-19 2007-09-26 Chiral Photonics, Inc. Chiral fiber laser apparatus and method
US6819815B1 (en) 2001-12-12 2004-11-16 Calient Networks Method and apparatus for indirect adjustment of optical switch reflectors
JP2003200286A (ja) 2001-12-28 2003-07-15 Fujitsu Ltd レーザマイクロスポット溶接装置
EP1340583A1 (en) 2002-02-20 2003-09-03 ALSTOM (Switzerland) Ltd Method of controlled remelting of or laser metal forming on the surface of an article
US6768577B2 (en) 2002-03-15 2004-07-27 Fitel Usa Corp. Tunable multimode laser diode module, tunable multimode wavelength division multiplex raman pump, and amplifier, and a system, method, and computer program product for controlling tunable multimode laser diodes, raman pumps, and raman amplifiers
US6700161B2 (en) 2002-05-16 2004-03-02 International Business Machines Corporation Variable resistor structure and method for forming and programming a variable resistor for electronic circuits
US6816662B2 (en) 2002-09-19 2004-11-09 3M Innovative Properties Company Article for cleaving and polishing optical fiber ends
ITMI20022328A1 (it) 2002-10-31 2004-05-01 Carlo Nobili S P A Rubinetterie Cartuccia di miscelazione per rubinetti miscelatori monoleva
DE10352590A1 (de) 2002-11-12 2004-05-27 Toptica Photonics Ag Verfahren zum Herstellen einer optischen Faser mit einer Auskoppelstelle für Streulicht, Verwendung einer optischen Faser und Vorrichtung zum Überwachen von in einer optischen Faser geführter Lichtleistung
CA2504951A1 (en) 2002-11-22 2004-06-10 Omniguide Communications Inc. Dielectric waveguide and method of making the same
US20060067632A1 (en) 2002-11-23 2006-03-30 Crystal Fibre A/S Splicing and connectorization of photonic crystal fibres
US7099535B2 (en) 2002-12-31 2006-08-29 Corning Incorporated Small mode-field fiber lens
ATE496411T1 (de) * 2003-02-07 2011-02-15 Spi Lasers Uk Ltd Vorrichtung zur abgabe optischer strahlung
US7046432B2 (en) * 2003-02-11 2006-05-16 Coherent, Inc. Optical fiber coupling arrangement
JP4505190B2 (ja) 2003-03-27 2010-07-21 新日本製鐵株式会社 レーザ切断装置
DE20320269U1 (de) 2003-03-28 2004-04-15 Raylase Ag Optisches System zur variablen Fokussierung eines Lichtstrahls
US7050660B2 (en) 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US6963062B2 (en) 2003-04-07 2005-11-08 Eksigent Technologies, Llc Method for multiplexed optical detection including a multimode optical fiber in which propagation modes are coupled
DE10321102A1 (de) 2003-05-09 2004-12-02 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co.Kg Aufteilungsvorrichtung für Lichtstrahlen
US6801550B1 (en) * 2003-05-30 2004-10-05 Bae Systems Information And Electronic Systems Integration Inc. Multiple emitter side pumping method and apparatus for fiber lasers
WO2004106903A1 (ja) 2003-05-30 2004-12-09 Olympus Corporation 受光ユニットおよびそれを含む測定装置
US20050041697A1 (en) 2003-06-12 2005-02-24 Martin Seifert Portable laser
US6970624B2 (en) 2003-06-13 2005-11-29 Furukawa Electric North America Cladding pumped optical fiber gain devices
US7170913B2 (en) * 2003-06-19 2007-01-30 Multiwave Photonics, Sa Laser source with configurable output beam characteristics
GB0314817D0 (en) 2003-06-25 2003-07-30 Southampton Photonics Ltd Apparatus for providing optical radiation
JP2005046247A (ja) 2003-07-31 2005-02-24 Topcon Corp レーザ手術装置
JP2005070608A (ja) 2003-08-27 2005-03-17 Mitsubishi Cable Ind Ltd ダブルクラッドファイバとマルチモードファイバの接続構造及びその接続方法
US7151787B2 (en) 2003-09-10 2006-12-19 Sandia National Laboratories Backscatter absorption gas imaging systems and light sources therefore
US7016573B2 (en) * 2003-11-13 2006-03-21 Imra America, Inc. Optical fiber pump multiplexer
US7738514B2 (en) 2003-12-04 2010-06-15 Optical Air Data Systems, Llc Very high power pulsed fiber laser
GB0328370D0 (en) 2003-12-05 2004-01-14 Southampton Photonics Ltd Apparatus for providing optical radiation
US7527977B1 (en) 2004-03-22 2009-05-05 Sandia Corporation Protein detection system
US7349123B2 (en) 2004-03-24 2008-03-25 Lexmark International, Inc. Algorithms and methods for determining laser beam process direction position errors from data stored on a printhead
US7486705B2 (en) 2004-03-31 2009-02-03 Imra America, Inc. Femtosecond laser processing system with process parameters, controls and feedback
US7804864B2 (en) 2004-03-31 2010-09-28 Imra America, Inc. High power short pulse fiber laser
US7167622B2 (en) 2004-04-08 2007-01-23 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US7231122B2 (en) 2004-04-08 2007-06-12 Omniguide, Inc. Photonic crystal waveguides and systems using such waveguides
US20070195850A1 (en) 2004-06-01 2007-08-23 Trumpf Photonics Inc. Diode laser array stack
CN1584644A (zh) 2004-06-02 2005-02-23 中国科学院上海光学精密机械研究所 光束整形光纤
US7146073B2 (en) 2004-07-19 2006-12-05 Quantronix Corporation Fiber delivery system with enhanced passive fiber protection and active monitoring
US20060024001A1 (en) 2004-07-28 2006-02-02 Kyocera Corporation Optical fiber connected body with mutually coaxial and inclined cores, optical connector for forming the same, and mode conditioner and optical transmitter using the same
JP4519560B2 (ja) 2004-07-30 2010-08-04 株式会社メディアプラス 積層造形方法
JP4293098B2 (ja) 2004-09-15 2009-07-08 セイコーエプソン株式会社 レーザー加工方法、レーザー加工装置、電子機器
US8834457B2 (en) 2004-09-22 2014-09-16 Cao Group, Inc. Modular surgical laser systems
JP2006098085A (ja) 2004-09-28 2006-04-13 Toyota Motor Corp 肉盛層の組織予測方法
JP2006171348A (ja) * 2004-12-15 2006-06-29 Nippon Steel Corp 半導体レーザ装置
JP4328724B2 (ja) 2005-01-17 2009-09-09 富士通株式会社 光波形測定装置および光波形測定方法
CA2601739C (en) 2005-03-18 2013-06-25 Danmarks Tekniske Universitet Optical manipulation system using a plurality of optical traps
KR101284201B1 (ko) 2005-05-02 2013-07-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 레이저 조사 장치 및 레이저 조사 방법
WO2007013608A1 (ja) * 2005-07-28 2007-02-01 Matsushita Electric Industrial Co., Ltd. レーザ光源およびディスプレイ装置
US7391561B2 (en) 2005-07-29 2008-06-24 Aculight Corporation Fiber- or rod-based optical source featuring a large-core, rare-earth-doped photonic-crystal device for generation of high-power pulsed radiation and method
US7674719B2 (en) 2005-08-01 2010-03-09 Panasonic Corporation Via hole machining for microwave monolithic integrated circuits
US7218440B2 (en) 2005-08-25 2007-05-15 Northrop Grumman Corporation Photonic bandgap fiber for generating near-diffraction-limited optical beam comprising multiple coaxial wavelengths
CN100349554C (zh) * 2005-08-31 2007-11-21 北京光电技术研究所 激光治疗***
DE102006042280A1 (de) 2005-09-08 2007-06-06 IMRA America, Inc., Ann Arbor Bearbeitung von transparentem Material mit einem Ultrakurzpuls-Laser
US20070075060A1 (en) 2005-09-30 2007-04-05 Shedlov Matthew S Method of manufacturing a medical device from a workpiece using a pulsed beam of radiation or particles having an adjustable pulse frequency
US7463805B2 (en) 2005-10-20 2008-12-09 Corning Incorporated High numerical aperture optical fiber
US7551813B2 (en) 2005-11-03 2009-06-23 Gennadii Ivtsenkov Simplified fiber-optic switch for all-optical fiber-optic lines
US7099533B1 (en) 2005-11-08 2006-08-29 Chenard Francois Fiber optic infrared laser beam delivery system
US8728387B2 (en) 2005-12-06 2014-05-20 Howmedica Osteonics Corp. Laser-produced porous surface
US7764854B2 (en) 2005-12-27 2010-07-27 Ofs Fitel Llc Optical fiber with specialized index profile to compensate for bend-induced distortions
US7920767B2 (en) 2005-12-27 2011-04-05 Ofs Fitel, Llc Suppression of higher-order modes by resonant coupling in bend-compensated optical fibers
US7783149B2 (en) 2005-12-27 2010-08-24 Furukawa Electric North America, Inc. Large-mode-area optical fibers with reduced bend distortion
CA2533674A1 (en) 2006-01-23 2007-07-23 Itf Technologies Optiques Inc./Itf Optical Technologies Inc. Optical fiber component package for high power dissipation
FR2897007B1 (fr) 2006-02-03 2008-04-11 Air Liquide Procede de coupage avec un laser a fibre avec controle des parametres du faisceau
US7466731B2 (en) * 2006-02-24 2008-12-16 Northrop Grumman Corporation High efficiency, high power cryogenic laser system
WO2007103898A2 (en) 2006-03-03 2007-09-13 Aculight Corporation Diode-laser-pump module with integrated signal ports for pumping amplifying fibers
US7835608B2 (en) 2006-03-21 2010-11-16 Lockheed Martin Corporation Method and apparatus for optical delivery fiber having cladding with absorbing regions
US7628865B2 (en) 2006-04-28 2009-12-08 Asml Netherlands B.V. Methods to clean a surface, a device manufacturing method, a cleaning assembly, cleaning apparatus, and lithographic apparatus
JP5089950B2 (ja) * 2006-05-30 2012-12-05 株式会社フジクラ マルチポートカプラ、光増幅器及びファイバレーザ
WO2007148127A2 (en) * 2006-06-23 2007-12-27 Gsi Group Limited Fibre laser system
WO2008003138A1 (en) 2006-07-07 2008-01-10 The University Of Sydney Tunable optical supercontinuum enhancement
US7257293B1 (en) 2006-07-14 2007-08-14 Furukawa Electric North America, Inc. Fiber structure with improved bend resistance
US7880961B1 (en) 2006-08-22 2011-02-01 Sandia Corporation Optical amplifier exhibiting net phase-mismatch selected to at least partially reduce gain-induced phase-matching during operation and method of operation
US7674999B2 (en) 2006-08-23 2010-03-09 Applied Materials, Inc. Fast axis beam profile shaping by collimation lenslets for high power laser diode based annealing system
US8554035B2 (en) 2006-10-26 2013-10-08 Cornell Research Foundation, Inc. Production of optical pulses at a desired wavelength using soliton self-frequency shift in higher-order-mode fiber
WO2008053915A1 (fr) 2006-11-02 2008-05-08 Nabtesco Corporation Système optique de balayage, dispositif de traitement laser et dispositif optique de balayage
RU68715U1 (ru) 2006-11-20 2007-11-27 Государственное образовательное учреждение высшего профессионального образования "Кубанский государственный университет" (ГОУ ВПО КубГУ) Интегрально-оптический делитель излучения
GB0623835D0 (en) 2006-11-29 2007-01-10 Cascade Technologies Ltd Multi mode fibre perturber
KR100872281B1 (ko) 2006-12-15 2008-12-05 삼성전기주식회사 나노와이어 구조체를 이용한 반도체 발광소자 및 그제조방법
US7526166B2 (en) 2007-01-31 2009-04-28 Corning Incorporated High numerical aperture fiber
ITMI20070150A1 (it) 2007-01-31 2008-08-01 Univ Pavia Metodo e dispositivo ottico per la manipolazione di una particella
JP4674696B2 (ja) 2007-04-03 2011-04-20 日本特殊陶業株式会社 スパークプラグの製造方法
DE112008000872T5 (de) 2007-04-04 2010-01-28 Mitsubishi Electric Corp. Vorrichtung und Verfahren zur Laserbearbeitung
WO2008133242A1 (ja) 2007-04-25 2008-11-06 Fujikura Ltd. 希土類添加コア光ファイバ
JP5124225B2 (ja) 2007-05-15 2013-01-23 株式会社フジクラ 光ファイバ融着接続構造
DE102007063066A1 (de) 2007-05-31 2008-12-24 Lpi Light Power Instruments Gmbh Verfahren und Vorrichtung zur Charakterisierung einer Probe mit zwei oder mehr optischen Fallen
KR101464583B1 (ko) 2007-07-16 2014-12-23 코랙티브 하이-테크 인코퍼레이티드 포스포실리케이트 유리를 구비한 발광 디바이스
US7924500B1 (en) 2007-07-21 2011-04-12 Lockheed Martin Corporation Micro-structured fiber profiles for mitigation of bend-loss and/or mode distortion in LMA fiber amplifiers, including dual-core embodiments
US7876495B1 (en) 2007-07-31 2011-01-25 Lockheed Martin Corporation Apparatus and method for compensating for and using mode-profile distortions caused by bending optical fibers
JP2009032910A (ja) 2007-07-27 2009-02-12 Hitachi Cable Ltd 光ファイバレーザ用光ファイバ及びその製造方法、並びに光ファイバレーザ
KR100906287B1 (ko) 2007-08-22 2009-07-06 광주과학기술원 측면 조영이 가능한 광섬유 프로브 및 광섬유 프로브 제조방법
US8027557B2 (en) 2007-09-24 2011-09-27 Nufern Optical fiber laser, and components for an optical fiber laser, having reduced susceptibility to catastrophic failure under high power operation
US7593435B2 (en) 2007-10-09 2009-09-22 Ipg Photonics Corporation Powerful fiber laser system
CN104766929A (zh) 2007-10-23 2015-07-08 皇家飞利浦电子股份有限公司 用于照明的装置、方法和***
DE102007052657B4 (de) 2007-11-05 2010-03-11 Raylase Ag Linsenvorrichtung mit einer verschiebbaren Linse und Laserscannersystem
TWI352215B (en) 2007-11-21 2011-11-11 Ind Tech Res Inst Beam shaping module
RU2365476C1 (ru) 2007-11-26 2009-08-27 Государственное Научное Учреждение "Институт Физики Имени Б.И. Степанова Национальной Академии Наук Беларуси" Устройство многопозиционной лазерной обработки
JP5201975B2 (ja) 2007-12-14 2013-06-05 株式会社キーエンス レーザ加工装置、レーザ加工方法
US7957438B2 (en) 2007-12-17 2011-06-07 Jds Uniphase Corporation Method and device for monitoring light
BY12235C1 (zh) 2007-12-18 2009-08-30
US7982161B2 (en) 2008-03-24 2011-07-19 Electro Scientific Industries, Inc. Method and apparatus for laser drilling holes with tailored laser pulses
JP2009248157A (ja) 2008-04-08 2009-10-29 Miyachi Technos Corp レーザ加工方法及びレーザ加工装置
US8135275B2 (en) 2008-05-29 2012-03-13 Heismann Fred L Measuring chromatic dispersion in an optical wavelength channel of an optical fiber link
JP2010015135A (ja) 2008-06-03 2010-01-21 Hitachi Cable Ltd 光ファイバ固定溝付き光導波路基板およびその製造方法、その製造方法に用いる型、ならびに、その光導波路基板を含む光電気混載モジュール
JP5795531B2 (ja) 2008-06-20 2015-10-14 ザ ジェネラル ホスピタル コーポレイション フューズドファイバオプティックカプラ構造、及びその使用方法
EP2324379B1 (en) 2008-06-25 2017-05-03 Coractive High-Tech Inc. Energy dissipating packages for high power operation of optical fiber components
US8139951B2 (en) 2008-06-26 2012-03-20 Igor Samartsev Fiber-optic long-haul transmission system
IT1391337B1 (it) 2008-08-07 2011-12-05 Univ Roma Sistema integrato di localizzazione radioelettrica basato su forma d'onda rumorose
US8711471B2 (en) 2008-08-21 2014-04-29 Nlight Photonics Corporation High power fiber amplifier with stable output
US9158070B2 (en) 2008-08-21 2015-10-13 Nlight Photonics Corporation Active tapers with reduced nonlinearity
US8873134B2 (en) 2008-08-21 2014-10-28 Nlight Photonics Corporation Hybrid laser amplifier system including active taper
US9285541B2 (en) 2008-08-21 2016-03-15 Nlight Photonics Corporation UV-green converting fiber laser using active tapers
FR2935916B1 (fr) 2008-09-12 2011-08-26 Air Liquide Procede et installation de coupage laser avec modification du facteur de qualite du faisceau laser
KR20100045675A (ko) 2008-10-24 2010-05-04 삼성전자주식회사 표시 장치
US8270786B2 (en) 2008-11-21 2012-09-18 Ofs Fitel, Llc Optical fiber mode couplers
CN102281984B (zh) 2008-11-21 2015-12-16 普雷茨特两合公司 用于监视要在工件上实施的激光加工过程的方法和装置以及具有这种装置的激光加工头
US8317413B2 (en) 2008-11-25 2012-11-27 Gooch and Hoosego PLC Packaging for fused fiber devices for high power applications
CN101435918B (zh) 2008-11-26 2010-04-14 北京交通大学 一种激光二极管列阵/面阵的尾纤耦合输出装置
US7839901B2 (en) 2008-12-03 2010-11-23 Ipg Photonics Corporation High power fiber laser system with cladding light stripper
US8526110B1 (en) 2009-02-17 2013-09-03 Lockheed Martin Corporation Spectral-beam combining for high-power fiber-ring-laser systems
US8275007B2 (en) 2009-05-04 2012-09-25 Ipg Photonics Corporation Pulsed laser system with optimally configured saturable absorber
DE102009026526A1 (de) 2009-05-28 2010-12-02 Robert Bosch Gmbh Lasereinrichtung
TWI594828B (zh) 2009-05-28 2017-08-11 伊雷克托科學工業股份有限公司 應用於雷射處理工件中的特徵的聲光偏轉器及相關雷射處理方法
US8622625B2 (en) 2009-05-29 2014-01-07 Corning Incorporated Fiber end face void closing method, a connectorized optical fiber assembly, and method of forming same
DE102009027348A1 (de) 2009-06-30 2011-01-05 Trumpf Laser Gmbh + Co. Kg Optische Strahlweiche
US8593725B2 (en) 2009-08-04 2013-11-26 Jds Uniphase Corporation Pulsed optical source
US8184363B2 (en) 2009-08-07 2012-05-22 Northrop Grumman Systems Corporation All-fiber integrated high power coherent beam combination
US8755649B2 (en) * 2009-10-19 2014-06-17 Lockheed Martin Corporation In-line forward/backward fiber-optic signal analyzer
CN102136669A (zh) * 2009-12-08 2011-07-27 韩国电子通信研究院 双包层光纤装置
US8251475B2 (en) 2009-12-14 2012-08-28 Eastman Kodak Company Position detection with two-dimensional sensor in printer
US20130023086A1 (en) 2009-12-21 2013-01-24 Sharp Kabushiki Kaisha Active matrix substrate, display panel provided with same, and method for manufacturing active matrix substrate
US8452145B2 (en) 2010-02-24 2013-05-28 Corning Incorporated Triple-clad optical fibers and devices with triple-clad optical fibers
KR101100343B1 (ko) 2010-03-03 2011-12-30 도요 가라스 가부시키가이샤 측방출사 장치 및 그 제조방법
US20110305256A1 (en) * 2010-03-05 2011-12-15 TeraDiode, Inc. Wavelength beam combining based laser pumps
CN103069502A (zh) 2010-03-23 2013-04-24 凯博瑞奥斯技术公司 使用金属纳米线的透明导体的蚀刻构图
CN102844942B (zh) 2010-03-30 2015-06-10 株式会社藤仓 光强度监控电路以及光纤激光器***
US8243764B2 (en) 2010-04-01 2012-08-14 Tucker Derek A Frequency conversion of a laser beam using a partially phase-mismatched nonlinear crystal
DE102010003750A1 (de) 2010-04-08 2011-10-13 Trumpf Laser- Und Systemtechnik Gmbh Verfahren und Anordnung zum Verändern der Strahlprofilcharakteristik eines Laserstrahls mittels einer Mehrfachclad-Faser
WO2011130131A1 (en) 2010-04-12 2011-10-20 Lockheed Martin Corporation Beam diagnostics and feedback system and method for spectrally beam-combined lasers
JP5603931B2 (ja) 2010-04-16 2014-10-08 シャープ株式会社 液晶表示装置
EP2572412B1 (en) 2010-05-16 2016-08-24 Fianium Inc. Tunable pulse width laser
JP4882027B2 (ja) 2010-05-28 2012-02-22 信越ポリマー株式会社 透明導電膜及びこれを用いた導電性基板
US20110297229A1 (en) 2010-06-02 2011-12-08 University Of Delaware Integrated concentrating photovoltaics
US8254417B2 (en) 2010-06-14 2012-08-28 Ipg Photonics Corporation Fiber laser system with controllably alignable optical components thereof
CN101907742B (zh) 2010-06-21 2012-07-11 哈尔滨工程大学 基于多芯保偏光纤的阵列式光镊及其制备方法
WO2012002086A1 (en) 2010-06-28 2012-01-05 Sumitomo Electric Industries, Ltd. Laser apparatus
US8027555B1 (en) 2010-06-30 2011-09-27 Jds Uniphase Corporation Scalable cladding mode stripper device
US8509577B2 (en) 2010-07-02 2013-08-13 St. Jude Medical, Inc. Fiberoptic device with long focal length gradient-index or grin fiber lens
US9112166B2 (en) 2010-07-30 2015-08-18 The Board Of Trustees Of The Leland Stanford Junior Univerity Conductive films
US8740432B2 (en) 2010-08-25 2014-06-03 Colorado State University Research Foundation Transmission of laser pulses with high output beam quality using step-index fibers having large cladding
KR101405414B1 (ko) 2010-08-26 2014-06-11 한국전자통신연구원 광섬유 커플러, 그의 제조방법 및 능동 광모듈
JP5694711B2 (ja) 2010-09-09 2015-04-01 株式会社アマダミヤチ Mopa方式ファイバレーザ加工装置及び励起用レーザダイオード電源装置
US8730568B2 (en) * 2010-09-13 2014-05-20 Calmar Optcom, Inc. Generating laser pulses based on chirped pulse amplification
US8433161B2 (en) 2010-09-21 2013-04-30 Textron Systems Corporation All glass fiber laser cladding mode stripper
US8554037B2 (en) 2010-09-30 2013-10-08 Raydiance, Inc. Hybrid waveguide device in powerful laser systems
FI125306B (fi) 2010-10-21 2015-08-31 Rofin Sinar Laser Gmbh Paketoitu kuituoptinen komponentti ja menetelmä sen valmistamiseksi
JP4667535B1 (ja) 2010-11-02 2011-04-13 株式会社フジクラ 増幅用光ファイバ、及び、それを用いた光ファイバ増幅器及び共振器
WO2012075509A2 (en) 2010-12-03 2012-06-07 Ofs Fitel, Llc Large-mode-area optical fibers with bend compensation
US9507084B2 (en) 2010-12-03 2016-11-29 Ofs Fitel, Llc Single-mode, bend-compensated, large-mode-area optical fibers designed to accomodate simplified fabrication and tighter bends
US20120148823A1 (en) 2010-12-13 2012-06-14 Innovation & Infinity Global Corp. Transparent conductive structure and method of making the same
US20120156458A1 (en) 2010-12-16 2012-06-21 Innovation & Infinity Global Corp. Diffusion barrier structure, transparent conductive structure and method for making the same
US10095016B2 (en) 2011-01-04 2018-10-09 Nlight, Inc. High power laser system
US8835804B2 (en) 2011-01-04 2014-09-16 Nlight Photonics Corporation Beam homogenizer
KR101180289B1 (ko) 2011-01-13 2012-09-07 연세대학교 산학협력단 하이브리드 광결정광섬유 및 이의 제조방법.
RU2553796C2 (ru) 2011-01-28 2015-06-20 Аркам Аб Способ изготовления трехмерного тела
US9014220B2 (en) * 2011-03-10 2015-04-21 Coherent, Inc. High-power CW fiber-laser
US8903211B2 (en) * 2011-03-16 2014-12-02 Ofs Fitel, Llc Pump-combining systems and techniques for multicore fiber transmissions
WO2012141847A1 (en) 2011-04-15 2012-10-18 Bae Systems Information And Electronic Systems Integration Inc. Integrated parameter monitoring in a fiber laser/amplifier
GB2490143B (en) 2011-04-20 2013-03-13 Rolls Royce Plc Method of manufacturing a component
GB2490354A (en) 2011-04-28 2012-10-31 Univ Southampton Laser with axially-symmetric beam profile
DE102011075213B4 (de) 2011-05-04 2013-02-21 Trumpf Laser Gmbh + Co. Kg Laserbearbeitungssystem mit einem in seiner Brillanz einstellbaren Bearbeitungslaserstrahl
US8974900B2 (en) 2011-05-23 2015-03-10 Carestream Health, Inc. Transparent conductive film with hardcoat layer
US9175183B2 (en) 2011-05-23 2015-11-03 Carestream Health, Inc. Transparent conductive films, methods, and articles
JP6140072B2 (ja) 2011-05-31 2017-05-31 古河電気工業株式会社 レーザ装置および加工装置
US9170367B2 (en) 2011-06-16 2015-10-27 Lawrence Livermore National Security, Llc Waveguides having patterned, flattened modes
JP5688333B2 (ja) 2011-06-23 2015-03-25 富士フイルム株式会社 ポリマーフィルム、位相差フィルム、偏光板、液晶表示装置、Rth発現剤及びメロシアニン系化合物
CN103229370B (zh) 2011-06-29 2015-06-10 松下电器产业株式会社 光纤维激光器
US8537871B2 (en) 2011-07-11 2013-09-17 Nlight Photonics Corporation Fiber cladding light stripper
US8804233B2 (en) 2011-08-09 2014-08-12 Ofs Fitel, Llc Fiber assembly for all-fiber delivery of high energy femtosecond pulses
US8774236B2 (en) * 2011-08-17 2014-07-08 Veralas, Inc. Ultraviolet fiber laser system
FR2980277B1 (fr) 2011-09-20 2013-10-11 Commissariat Energie Atomique Fibre optique microstructuree a grand coeur et a mode fondamental aplati, et procede de conception de celle ci, application a la microfabrication par laser
EP2587564A1 (en) 2011-10-27 2013-05-01 Merck Patent GmbH Selective etching of a matrix comprising silver nanowires or carbon nanotubes
DE102011119319A1 (de) 2011-11-24 2013-05-29 Slm Solutions Gmbh Optische Bestrahlungsvorrichtung für eine Anlage zur Herstellung von dreidimensionalen Werkstücken durch Bestrahlen von Pulverschichten eines Rohstoffpulvers mit Laserstrahlung
WO2013080097A1 (en) 2011-11-29 2013-06-06 Koninklijke Philips Electronics N.V. A wave guide
CN104136952B (zh) 2011-12-09 2018-05-25 朗美通运营有限责任公司 用于改变激光束的光束参数积的光学器件和方法
US9339890B2 (en) 2011-12-13 2016-05-17 Hypertherm, Inc. Optimization and control of beam quality for material processing
WO2013090759A1 (en) 2011-12-14 2013-06-20 Ofs Fitel, Llc Bend compensated filter fiber
US9322989B2 (en) 2011-12-14 2016-04-26 Ofs Fitel, Llc Optical fiber with distributed bend compensated filtering
JP6279484B2 (ja) 2011-12-19 2018-02-14 アイピージー フォトニクス コーポレーション 980nm高出力シングルモードファイバポンプレーザシステム
US9911550B2 (en) 2012-03-05 2018-03-06 Apple Inc. Touch sensitive device with multiple ablation fluence values
JP5216151B1 (ja) 2012-03-15 2013-06-19 株式会社フジクラ 光ファイバコンバイナ、及び、それを用いたレーザ装置
US9200899B2 (en) 2012-03-22 2015-12-01 Virtek Vision International, Inc. Laser projection system and method
CN102621628A (zh) 2012-03-22 2012-08-01 华中科技大学 一种环形掺杂层光纤、其制备方法及包含该光纤的激光器
WO2013145840A1 (ja) 2012-03-28 2013-10-03 株式会社フジクラ ファイバ光学系、及び、その製造方法
US9904002B2 (en) 2012-05-11 2018-02-27 Empire Technology Development Llc Transparent illumination panels
US8947768B2 (en) 2012-05-14 2015-02-03 Jds Uniphase Corporation Master oscillator—power amplifier systems
RU2528287C2 (ru) 2012-05-15 2014-09-10 Открытое Акционерное Общество "Научно-Исследовательский Институт Технического Стекла" Способ лазерной резки хрупких неметаллических материалов и устройство для его осуществления
US8953914B2 (en) 2012-06-26 2015-02-10 Corning Incorporated Light diffusing fibers with integrated mode shaping lenses
US8849078B2 (en) 2012-09-24 2014-09-30 Ipg Photonics Corporation High power laser system with multiport circulator
DE102012219074A1 (de) 2012-10-19 2014-04-24 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Laserschneidmaschine und Verfahren zum Schneiden von Werkstücken unterschiedlicher Dicke
WO2014074947A2 (en) 2012-11-08 2014-05-15 Das, Suman Systems and methods for additive manufacturing and repair of metal components
CN103056513B (zh) 2012-12-14 2014-12-10 武汉锐科光纤激光器技术有限责任公司 一种激光加工***
US8948218B2 (en) 2012-12-19 2015-02-03 Ipg Photonics Corporation High power fiber laser system with distributive mode absorber
US9776428B2 (en) 2012-12-28 2017-10-03 Shenzhen Pu Ying Innovation Technology Corporation Limited Multi-purpose printer
GB2511923B (en) 2013-01-28 2018-10-03 Lumentum Operations Llc A cladding light stripper and method of manufacturing
US9842665B2 (en) 2013-02-21 2017-12-12 Nlight, Inc. Optimization of high resolution digitally encoded laser scanners for fine feature marking
JP6580995B2 (ja) * 2013-02-28 2019-09-25 アイピージー フォトニクス コーポレーション 低モード高パワーファイバ結合器
SG11201507650UA (en) 2013-03-15 2015-10-29 Rolls Royce Corp Repair of gas turbine engine components
SI2972528T1 (en) 2013-03-15 2018-03-30 Nlight, Inc. Wrapped non-circular and non-elastic fibers and devices that they use
US20140271328A1 (en) 2013-03-15 2014-09-18 Matterfab Corp. Apparatus and methods for manufacturing
CN103173760A (zh) 2013-03-18 2013-06-26 张翀昊 利用第二道激光束提高3d打印金属件的致密性的方法
DE102013205029A1 (de) 2013-03-21 2014-09-25 Siemens Aktiengesellschaft Verfahren zum Laserschmelzen mit mindestens einem Arbeitslaserstrahl
EP2784045A1 (en) 2013-03-29 2014-10-01 Osseomatrix Selective laser sintering/melting process
US8988669B2 (en) 2013-04-23 2015-03-24 Jds Uniphase Corporation Power monitor for optical fiber using background scattering
JP6334682B2 (ja) 2013-04-29 2018-05-30 ヌブル インク 三次元プリンティングのための装置、システムおよび方法
CA2910062A1 (en) 2013-05-06 2014-11-13 Vrije Universiteit Brussel Effective structural health monitoring
US9496683B1 (en) 2013-05-17 2016-11-15 Nlight, Inc. Wavelength locking multi-mode diode lasers with core FBG
DE102013215362B4 (de) 2013-08-05 2015-09-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren, Computerprogrammprodukt und Vorrichtung zum Bestimmen einer Einschweißtiefe beim Laserschweißen
US9128259B2 (en) 2013-08-16 2015-09-08 Coherent, Inc. Fiber-coupled laser with adjustable beam-parameter-product
US20150096963A1 (en) 2013-10-04 2015-04-09 Gerald J. Bruck Laser cladding with programmed beam size adjustment
CN103490273A (zh) 2013-10-10 2014-01-01 武汉锐科光纤激光器技术有限责任公司 一种高功率光纤传输***
US9442246B2 (en) 2013-10-14 2016-09-13 Futurewei Technologies, Inc. System and method for optical fiber
CN103521920B (zh) 2013-10-16 2015-09-30 江苏大学 一种无需吹送辅助气体的激光加工装置及方法
DE102013017792A1 (de) 2013-10-28 2015-04-30 Cl Schutzrechtsverwaltungs Gmbh Verfahren zum Herstellen eines dreidimensionalen Bauteils
CN103606803A (zh) 2013-11-07 2014-02-26 北京工业大学 一种用于高功率光纤激光器的光纤包层光剥离器
US9214781B2 (en) 2013-11-21 2015-12-15 Lockheed Martin Corporation Fiber amplifier system for suppression of modal instabilities and method
US10328685B2 (en) 2013-12-16 2019-06-25 General Electric Company Diode laser fiber array for powder bed fabrication or repair
US10532556B2 (en) 2013-12-16 2020-01-14 General Electric Company Control of solidification in laser powder bed fusion additive manufacturing using a diode laser fiber array
DE102013226298A1 (de) 2013-12-17 2015-06-18 MTU Aero Engines AG Belichtung bei generativer Fertigung
US9435964B2 (en) 2014-02-26 2016-09-06 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product
WO2015130920A1 (en) 2014-02-26 2015-09-03 Bien Chann Systems and methods for multiple-beam laser arrangements with variable beam parameter product
US9366887B2 (en) 2014-02-26 2016-06-14 TeraDiode, Inc. Systems and methods for laser systems with variable beam parameter product utilizing thermo-optic effects
US10343237B2 (en) 2014-02-28 2019-07-09 Ipg Photonics Corporation System and method for laser beveling and/or polishing
EP2921285B1 (en) 2014-03-21 2018-05-02 British Telecommunications public limited company Printed apparatus comprising a 3D printed thermionic device and method and apparatus for its manufacture
US20150283613A1 (en) 2014-04-02 2015-10-08 Arcam Ab Method for fusing a workpiece
JP2015206993A (ja) 2014-04-09 2015-11-19 住友電気工業株式会社 グレーティング製造装置およびグレーティング製造方法
US10069271B2 (en) 2014-06-02 2018-09-04 Nlight, Inc. Scalable high power fiber laser
WO2015189883A1 (ja) 2014-06-09 2015-12-17 株式会社日立製作所 レーザ溶接方法
US9397466B2 (en) 2014-07-11 2016-07-19 Nlight, Inc. High power chirally coupled core optical amplification systems and methods
CN105720463B (zh) 2014-08-01 2021-05-14 恩耐公司 光纤和光纤传输的激光器中的背向反射保护与监控
US9638867B2 (en) 2014-10-06 2017-05-02 Corning Incorporated Skew managed multi-core optical fiber interconnects
US9634462B2 (en) 2014-10-15 2017-04-25 Nlight, Inc. Slanted FBG for SRS suppression
WO2016061657A1 (en) 2014-10-23 2016-04-28 Coractive High-Tech Inc. Optical fiber assembly with beam shaping component
US10112262B2 (en) 2014-10-28 2018-10-30 General Electric Company System and methods for real-time enhancement of build parameters of a component
US10048661B2 (en) 2014-12-17 2018-08-14 General Electric Company Visualization of additive manufacturing process data
EP3045300A1 (en) 2015-01-15 2016-07-20 Airbus Operations GmbH Stiffening component and method for manufacturing a stiffening component
US9837783B2 (en) 2015-01-26 2017-12-05 Nlight, Inc. High-power, single-mode fiber sources
DE102015103127A1 (de) 2015-03-04 2016-09-08 Trumpf Laser- Und Systemtechnik Gmbh Bestrahlungssystem für eine Vorrichtung zur generativen Fertigung
US10050404B2 (en) 2015-03-26 2018-08-14 Nlight, Inc. Fiber source with cascaded gain stages and/or multimode delivery fiber with low splice loss
US9325151B1 (en) 2015-03-27 2016-04-26 Ofs Fitel, Llc Systems and techniques for compensation for the thermo-optic effect in active optical fibers
US9667025B2 (en) 2015-04-06 2017-05-30 Bae Systems Information And Electronic Systems Integration Inc. System and method for increasing power emitted from a fiber laser
RU2611738C2 (ru) 2015-04-08 2017-02-28 Иван Владимирович Мазилин Способ нанесения и лазерной обработки теплозащитного покрытия (варианты)
US11022760B2 (en) 2015-04-29 2021-06-01 Nlight, Inc. Portable industrial fiber optic inspection scope
US10246742B2 (en) 2015-05-20 2019-04-02 Quantum-Si Incorporated Pulsed laser and bioanalytic system
GB201510220D0 (en) 2015-06-11 2015-07-29 Renishaw Plc Additive manufacturing apparatus and method
CN107924023B (zh) 2015-07-08 2020-12-01 恩耐公司 具有用于增加的光束参数乘积的中心折射率受抑制的纤维
CN104999670B (zh) 2015-08-25 2017-05-10 长春理工大学 一种多光束激光干涉跨尺度3d打印***及方法
WO2017053985A1 (en) 2015-09-24 2017-03-30 Nlight, Inc. Beam parameter product (bpp) control by varying fiber-to-fiber angle
US10207489B2 (en) 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
WO2017075258A1 (en) 2015-10-30 2017-05-04 Seurat Technologies, Inc. Additive manufacturing system and method
US9917410B2 (en) 2015-12-04 2018-03-13 Nlight, Inc. Optical mode filter employing radially asymmetric fiber
CN105383060B (zh) 2015-12-07 2017-10-17 济南鲁洋科技有限公司 一种3d打印供料、助熔及助晶整平一体化装置
JP6998311B2 (ja) 2016-02-05 2022-02-04 ニューファーン 光ファイバシステム
WO2017161334A1 (en) 2016-03-18 2017-09-21 Nlight, Inc. Spectrally multiplexing diode pump modules to improve brightness
JP6796142B2 (ja) 2016-04-06 2020-12-02 テラダイオード, インコーポレーテッド 可変レーザビームプロファイルのための光ファイバ構造および方法
US10114172B2 (en) 2016-06-20 2018-10-30 Ofs Fitel, Llc Multimode beam combiner
DE202016004237U1 (de) 2016-08-17 2016-08-23 Kredig GmbH Positioniereinrichtung
EP3519871A1 (en) 2016-09-29 2019-08-07 NLIGHT, Inc. Adjustable beam characteristics
US10730785B2 (en) 2016-09-29 2020-08-04 Nlight, Inc. Optical fiber bending mechanisms

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020141473A1 (en) * 1998-07-02 2002-10-03 General Scanning, Inc. Controlling laser polarization
US6711918B1 (en) * 2001-02-06 2004-03-30 Sandia National Laboratories Method of bundling rods so as to form an optical fiber preform
US6825974B2 (en) * 2001-11-06 2004-11-30 Sandia National Laboratories Linearly polarized fiber amplifier
US7116887B2 (en) * 2002-03-19 2006-10-03 Nufern Optical fiber
US7317857B2 (en) * 2004-05-03 2008-01-08 Nufem Optical fiber for delivering optical energy to or from a work object
CN101854026A (zh) * 2010-05-18 2010-10-06 中国科学院上海光学精密机械研究所 集成式激光二极管腔内泵浦的全固态激光器
CN103022868A (zh) * 2012-12-25 2013-04-03 中国电子科技集团公司第十一研究所 一种脉冲光纤激光器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106299982A (zh) * 2016-09-20 2017-01-04 光惠(上海)激光科技有限公司 可扩型双面高效光纤激光器冷却***
CN117335256A (zh) * 2023-12-01 2024-01-02 上海频准激光科技有限公司 一种光信号功率控制***
CN117335256B (zh) * 2023-12-01 2024-03-08 上海频准激光科技有限公司 一种光信号功率控制***

Also Published As

Publication number Publication date
CN105161958B (zh) 2019-12-17
CN110854655A (zh) 2020-02-28
US20150349481A1 (en) 2015-12-03
US20210226405A1 (en) 2021-07-22
US10069271B2 (en) 2018-09-04
US10971885B2 (en) 2021-04-06
US20180198252A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
CN105161958A (zh) 可扩展的大功率光纤激光器
EP2951625B1 (en) Fibre optical laser combiner
JP5684926B2 (ja) マルチコア光ファイバ用光増幅器
US9492890B2 (en) Laser machining device
US10951001B2 (en) Tandem pumped fiber laser or fiber amplifier
EP4336681A3 (en) Laser beams methods and systems
US11592620B1 (en) Optical fiber combiner
US9268095B2 (en) All-fiber low mode beam combiner for high power and high beam quality
US9322993B1 (en) All pump combiner with cladless inputs
US9768581B2 (en) Pump and signal combiner for high numerical aperture use
WO2018236664A1 (en) LASER SYSTEMS AND METHODS
CN112542760A (zh) 一种光束质量可调的光纤激光器及输出可调激光的方法
CN103424868A (zh) 激光耦合单元、模块及激光光源模组
CN202649601U (zh) 激光耦合单元、模块及激光光源模组
WO2016171856A1 (en) Apparatus for combining outputs of fiber-lasers
CN206638884U (zh) 光学瞄准装置及枪械
US9966722B1 (en) Fiber laser amplifier with switched multiple fiber output
US9362709B1 (en) Optical fiber laser architecture with partitioned pump and signal coupling
Nouri et al. Orbital Angular Momentum Multiplexing using Low-Cost VCSELs for Datacenter Applications
AU740988B2 (en) Communications apparatus comprising optical amplifier
CN105322435A (zh) 一种双端光纤耦合输出的半导体激光器及激光***
US9595803B2 (en) Fat-fiber adapter for pump use
CN113572016A (zh) 半导体激光器
WO2021033000A1 (en) Optical interposers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
CB02 Change of applicant information

Address after: Washington State

Applicant after: NLIGHT, Inc.

Address before: Washington State

Applicant before: Enai Laser Technology Co.,Ltd.

COR Change of bibliographic data
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191217