CN105045103A - 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法 - Google Patents

一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法 Download PDF

Info

Publication number
CN105045103A
CN105045103A CN201510445635.7A CN201510445635A CN105045103A CN 105045103 A CN105045103 A CN 105045103A CN 201510445635 A CN201510445635 A CN 201510445635A CN 105045103 A CN105045103 A CN 105045103A
Authority
CN
China
Prior art keywords
servo
friction
manipulator
adder calculator
lugre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510445635.7A
Other languages
English (en)
Other versions
CN105045103B (zh
Inventor
王三秀
陈�光
陈月芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201510445635.7A priority Critical patent/CN105045103B/zh
Publication of CN105045103A publication Critical patent/CN105045103A/zh
Application granted granted Critical
Publication of CN105045103B publication Critical patent/CN105045103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

本发明公开了一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法,通过设置第一加法运算器、第二加法运算器、计算转矩控制器、RBF神经网络运算器、第三加法运算器及基于LuGre摩擦模型的伺服机械手结构;利用RBF神经网络运算器采用RBF神经网络进行逼近基于LuGre摩擦模型的伺服机械手结构的摩擦不确定项,并与计算转矩控制器结合,以计算转矩控制为基础,通过神经网络对摩擦进行学习和逼近,从而有效补偿摩擦的影响,提高机械手结构跟踪控制精度。本发明的RBF神经网络运算器通过强大的学习和适应能力,能够对机械手结构的摩擦进行动态补偿,从而提高控制性能,能够克服现有的伺服机械手结构摩擦补偿方法的补偿效果差、跟踪误差大的缺点。

Description

一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法
技术领域
本发明涉及一种伺服机械手结构摩擦补偿方法,具体涉及一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法。
背景技术
不管是旋转关节还是平移关节的伺服机械手***中,都不可避免的存在摩擦,而摩擦是影响高性能伺服机械手控制精度的一个重要因素。为了提高控制***的性能,必须采取有效的摩擦补偿方法减弱或消除摩擦对伺服机械手***的影响。而建立准确的摩擦模型是实现摩擦有效补偿的关键。摩擦模型通常有静态摩擦模型和动态模型两种,静态摩擦模型通常不能真实地反应实际摩擦对***造成的非线性影响,在一些低速、高精度的伺服运动控制***中,并不能获得满意的控制结果。而动态摩擦模型中的LuGre模型给出了任意稳定状态的摩擦特性,包括摩擦滞后现象、静摩擦时的弹簧特性、依赖于速度改变的变临界摩擦力以及Stribeck效应等特性,可以较好的反应实际的摩擦特性。
为了克服摩擦给伺服机械手控制***带来的危害,专家学者们提出了一些摩擦补偿方法以提高***的性能。PID控制简单实用,但由于非线性摩擦可能导致稳态误差或目标位置附近的极限环,因此PID并不适用高精度机械手控制。有的将摩擦视为一种外界扰动,采用扰动观测器对摩擦进行补偿,但扰动观测器基于线性控制理论,只对一定带宽信号有效,但是摩擦作用于整个带宽区域,因此也有不足;或者采用实验模型的前馈补偿,但由于速度跟踪误差作用,会产生补偿误差。因此寻找其他切实有效的摩擦补偿办法仍是人们所关心的问题。
发明内容
本发明的目的在于提供一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法,通过设置第一加法运算器、第二加法运算器、计算转矩控制器、RBF神经网络运算器、第三加法运算器及基于LuGre摩擦模型的伺服机械手结构;利用RBF神经网络运算器采用RBF神经网络进行逼近基于LuGre摩擦模型的摩擦不确定性,并与计算转矩控制器结合,以计算转矩控制为基础,通过神经网络对摩擦进行学习和逼近,从而有效补偿摩擦的影响,提高机械手结构跟踪控制精度。本发明公开的一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法,RBF神经网络运算器通过强大的学习和适应能力,能够对机械手结构的摩擦进行动态补偿,从而提高控制性能,能够克服现有的伺服机械手结构摩擦补偿方法的补偿效果差、跟踪误差大的缺点。
为了达到上述目的,本发明通过以下技术方案实现:
一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***,其特点是,该摩擦补偿控制***包含:
第一加法运算器,所述第一加法运算器的第一输入端输入期望接触面相对运动速度信号;
第二加法运算器,所述第二加法运算器的第一输入端输入期望接触面相对运动位移信号;
计算转矩控制器,所述计算转矩控制器的两输入端分别与所述第一加法运算器的输出端、所述第二加法运算器的输出端连接;
RBF神经网络运算器,所述RBF神经网络运算器的两个输入端分别与所述第一加法运算器的输出端、所述第二加法运算器的输出端连接;
第三加法运算器,所述第三加法运算器的第一输入端与所述计算转矩控制器的输出端连接,该第三加法运算器的第二输入端与所述RBF神经网络运算器的输出端连接;
基于LuGre摩擦模型的伺服机械手结构,所述基于LuGre摩擦模型的伺服机械手结构的输入端与所述第三加法运算器的输出端连接,该基于LuGre摩擦模型的伺服机械手结构的第一输出端与所述第一加法运算器的第二输入端连接,该基于LuGre摩擦模型的伺服机械手结构的第二输出端与所述第二加法运算器的第二输入端连接。
优选地,
所述第一加法运算器将所述基于LuGre摩擦模型的伺服机械手结构输出的实际接触面相对运动速度信号与所述期望的接触面相对运动速度信号进行相减运算,并将运算结果分别输入所述RBF神经网络运算器的一个输入端、所述计算转矩控制器的一个输入端;
所述第二加法运算器将所述基于LuGre摩擦模型的伺服机械手结构输出的实际接触面相对运动位移信号与所述期望的接触面相对运动位移信号进行相减运算,并将运算结果分别输入所述RBF神经网络运算器的另一个输入端、所述计算转矩控制器的另一个输入端。
优选地,
所述计算转矩控制器根据获取的所述第一加法运算器运算结果及所述第二加法运算器运算结果计算出第一控制输入力矩;
所述RBF神经网络运算器根据获取的所述第一加法运算器运算结果及所述第二加法运算器运算结果计算出所述基于LuGre摩擦模型的伺服机械手结构建立的摩擦不确定项。
优选地,
所述第三加法运算器将所述计算转矩控制器计算出的第一控制输入力矩与所述RBF神经网络运算器计算出的所述基于LuGre摩擦模型的伺服机械手结构建立的摩擦不确定项进行相加运算,获得完整控制输入力矩,并将所述完整控制输入力矩输入所述基于LuGre摩擦模型的伺服机械手结构中;
所述基于LuGre摩擦模型的伺服机械手结构建立一阶伺服机械手机构动力学模型,并根据所述第三加法运算器获得所述完整控制输入力矩计算出实际接触面相对运动速度、实际接触面相对运动位移。
一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法,其特点是,该摩擦补偿控制方法包含:
S1,采用基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构动力学模型;
S2,采用第一加法运算器、第二加法运算器及计算转矩控制器计算出第一控制输入力矩;
S3,采用第一加法运算器、第二加法运算器及RBF神经网络运算器计算出所述基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构的摩擦不确定项;
S4,采用第三加法运算器计算出完整控制输入力矩,并输入至所述基于LuGre摩擦模型。
优选地,所述步骤S1包含:
基于LuGre摩擦模型的伺服机械手结构建立的动力学模型具体如下:
其中,G0=mglcosθ,θ为关节位置,τ为完整控制输入力矩,为实际接触面相对运动速度信号,为实际接触面相对运动加速度信号,F为摩擦力矩;m—伺服机械手结构质量,l—伺服机械手结构连杆长度。
优选地,所述步骤S2包含:
S2.1,根据设定的期望接触面相对运动速度信号期望接触面相对运动位移信号θd,以及所述基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构输出的实际接触面相对运动速度信号期望接触面相对运动位移信号θ,所述第二加法运算器计算出所述伺服机械手结构的位置跟踪误差e,所述第一加法运算器计算出所述伺服机械手结构的速度跟踪误差
e=θ-θd(2);
S2.2,根据所述步骤S2.1算出的计算出位置跟踪误差e及速度跟踪误差所述计算转矩控制器计算出第一控制输入力矩τ0
其中,Kp、Kd分别为位置跟踪误差e及速度跟踪误差e&的比例微分控制增益。
优选地,所述步骤S3包含:
S3.1,当τ=τ0时,将式(4)带入式(1)中得到:
则式(5)可转换为:
其中,
S3.2,采用所述RBF神经网络运算器估算所述基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构的摩擦不确定项:
其中,x∈Rn是神经网络的输入向量;为神经网络权值矩阵;是神经网络的高斯基函数,其中,ci,σi分别表示第i个高斯基函数的中心和宽度;ε是神经网络逼近误差。
优选地,所述步骤S4包含:
S4.1,根据所述步骤S2获取的第一控制输入力矩τ0、所述步骤S3获取的所述基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构的摩擦不确定项,所述第三加法运算器计算出完整控制输入力矩τ:
S4.2,将所述完整控制输入力矩τ输入所述基于LuGre摩擦模型的伺服机械手结构,输出经补偿控制的实际接触面相对运动速度信号、实际接触面相对运动位移信号。
本发明与现有技术相比具有以下优点:
本发明公开的一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法,针对伺服机械手存在的摩擦会降低控制***的性能,采用RBF神经网络运算器进行逼近LuGre动态摩擦模型,并与计算转矩控制器相结合。神经网络能够以任意给定精度逼近任意非线性函数,可以用来逼近具有非线性特性的摩擦力,只要选取合适的网络结构和训练方法,就可以无需假设摩擦力模型形式,通过离线或在线学习得到与摩擦力对应的网络输出,从而将其补偿。
附图说明
图1为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***的整体结构示意图。
图2为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的整体流程图。
图3为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的现有技术仅采用计算转矩控制器作用下的位置跟踪示意图。
图4为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的现有技术仅采用计算转矩控制器作用下的跟踪误差示意图。
图5为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的位置跟踪实施例示意图。
图6为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的跟踪误差实施例示意图。
图7为本发明一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的摩擦及其神经网络补偿实施例示意图。
具体实施方式
以下结合附图,通过详细说明一个较佳的具体实施例,对本发明做进一步阐述。
如图1所示,一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***,该摩擦补偿控制***包含:第一加法运算器1、第二加法运算器2、计算转矩控制器3、RBF神经网络运算器4(RadiacalBasisFunction,径向基函数,简称RBF)、第三加法运算器5及基于LuGre摩擦模型的伺服机械手结构6。
其中,第一加法运算器1的第一输入端输入期望接触面相对运动速度信号。第二加法运算器2的第一输入端输入期望接触面相对运动位移信号。计算转矩控制器3的两输入端分别与第一加法运算器1的输出端、第二加法运算器2的输出端连接。RBF神经网络运算器4的两个输入端分别与第一加法运算器1的输出端、第二加法运算器2的输出端连接。第三加法运算器5的第一输入端与计算转矩控制器3的输出端连接,该第三加法运算器5的第二输入端与RBF神经网络运算器4的输出端连接。基于LuGre摩擦模型的伺服机械手结构6的输入端与第三加法运算器5的输出端连接,该基于LuGre摩擦模型的伺服机械手结构6的第一输出端与第一加法运算器1的第二输入端连接,该基于LuGre摩擦模型的伺服机械手结构6的第二输出端与第二加法运算器2的第二输入端连接。
本发明中,第一加法运算器1将基于LuGre摩擦模型的伺服机械手结构6输出的实际接触面相对运动速度信号与期望的接触面相对运动速度信号进行相减运算,并将运算结果分别输入RBF神经网络运算器4的一个输入端、计算转矩控制器3的一个输入端;
第二加法运算器2将基于LuGre摩擦模型的伺服机械手结构6输出的实际接触面相对运动位移信号θ与期望的接触面相对运动位移信号θd进行相减运算,并将运算结果e分别输入RBF神经网络运算器4的另一个输入端、计算转矩控制器3的另一个输入端。
本发明中,计算转矩控制器3根据获取的第一加法运算器1运算结果及第二加法运算器2运算结果e计算出第一控制输入力矩;
RBF神经网络运算器4根据获取的第一加法运算器1运算结果及第二加法运算器2运算结果e计算出基于LuGre摩擦模型的伺服机械手结构6建立伺服机械手结构的摩擦不确定项
本发明中,第三加法运算器5将计算转矩控制器3计算出的第一控制输入力矩τ0与RBF神经网络运算器4计算出的基于LuGre摩擦模型的伺服机械手结构6建立伺服机械手结构的摩擦不确定项进行相加运算,获得完整控制输入力矩τ,并将完整控制输入力矩τ输入基于LuGre摩擦模型的伺服机械手结构6中。
基于LuGre摩擦模型的伺服机械手结构6建立一阶伺服机械手机构动力学模型,并根据第三加法运算器5获得完整控制输入力矩τ计算出实际接触面相对运动速度实际接触面相对运动位移θ。
如图2所示,一种基于LuGre摩擦模型的伺服机械手结构6摩擦补偿控制方法,该摩擦补偿控制方法包含:
S1,采用基于LuGre摩擦模型的伺服机械手结构6建立的动力学模型。该步骤S1包含:
基于LuGre摩擦模型的伺服机械手结构6建立的动力学模型具体如下:
其中,G0=mglcosθ,θ为关节位置,τ为完整控制输入力矩,为实际接触面相对运动加速度信号,F为摩擦力矩;m—伺服机械手结构质量,l—伺服机械手结构连杆长度。
弹性鬃毛的平均变形用z表示,则基于LuGre摩擦模型的伺服机械手结构6的总摩擦力矩F描述为
其中,表示不同的摩擦效应。σ0和σ1是动态摩擦参数,其中σ0为鬃毛的刚性系数,σ1是鬃毛阻尼系数;Fc,Fs,α,Vs为静态摩擦参数,其中Fc为库伦摩擦,Fs为静摩擦,α是黏性摩擦系数,Vs为斯特里贝克(Stribeck)切换速度。
S2,采用第一加法运算器1、第二加法运算器2及计算转矩控制器3计算出第一控制输入力矩。该步骤S2包含:
S2.1,根据设定的期望接触面相对运动速度信号期望接触面相对运动位移信号θd,以及基于LuGre摩擦模型的伺服机械手结构6建立伺服机械手结构输出的实际接触面相对运动速度信号期望接触面相对运动位移信号θ,第二加法运算器2计算出伺服机械手结构的位置跟踪误差e,第一加法运算器1计算出伺服机械手结构的速度跟踪误差
e=θ-θd(2);
S2.2,根据步骤S2.1算出的计算出位置跟踪误差e及速度跟踪误差e&,计算转矩控制器3计算出第一控制输入力矩τ0
其中,Kp、Kd分别为位置跟踪误差e及速度跟踪误差的比例微分控制增益。
计算转矩控制器3中的微分控制规律能反映输入信号的变化趋势,产生有效的早期修正信号,以增加摩擦补偿控制***的阻尼程度,从而改善摩擦补偿控制***的稳定性。
S3,采用第一加法运算器1、第二加法运算器2及RBF神经网络运算器4计算出基于LuGre摩擦模型的伺服机械手结构6的摩擦不确定项。该步骤S3包含:
S3.1,当τ=τ0时,将式(4)带入式(1)中得到:
则式(5)可转换为:
其中,
由于摩擦很难直接检测出来,从而无法建立其精确的摩擦模型。因此,本发明采用RBF神经网络运算器4利用RBF神经网络具有以任意精度逼近任意非线性函数的万能逼近特性,计算出伺服机械手结构的摩擦不确定项。
S3.2,采用RBF神经网络运算器4估算基于LuGre摩擦模型的伺服机械手结构6建立伺服机械手结构的摩擦不确定项:
其中,x∈Rn是神经网络的输入向量;为神经网络权值矩阵;是神经网络的高斯基函数,其中,ci,σi分别表示第i个高斯基函数的中心和宽度;ε是神经网络逼近误差。
本发明中,神经网络权值矩阵为:
其中,γ>0,k1>0;
矩阵P为对称正定矩阵,并满足Lyapunov(李雅普诺夫)方程:
PA+ATP=-Q(13);
其中,Q≥0。
S4,采用第三加法运算器5计算出完整控制输入力矩,并输入至基于LuGre摩擦模型的伺服机械手结构6建立伺服机械手结构。该步骤S4包含:
S4.1,根据步骤S2获取的第一控制输入力矩τ0、步骤S3获取的基于LuGre摩擦模型的伺服机械手结构6的摩擦不确定项,第三加法运算器5计算出完整控制输入力矩τ:
本发明中,由于ε是神经网络逼近误差,该误差值远小于τ0因此公式(8)中将ε忽略计算。
S4.2,将完整控制输入力矩τ输入基于LuGre摩擦模型的伺服机械手结构6,输出经补偿控制的实际接触面相对运动速度信号、实际接触面相对运动位移信号。
本发明实施例中,基于LuGre摩擦模型的伺服机械手结构6的参数选择为:m=1,l=0.25,g=9.8,取机械手关节角期望接触面相对运动速度信号、期望接触面相对运动位移信号为正弦信号θd=sin(2πt),σ0=260,σ1=2.5,α=0.02,Fc=0.28,Fs=0.34,Vs=0.01。
为了能更好地说明本发明公开的一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法的摩擦补偿效果及轨迹跟踪性能,仿真实验采用2种情况进行:
第1种情况:采用simulink实现控制算法及带有摩擦模型的伺服机械手的描述。采用计算转矩控制,取Kp=20,Kd=5。仿真结果如图3和图4所示。其中图3为关节跟踪情况,实线表示期望运动轨迹,虚线表示实际运行轨迹。图4为关节位置跟踪误差。可以直观的反应出***在单个计算转矩控制器作用下的控制效果。
第2种情况:用本实施例提供的神经网络控制方法对伺服机械手的LuGre摩擦模型进行逼近和补偿,并对伺服机械手做轨迹跟踪控制。控制器参数选取如下:Kp=20,Kd=5,γ=20,k1=0.001。神经网络高斯基函数的中心和宽度的初始值分别为0.6和3.0。采用simulink和S函数进行控制***的设计,仿真结果如图5-图7所示。其中图5为关节位置跟踪情况,实线表示期望运动轨迹,虚线表示实际运行轨迹。图6为位置跟踪误差曲线,可以直观的反应出***在神经网络控制器作用下的控制效果。图7为LuGre摩擦及其神经网络逼近。
从上述仿真结果可得出:单纯的计算转矩控制作用于具有摩擦的伺服机械手结构,***跟踪性能并不好,位置跟踪存在明显的误差。加入神经网络对摩擦进行逼近和补偿之后,***跟踪性能良好,实际输出与参考轨迹之间跟踪误差趋于零,可见摩擦得到了有效的补偿和抑制。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (9)

1.一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***,其特征在于,该摩擦补偿控制***包含:
第一加法运算器,所述第一加法运算器的第一输入端输入期望接触面相对运动速度信号;
第二加法运算器,所述第二加法运算器的第一输入端输入期望接触面相对运动位移信号;
计算转矩控制器,所述计算转矩控制器的两输入端分别与所述第一加法运算器的输出端、所述第二加法运算器的输出端连接;
RBF神经网络运算器,所述RBF神经网络运算器的两个输入端分别与所述第一加法运算器的输出端、所述第二加法运算器的输出端连接;
第三加法运算器,所述第三加法运算器的第一输入端与所述计算转矩控制器的输出端连接,该第三加法运算器的第二输入端与所述RBF神经网络运算器的输出端连接;
基于LuGre摩擦模型的伺服机械手结构,所述基于LuGre摩擦模型的伺服机械手结构的输入端与所述第三加法运算器的输出端连接,该基于LuGre摩擦模型的伺服机械手结构的第一输出端与所述第一加法运算器的第二输入端连接,该基于LuGre摩擦模型的伺服机械手结构的第二输出端与所述第二加法运算器的第二输入端连接。
2.如权利要求1所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***,其特征在于,
所述第一加法运算器将所述基于LuGre摩擦模型的伺服机械手结构输出的实际接触面相对运动速度信号与所述期望的接触面相对运动速度信号进行相减运算,并将运算结果分别输入所述RBF神经网络运算器的一个输入端、所述计算转矩控制器的一个输入端;
所述第二加法运算器将所述基于LuGre摩擦模型的伺服机械手结构输出的实际接触面相对运动位移信号与所述期望的接触面相对运动位移信号进行相减运算,并将运算结果分别输入所述RBF神经网络运算器的另一个输入端、所述计算转矩控制器的另一个输入端。
3.如权利要求2所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***,其特征在于,
所述计算转矩控制器根据获取的所述第一加法运算器运算结果及所述第二加法运算器运算结果计算出第一控制输入力矩;
所述RBF神经网络运算器根据获取的所述第一加法运算器运算结果及所述第二加法运算器运算结果计算出所述基于LuGre摩擦模型的伺服机械手结构建立的摩擦不确定项。
4.如权利要求3所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制***,其特征在于,
所述第三加法运算器将所述计算转矩控制器计算出的第一控制输入力矩与所述RBF神经网络运算器计算出的所述基于LuGre摩擦模型的伺服机械手结构建立的摩擦不确定项进行相加运算,获得完整控制输入力矩,并将所述完整控制输入力矩输入所述基于LuGre摩擦模型的伺服机械手结构中;
所述基于LuGre摩擦模型的伺服机械手结构建立一阶伺服机械手机构动力学模型,并根据所述第三加法运算器获得所述完整控制输入力矩计算出实际接触面相对运动速度、实际接触面相对运动位移。
5.一种基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法,其特征在于,该摩擦补偿控制方法包含:
S1,采用基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构动力学模型;
S2,采用第一加法运算器、第二加法运算器及计算转矩控制器计算出第一控制输入力矩;
S3,采用第一加法运算器、第二加法运算器及RBF神经网络运算器计算出所述基于LuGre摩擦模型的伺服机械手结构建立的摩擦不确定项;
S4,采用第三加法运算器计算出完整控制输入力矩,并输入至所述基于LuGre摩擦模型的伺服机械手结构。
6.如权利要求5所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法,其特征在于,所述步骤S1包含:
基于LuGre摩擦模型的伺服机械手结构建立的动力学模型具体如下:
D 0 θ ·· + C 0 θ · + G 0 = τ + F - - - ( 1 )
其中,G0=mglcosθ,θ为关节位置,τ为完整控制输入力矩,为实际接触面相对运动速度信号,为实际接触面相对运动加速度信号,F为摩擦力矩;m—伺服机械手结构质量,l—伺服机械手结构连杆长度。
7.如权利要求6所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法,其特征在于,所述步骤S2包含:
S2.1,根据设定的期望接触面相对运动速度信号期望接触面相对运动位移信号θd,以及所述基于LuGre摩擦模型的伺服机械手输出的实际接触面相对运动速度信号实际接触面相对运动位移信号θ,所述第二加法运算器计算出所述伺服机械手结构的位置跟踪误差e,所述第一加法运算器计算出所述伺服机械手结构的速度跟踪误差
e=θ-θd(2); e · = θ · - θ · d - - - ( 3 ) ;
S2.2,根据所述步骤S2.1计算出位置跟踪误差e及速度跟踪误差所述计算转矩控制器计算出第一控制输入力矩τ0
τ 0 = D 0 ( θ ·· d - K p e - K d e · ) + C 0 θ · + G 0 - - - ( 4 ) ;
其中,Kp、Kd分别为位置跟踪误差e及速度跟踪误差的比例微分控制增益。
8.如权利要求7所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法,其特征在于,所述步骤S3包含:
S3.1,当τ=τ0时,将式(4)带入式(1)中得到:
e ·· + k p e + k d e · = D 0 - 1 F - - - ( 5 ) ;
则式(5)可转换为:
x · = A x + B ( D 0 - 1 F ) = A x + B f - - - ( 6 ) ;
其中, A = 0 1 - k p - k d , B = 0 1 ;
S3.2,采用所述RBF神经网络运算器估算所述基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构的摩擦不确定项:
其中,x∈Rn是神经网络的输入向量;为神经网络权值矩阵;是神经网络的高斯基函数,其中,ci,σi分别表示第i个高斯基函数的中心和宽度;ε是神经网络逼近误差。
9.如权利要求8所述的基于LuGre摩擦模型的伺服机械手结构摩擦补偿控制方法,其特征在于,所述步骤S4包含:
S4.1,根据所述步骤S2获取的第一控制输入力矩τ0、所述步骤S3获取的所述基于LuGre摩擦模型的伺服机械手结构建立伺服机械手结构的摩擦不确定项,所述第三加法运算器计算出完整控制输入力矩τ:
S4.2,将所述完整控制输入力矩τ输入所述基于LuGre摩擦模型的伺服机械手结构,输出经补偿控制的实际接触面相对运动速度信号、实际接触面相对运动位移信号。
CN201510445635.7A 2015-07-27 2015-07-27 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法 Active CN105045103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510445635.7A CN105045103B (zh) 2015-07-27 2015-07-27 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510445635.7A CN105045103B (zh) 2015-07-27 2015-07-27 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法

Publications (2)

Publication Number Publication Date
CN105045103A true CN105045103A (zh) 2015-11-11
CN105045103B CN105045103B (zh) 2018-06-29

Family

ID=54451723

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510445635.7A Active CN105045103B (zh) 2015-07-27 2015-07-27 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法

Country Status (1)

Country Link
CN (1) CN105045103B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398879A (zh) * 2018-01-31 2018-08-14 湖北工业大学 一种气动位置伺服***自适应反演摩擦补偿控制方法
WO2018205490A1 (zh) * 2017-05-11 2018-11-15 广州视源电子科技股份有限公司 控制机器人转动关节运动的方法和装置及机器人
CN109067271A (zh) * 2018-09-14 2018-12-21 闽江学院 一种基于鲁棒扰动补偿方案的直流电机伺服控制方法
CN109274314A (zh) * 2017-07-18 2019-01-25 发那科株式会社 机器学习装置、伺服电动机控制装置、伺服电动机控制***以及机器学习方法
WO2019092341A1 (fr) * 2017-11-13 2019-05-16 Jtekt Europe Procédé de compensation de frottement dans une direction assistée et procédé d'estimation associé
CN110389556A (zh) * 2018-04-17 2019-10-29 发那科株式会社 控制装置以及控制方法
CN113934183A (zh) * 2021-11-22 2022-01-14 哈尔滨理工大学 一种基于改进萤火虫算法的电液伺服***摩擦补偿方法
CN117656084A (zh) * 2024-01-31 2024-03-08 哈尔滨工业大学 一种基于LuGre模型的摩擦动力学在线辨识方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804940A (en) * 1994-04-08 1998-09-08 Siemens Aktiengesellschaft Device designed to compensate for non-linearity of machine shafts
CN104199295A (zh) * 2014-08-14 2014-12-10 浙江工业大学 基于神经网络的机电伺服***摩擦补偿和变结构控制方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804940A (en) * 1994-04-08 1998-09-08 Siemens Aktiengesellschaft Device designed to compensate for non-linearity of machine shafts
CN104199295A (zh) * 2014-08-14 2014-12-10 浙江工业大学 基于神经网络的机电伺服***摩擦补偿和变结构控制方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘建昌 等: "基于神经网络补偿的机械臂轨迹控制策略的研究", 《控制与决策》 *
李敏 等: "基于模糊RBF神经网络动态摩擦分块补偿的机器人数字鲁棒滑模控制算法", 《中国机械工程》 *
梁捷 等: "空间机械臂关节运动的自适应模糊补偿控制", 《***仿真学报》 *
钟琮玮 等: "基于简化非线性观测器的LuGre动态摩擦力补偿", 《浙江大学学报(工学版)》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018205490A1 (zh) * 2017-05-11 2018-11-15 广州视源电子科技股份有限公司 控制机器人转动关节运动的方法和装置及机器人
CN109274314A (zh) * 2017-07-18 2019-01-25 发那科株式会社 机器学习装置、伺服电动机控制装置、伺服电动机控制***以及机器学习方法
US11656137B2 (en) 2017-11-13 2023-05-23 Jtekt Europe Method for friction compensation in a power steering system and associated estimation method
WO2019092341A1 (fr) * 2017-11-13 2019-05-16 Jtekt Europe Procédé de compensation de frottement dans une direction assistée et procédé d'estimation associé
FR3073638A1 (fr) * 2017-11-13 2019-05-17 Jtekt Europe Procede de compensation de frottement dans une direction assistee et procede d'estimation associe
CN108398879A (zh) * 2018-01-31 2018-08-14 湖北工业大学 一种气动位置伺服***自适应反演摩擦补偿控制方法
CN110389556A (zh) * 2018-04-17 2019-10-29 发那科株式会社 控制装置以及控制方法
CN109067271B (zh) * 2018-09-14 2021-04-27 闽江学院 一种基于鲁棒扰动补偿方案的直流电机伺服控制方法
CN109067271A (zh) * 2018-09-14 2018-12-21 闽江学院 一种基于鲁棒扰动补偿方案的直流电机伺服控制方法
CN113934183A (zh) * 2021-11-22 2022-01-14 哈尔滨理工大学 一种基于改进萤火虫算法的电液伺服***摩擦补偿方法
CN113934183B (zh) * 2021-11-22 2023-03-31 哈尔滨理工大学 一种基于改进萤火虫算法的电液伺服***摩擦补偿方法
CN117656084A (zh) * 2024-01-31 2024-03-08 哈尔滨工业大学 一种基于LuGre模型的摩擦动力学在线辨识方法
CN117656084B (zh) * 2024-01-31 2024-04-05 哈尔滨工业大学 一种基于LuGre模型的摩擦动力学在线辨识方法

Also Published As

Publication number Publication date
CN105045103B (zh) 2018-06-29

Similar Documents

Publication Publication Date Title
CN105045103A (zh) 一种基于LuGre摩擦模型伺服机械手摩擦补偿控制***及方法
CN101846975B (zh) 带有动态摩擦补偿的伺服***自适应鲁棒控制器
Long et al. A vibration control method for hybrid-structured flexible manipulator based on sliding mode control and reinforcement learning
CN104808487A (zh) 一种神经网络自适应鲁棒轨迹跟踪方法及控制器
CN105005195B (zh) 一种上肢康复机器人康复训练运动控制方法
CN102385342B (zh) 虚拟轴机床并联机构运动控制的自适应动态滑模控制方法
CN107561935A (zh) 基于多层神经网络的电机位置伺服***摩擦补偿控制方法
CN106100469B (zh) 基于自适应的电机伺服***鲁棒位置控制器的实现方法
CN103406909A (zh) 一种机械臂***的跟踪控制设备及方法
CN110794678A (zh) 一种磁滞非线性受限下的四通道遥操作力反馈控制方法
CN107577146A (zh) 基于摩擦整体逼近的伺服***的神经网络自适应控制方法
CN105652667A (zh) 一种模型不确定双关节机械手的高精度轨迹跟踪控制方法
CN113093538A (zh) 一种模块化机器人***的非零和博弈神经-最优控制方法
Liu et al. High-precision dynamic torque control of high stiffness actuator for humanoids
Cheng et al. A PID approach to suppressing stick-slip in the positioning of transmission mechanisms
Yao et al. ANN-based PID controller for an electro-hydraulic servo system
CN106066604B (zh) 基于自适应及扩张误差符号积分鲁棒的电机伺服***位置控制器的实现方法
Li et al. Fixed‐time fault‐tolerant control of manipulator systems based on sliding mode observer
He et al. A semiparametric model-based friction compensation method for multijoint industrial robot
CN109194244A (zh) 一种面向电动伺服***的控制方法及***
Yang et al. Multi-degree-of-freedom joint nonlinear motion control with considering the friction effect
Singh et al. Nonlinear robust observer based adaptive control design for variable speed wind turbine
Setiawan et al. Advanced control of on-ship solar tracker using adaptive wide range ANFIS
Hu et al. An efficient neural controller for a nonholonomic mobile robot
Kamal et al. A new class of uniform continuous higher-order sliding mode controllers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 605, Dongfang Road, Linghai City, Taizhou, Zhejiang Province, Zhejiang

Applicant after: Taizhou University

Applicant after: Wang Sanxiu

Address before: 318000 School of physics and electronic engineering, No. 1139, Jiaojiang District, Jiaojiang District, Zhejiang Province, School of physics and electronics

Applicant before: Taizhou University

Applicant before: Wang Sanxiu

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant