CN104852661A - 基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法 - Google Patents

基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法 Download PDF

Info

Publication number
CN104852661A
CN104852661A CN201510215878.1A CN201510215878A CN104852661A CN 104852661 A CN104852661 A CN 104852661A CN 201510215878 A CN201510215878 A CN 201510215878A CN 104852661 A CN104852661 A CN 104852661A
Authority
CN
China
Prior art keywords
theta
under
current
centerdot
cos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510215878.1A
Other languages
English (en)
Other versions
CN104852661B (zh
Inventor
康劲松
王硕
崔宇航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Lingang Power Electronics Research Co ltd
Leadrive Technology Shanghai Co Ltd
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201510215878.1A priority Critical patent/CN104852661B/zh
Publication of CN104852661A publication Critical patent/CN104852661A/zh
Application granted granted Critical
Publication of CN104852661B publication Critical patent/CN104852661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及一种基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,通过采集三相电流变为两相静止坐标系下的定子电流,将两相静止坐标系下的定子电流变换到五次、七次、十一次、十三次谐波旋转坐标系下,将五次、七次、十一次、十三次等高次谐波电流在相应坐标系下通过低通滤波器提取成直流量,通过设计基于转速自适应二阶低通数字滤波器完成对指定阶次谐波的提取,在此基础之上,设计具有交叉耦合的比例积分电流控制器,最终完成谐波电流的抑制,从而抑制转矩脉动。与现有技术相比,本发明在永磁同步电机矢量控制基础上,能够减少输出电流谐波含量,降低电动汽车用永磁同步电机的转矩脉动和振动噪声等负面影响。

Description

基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法
技术领域
本发明涉及电动汽车用永磁同步电机矢量控制领域,尤其是涉及一种基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法。
背景技术
转矩脉动的存在影响了电机在速度控制***中的低速性能和位置控制***中的高精确度定位,会引起***振动和噪声,严重时还会威胁***运行安全,需要采取措施尽量减小***的转矩脉动。降低转矩脉动的方法主要分为:斜槽法、重复控制、转矩反馈控制以及多同步坐标系谐波注入法。
1)斜槽法
定子斜槽或转子斜极是抑制齿槽转矩脉动最有效且应用广泛的方法之一。该方法主要用于定子槽数较多且轴向较长的电机。实践证明,斜槽使电机电磁转矩各次谐波的幅值均有所减小。但该方法是在电机本体上进行结构改造,增加了制造成本。
2)重复控制
重复控制也被用到了永磁同步电机的控制中,用于抑制电机的电流谐波和电机转矩脉动。但是重复控制需要一定的存储空间,当谐波频率变化时控制器需要重新设计。
3)转矩反馈控制
反馈控制方法通过转矩和磁链观测器来产生反馈信号,从而削弱转矩脉动,但其控制精确度会受到电机参数变化的影响,并且对电机参数变化而带来的转矩脉动不能有效地消除,使得控制作用变差。
4)多同步坐标谐波注入法
多同步坐标系可以将谐波电流提取出来,同时进行补偿,该方法不需要依赖电机参数。多同步旋转坐标变换的基本思想是矢量控制中,三相基波电流在dq坐标系下则变为直流量,以此类比,谐波可以在该阶次的同步旋转坐标系下转换为响应的直流分量。
发明内容
本发明的目的就是为了解决现有永磁同步电机矢量控制中电流谐波较大而导致的转矩脉动较大、实时控制性能较差、输出谐波含量高的问题,而提供一种基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,通过在谐波坐标变换下对电流谐波进行分解与抑制,来改进电机控制效果,降低转矩波动。
本发明的目的可以通过以下技术方案来实现:
一种基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法包括:
步骤S1:在当前采样周期里检测获得三相输出电流以及转子旋转角度和转子电角速度,三相输出电流经坐标变换后得到两相静止坐标系下的电流分量;
步骤S2:由步骤S1的两相静止坐标系下的电流分量和转子旋转角度分别进行五次负序坐标变换、七次正序坐标变换、十一次负序坐标变换和十三次的正序坐标变换,对应得到五次、七次、十一次、十三次同步旋转坐标系下的电流计算值;
步骤S3:步骤S2的五次、七次、十一次、十三次同步旋转坐标系下的电流计算值在转速自调节的二阶低通IIR数字滤波器下分别进行滤波,对应得到五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量;
步骤S4:由电机的直轴电感、交轴电感和步骤S1的转子电角速度分别对步骤S3获得的五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量进行闭环控制,对应得到五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量;
步骤S5:由五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量得到两相静止坐标系下的电压补偿量,并将其补偿到输出的定子电压分量上。
所述步骤S2中五次、七次、十一次、十三次同步旋转坐标系下的电流计算值I5、I7、I11、I13满足以下公式:
I 5 = T αβ - dq 5 - · I αβ = 2 3 · cos 5 θ - sin 5 θ sin 5 θ cos 5 θ i α i β I 7 = T αβ - dq 7 + · I αβ = 2 3 · cos 7 θ sin 7 θ - sin 7 θ cos 7 θ i α i β I 11 = T αβ - dq 11 - · I αβ = 2 3 · cos 11 θ - sin 11 θ sin 11 θ cos 11 θ i α i β I 13 = T αβ - dq 13 + · I αβ = 2 3 · cos 13 θ sin 13 θ - sin 13 θ cos 13 θ i α i β - - - ( 1 )
其中,分别表示五次、七次、十一次、十三次同步旋转坐标系下的变换矩阵,Iαβ表示两相静止坐标系下α、β轴的电流iα、iβ,θ表示通过旋转变压器输出的转子旋转角度。
所述五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量id5、iq5、id7、iq7、id11、iq11、id13、iq13满足以下公式:
i d 5 i q 5 = G ( z ) · I 5 i d 7 i q 7 = G ( z ) · I 7 i d 11 i q 11 = G ( z ) · I 11 i d 13 i q 13 = G ( z ) · I 13 - - - ( 2 )
其中,G(z)表示二阶低通IIR数字滤波器离散后的二阶传递函数,I5、I7、I11、I13分别表示五次、七次、十一次、十三次同步旋转坐标系下的电流计算值。
所述二阶低通IIR数字滤波器的截止频率取值范围为10~20Hz,阻尼比取值范围为1.1~1.3。
所述五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量ud5、uq5、ud7、uq7、ud11、uq11、ud13、uq13满足以下公式:
u d 5 = ( 0 - i d 5 ) ( k p 5 + k i 5 s ) + 5 · ( 0 - i q 5 ) ω e L q u q 5 = ( 0 - i q 5 ) ( k p 5 + k i 5 s ) - 5 · ( 0 - i d 5 ) ω e L d u d 7 = ( 0 - i d 7 ) ( k p 7 + k i 7 s ) - 7 · ( 0 - i d 7 ) ω e L q u q 7 = ( 0 - i q 7 ) ( k p 7 + k i 7 s ) - 7 · ( 0 - i d 7 ) ω e L q u d 11 = ( 0 - i d 11 ) ( k p 11 + k i 11 s ) + 11 · ( 0 - i q 11 ) ω e L q u q 11 = ( 0 - i q 11 ) ( k p 11 + k i 11 s ) - 11 · ( 0 - i d 11 ) ω e L d u d 13 = ( 0 - i d 13 ) ( k p 13 + k i 13 s ) - 13 · ( 0 - i q 13 ) ω e L q u q 13 = ( 0 - i q 13 ) ( k p 13 + k i 13 s ) + 13 · ( 0 - i d 13 ) ω e L q - - - ( 3 )
其中,id5、iq5、id7、iq7、id11、iq11、id13、iq13分别表示五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量,kp5、kp7、kp11、kp13分别表示五次、七次、十一次、十三次坐标系下的比例系数,ki5、ki7、ki11、ki13分别表示五次、七次、十一次、十三次坐标系下的积分系数,ωe表示由旋转变压器输出的转子电角速度,Ld、Lq分别表示电机的直轴电感和交轴电感。
所述两相静止坐标系下的电压补偿量uα_com、uβ_com满足以下公式:
u α _ com u β _ com = cos 5 θ sin 5 θ - sin 5 θ cos 5 θ u 5 d u 5 q + cos 7 θ - sin 7 θ sin 7 θ cos 7 θ u 7 d u 7 q + cos 11 θ sin 11 θ - sin 11 θ cos 11 θ u 11 d u 11 q + cos 13 θ - sin 13 θ sin 13 θ cos 13 θ u 13 d u 13 q - - - ( 4 )
其中,θ表示通过旋转变压器输出的转子旋转角度,ud5、uq5、ud7、uq7、ud11、uq11、ud13、uq13分别表示五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量。
所述两相静止坐标系下的电压补偿量补偿到输出的定子电压分量具体为:电机电磁转矩经MTPA弱磁控制输出dq轴电流指令,步骤S1的两相静止坐标系下的电流分量经dq变换后输出两相旋转坐标系下的电流分量,dq轴电流指令对应减去两相旋转坐标系下的电流分量后经电流PI调节输出αβ轴定子电压分量,αβ轴定子电压分量对应加上两相静止坐标系下的电压补偿量后通过SVPWM调制方法控制逆变器获得三相交流电,驱动永磁同步电机。
与现有技术相比,本发明具有以下优点:
1)本发明通过采样电机的三相电流,并将其变换到两相静止坐标系下,通过将两相静止坐标系下含有谐波的电流,五次、七次、十一次、十三次同步旋转变换,经过二阶低通滤波器完成五次、七次、十一次、十三次谐波的提取,并在给定为零的条件下,设计八组谐波PI控制器,使谐波分量得以抑制,最终将反变换到两相静止坐标系下的电压补偿值合成后叠加到原电流环中,完成转矩脉动的抑制。
2)本发明的控制方法可以方便的叠加在永磁同步电机矢量控制算法中,同时能够能抑制谐波电流,进而抑制转矩脉动。本发明采用的控制策略能够减少谐波含量,改善逆变器输出波形的质量,对永磁同步电机运行的安全性与可靠性提供了理论指导和实际意义。
附图说明
图1为本发明中永磁同步电机矢量控制***图;
图2为基于坐标变换谐波补偿的转矩脉动抑制方法流程图;
图3为实现基于坐标变换谐波补偿的转矩脉动抑制方法的软件***流程图;
图4为稳态运行时B相电流谐波抑制效果图;
其中,(4a)为加入算法前B相电流波形图,(4b)为加入算法后B相电流波形图;
图5为稳态运行时B相电流谐波频谱分析图;
其中,(5a)为加入算法前的B相电流频谱分析图,(5b)为加入算法后的B相电流频谱分析图;
图6为稳态运行时转矩脉动抑制效果图;
图7为稳态运行时转矩脉动频谱分析图;
其中,(7a)为加入算法前的转矩脉动频谱分析图,(7b)为加入算法后的转矩脉动频谱分析图;
图8为在动态条件0.1s给定下转矩从40N·m跳变到120N·m时转矩脉动抑制效果图;
其中,(8a)为加入算法前的转矩波形图,(8b)为加入算法后的转矩波形图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
为了方便叙述,定义符号变量如下:
符号定义:
ia——A相永磁同步电机电流(A)
ib——B相永磁同步电机电流(A)
ic——C相永磁同步电机电流(A)
iα——定子静止坐标系下α轴电流分量(A)
iβ——定子静止坐标系下β轴电流分量(A)
id——旋转坐标系下d轴电流分量(A)
iq——旋转坐标系下q轴电流分量(A)
id5、id7、id11、id13——五次、七次、十一次、十三次旋转坐标系下的d轴电流直流分量(A)
iq5、iq7、iq11、iq13——五次、七次、十一次、十三次旋转坐标系下的q轴电流直流分量(A)
uα——两相静止坐标系下α轴电压分量(V)
uβ——两相静止坐标系下β轴电压分量(V)
ud——两相旋转坐标系下d轴电压分量(V)
uq——两相旋转坐标系下q轴电压分量(V)
ud5、ud7、ud11、ud13——五次、七次、十一次、十三次旋转坐标系下的d轴电压分量(V)
uq5、uq7、uq11、uq13——五次、七次、十一次、十三次旋转坐标系下的q轴电压分量(V)
kp5、kp7、kp11、kp13——五次、七次、十一次、十三次旋转坐标系下的比例系数
ki5、ki7、ki11、ki13——五次、七次、十一次、十三次旋转坐标系下的积分系数
θ——转子旋转角度(rad)
ωe——转子电角速度(rad/s)
Ld——直轴电感(H)
Lq——交轴电感(H)
uα_com——两相静止坐标系下α轴电压补偿分量(V)
uβ_com——两相静止坐标系下β轴电压补偿分量(V)
图2是基于坐标变换谐波补偿的转矩脉动抑制方法流程图。谐波坐标变换的基本思想来自于,矢量控制中基波的电流在dq旋转坐标系下转变为直流分量,那么五次、七次、十一次、十三次谐波电流则转变为相应的高次谐波坐标系下的直流分量,经过比例积分运算,完成谐波补偿。
图3为实现基于坐标变换谐波补偿的转矩脉动抑制方法的软件***流程图。在当前采样周期里检测获得逆变器三相输出电流ia、ib、ic以及通过旋转变压器输出的转子旋转角度θ和由旋转变压器计算出的转子电角速度ωe,ia、ib、ic经坐标变换后得到两相静止坐标系下的电流分量iα、iβ后,根据图3可以把该转矩脉动抑制方法按框图分为坐标变换、低通滤波、谐波控制、反变换补偿四步。
第一步:
将采集到的iα、iβ按照坐标变换完成谐波变换得到的五次、七次、十一次、十三次同步旋转坐标系下的电流计算值I5、I7、I11、I13
其中,分别表示五次、七次、十一次、十三次同步旋转坐标系下的变换矩阵,Iαβ表示两相静止坐标系下α、β轴的电流iα、iβ
第二步:
得到的五次、七次、十一次、十三次同步旋转坐标系下的电流计算值I5、I7、I11、I13在转速自调节的二阶低通IIR数字滤波器下进行滤波,IIR二阶滤波器采用的设计方法是截止频率以及阻尼比参数,截止频率取值范围为10~20Hz,阻尼比取值范围为1.1~1.3,***为过阻尼状态,随着速度上升截止频率线性增长。
本实施例中截止频率取值为10Hz,阻尼比取值为1.2,根据二阶传递函数公式得到二阶低通IIR数字滤波器满足以下公式:
G ( s ) = 3948 s 2 + 100.5 s + 3948 - - - ( 5 )
离散化后得到:
G ( z ) = 1.973 × 10 - 7 z + 1.973 × 10 - 7 z 2 - 1.999 z + 0.999 - - - ( 6 )
其中,G(s)表示二阶低通IIR数字滤波器的二阶传递函数,G(z)表示二阶低通IIR数字滤波器离散后的二阶传递函数。
经过二阶低通滤波器后,分别将原ia、ib、ic的五次、七次、十一次、十三次谐波转变为五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量id5、iq5、id7、iq7、id11、iq11、id13、iq13满足以下公式:
i d 5 i q 5 = G ( z ) · I 5 i d 7 i q 7 = G ( z ) · I 7 i d 11 i q 11 = G ( z ) · I 11 i d 13 i q 13 = G ( z ) · I 13 - - - ( 2 )
以上两步完成谐波直流分量的提取。
第三步:
在五次、七次、十一次、十三次坐标系下完成具有交叉耦合的双电流闭环控制,对于五次、七次、十一次、十三次谐波分量,控制目标为,设定值五次谐波dq轴,七次谐波dq轴均为零,十一次谐波dq轴,十三次谐波dq轴均为零,以五次谐波为例,将给定与反馈的偏差量,代入五次谐波稳态电压方程得到谐波电压,与带有交叉乘积相的PI环节。输出的控制量相加得到最终得到五次的电压谐波分量,七次、十一次、十三次谐波分量以同样地方式求出。最终控制使得五次谐波提取出的直流分量慢慢逼近与给定值0,同时产生谐波补偿的控制量叠加到电压波形中。
闭环控制具体实现公式如下:
u d 5 = ( 0 - i d 5 ) ( k p 5 + k i 5 s ) + 5 · ( 0 - i q 5 ) ω e L q u q 5 = ( 0 - i q 5 ) ( k p 5 + k i 5 s ) - 5 · ( 0 - i d 5 ) ω e L d u d 7 = ( 0 - i d 7 ) ( k p 7 + k i 7 s ) - 7 · ( 0 - i d 7 ) ω e L q u q 7 = ( 0 - i q 7 ) ( k p 7 + k i 7 s ) - 7 · ( 0 - i d 7 ) ω e L q u d 11 = ( 0 - i d 11 ) ( k p 11 + k i 11 s ) + 11 · ( 0 - i q 11 ) ω e L q u q 11 = ( 0 - i q 11 ) ( k p 11 + k i 11 s ) - 11 · ( 0 - i d 11 ) ω e L d u d 13 = ( 0 - i d 13 ) ( k p 13 + k i 13 s ) - 13 · ( 0 - i q 13 ) ω e L q u q 13 = ( 0 - i q 13 ) ( k p 13 + k i 13 s ) + 13 · ( 0 - i d 13 ) ω e L q - - - ( 3 )
第四步:
所得的ud5、uq5、ud7、uq7、ud11、uq11、ud13、uq13完成五次、七次、十一次、十三次坐标反变换补偿。
u α _ com u β _ com = cos 5 θ sin 5 θ - sin 5 θ cos 5 θ u 5 d u 5 q + cos 7 θ - sin 7 θ sin 7 θ cos 7 θ u 7 d u 7 q + cos 11 θ sin 11 θ - sin 11 θ cos 11 θ u 11 d u 11 q + cos 13 θ - sin 13 θ sin 13 θ cos 13 θ u 13 d u 13 q - - - ( 4 )
其中,uαk表示k次旋转坐标反变换后的两相静止坐标系下α轴电压补偿分量,uβk表示k次旋转坐标反变换后的两相静止坐标系下β轴电压补偿分量,得到的补偿量uα_com、uβ_com可以补偿到输出的定子电压分量上,完成谐波抑制。
总之,本发明通过采集三相电流变为静止坐标系下的定子电流,将定子电流变换到五次、七次、十一次、十三次谐波旋转坐标系下,将五次、七次、十一次、十三次等高次谐波电流在相应坐标系下转换成直流量,通过设计基于转速自适应二阶低通数字滤波器完成对指定阶次谐波的提取,在此基础之上,设计具有交叉耦合的比例积分电流控制器,最终完成谐波电流的抑制,抑制转矩脉动。
图1是永磁同步电机矢量控制***图,其中,永磁同步电机控制***的核心算法为矢量控制,逆变器输出的三相电流驱动电机的旋转,本发明的方法是在矢量控制基础上,设计谐波坐标系下的控制算法,使***在原控制效果的基础上实现谐波的抑制。具体为:
采集ia、ib、ic经3/2坐标变换后得到iα、iβ,iα、iβ经过转矩脉动抑制方法获得uα_com、uβ_com,电机电磁转矩Te *经MTPA弱磁控制输出dq轴电流指令id *、iq *,iα、iβ经dq变换后输出id、iq,id *减去id,iq *减去iq后经电流PI调节输出αβ轴定子电压分量uα、uβ,uα加上uα_com,uβ加上uβ_com后通过SVPWM调制方法控制逆变器获得三相交流电,驱动永磁同步电机。逆变器采用全桥逆变电路,包括六个开关管VT1~VT6和六个二极管VD1~VD6。本发明的控制方法能够保证***输出电流具有较低的谐波含量,降低电机转矩脉动。
图4为稳态运行时B相电流谐波抑制效果图,运行工况给定转矩50N.m,给定转速为2000r/min,将B相电流测出,加入算法之前如图(4a),B相电流有较大的畸变,THD=7.36%,加入算法后如图(4b),完成5、7次谐波的抑制,电流正弦性明显提升,THD下降到4.74%。
图5为稳态运行时B相电流谐波频谱分析图,对比稳态下的电流FFT分析图,5、7次谐波有了大幅度的下降,加算法之前如图(5a),五次谐波为3.86,七次谐波为3.80,THD=7.36%,加入算法之后如图(5b),五次谐波为1.33,七次谐波为0.89。五次谐波抑制率为65.54%,七次谐波抑制率为76.58%,THD下降到4.74%。
图6为稳态运行时转矩脉动抑制效果图。电机转速为4000r/min,电机转矩给定为115N.m,在仿真时间前0.1s,未为进行谐波补偿算法,转矩峰峰抖动约为20N.m;仿真后0.1s,加入谐波补偿算法,转矩峰峰抖动约为13.5N.m。从图6可以看出增加转矩脉动抑制算法后,转矩脉动下降32.5%。
图7为稳态运行时转矩脉动频谱分析图。对于稳态转矩脉动进行FFT分析,五次、七次电流产生六次转矩脉动,对于一个6对级电机,电流频率为400Hz,加算法之前如图(7a),直流量113.38N·m,6次谐波为5.61N·m,加算法之后如图(7b),直流量114.53N·m,6次谐波为1.62N·m,6次谐波的抑制率为71.1%。
图8为在动态条件0.1s给定下转矩从40N·m跳变到120N·m时转矩脉动抑制效果图,根据图8实验结果,加算法之前如图(8a),给定转速2000r/min时,给定转矩为40N.m,转矩脉动峰峰值约为13N.m,0.1s突变转速到120N.m,转矩脉动峰峰值约为20N·m,加算法之后如图(8b),给定转速2000r/min时,给定转矩为40N.m,转矩脉动峰峰值约为10N.m,0.1s突变转速到120N.m,转矩脉动峰峰值约为16N·m,在转矩突变的情况下转矩脉动得到了很好地抑制。
综上所述,本发明所提的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法可以快速有效的使逆变器输出电流的谐波含量降低,本发明方法在电机矢量控制的基础之上,采用谐波提取注入的方式,完成谐波的抑制,进而完成转矩脉动的抑制,该方法可以在不修改硬件的前提下,在原矢量控制算法上进行叠加,有较高的可移植性,对工业电机的转矩脉动以及电磁噪声问题有抑制作用。

Claims (7)

1.一种基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,包括:
步骤S1:在当前采样周期里检测获得三相输出电流以及转子旋转角度和转子电角速度,三相输出电流经坐标变换后得到两相静止坐标系下的电流分量;
步骤S2:由步骤S1的两相静止坐标系下的电流分量和转子旋转角度分别进行五次负序坐标变换、七次正序坐标变换、十一次负序坐标变换和十三次的正序坐标变换,对应得到五次、七次、十一次、十三次同步旋转坐标系下的电流计算值;
步骤S3:步骤S2的五次、七次、十一次、十三次同步旋转坐标系下的电流计算值在转速自调节的二阶低通IIR数字滤波器下分别进行滤波,对应得到五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量;
步骤S4:由电机的直轴电感、交轴电感和步骤S1的转子电角速度分别对步骤S3获得的五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量进行闭环控制,对应得到五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量;
步骤S5:由五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量得到两相静止坐标系下的电压补偿量,并将其补偿到输出的定子电压分量上。
2.根据权利要求1所述的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,所述步骤S2中五次、七次、十一次、十三次同步旋转坐标系下的电流计算值I5、I7、I11、I13满足以下公式:
I 5 = T αβ - dq 5 - · I αβ = 2 3 · cos 5 θ - sin 5 θ sin 5 θ cos 5 θ i α i β I 7 = T αβ - dq 7 - · I αβ = 2 3 · cos 7 θ sin 7 θ - sin 7 θ cos 7 θ i α i β I 11 = T αβ - dq 11 - · I αβ = 2 3 · cos 11 θ - sin 11 θ sin 11 θ cos 11 θ i α i β I 13 = T αβ - dq 13 - · I αβ = 2 3 · cos 13 θ sin 13 θ - sin 13 θ cos 13 θ i α i β - - - ( 1 )
其中,分别表示五次、七次、十一次、十三次同步旋转坐标系下的变换矩阵,Iαβ表示两相静止坐标系下α、β轴的电流iα、iβ,θ表示通过旋转变压器输出的转子旋转角度。
3.根据权利要求1所述的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,所述五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量id5、iq5、id7、iq7、id11、iq11、id13、iq13满足以下公式:
i d 5 i q 5 = G ( z ) · I 5 i d 7 i q 7 = G ( z ) · I 7 i d 11 i q 11 = G ( z ) · I 11 i d 13 i q 13 = G ( z ) · I 13 - - - ( 2 )
其中,G(z)表示二阶低通IIR数字滤波器离散后的二阶传递函数,I5、I7、I11、I13分别表示五次、七次、十一次、十三次同步旋转坐标系下的电流计算值。
4.根据权利要求1或3所述的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,所述二阶低通IIR数字滤波器的截止频率取值范围为10~20Hz,阻尼比取值范围为1.1~1.3。
5.根据权利要求1所述的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,所述五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量ud5、uq5、ud7、uq7、ud11、uq11、ud13、uq13满足以下公式:
u d 5 = ( 0 - i d 5 ) ( k p 5 + k i 5 s ) + 5 · ( 0 - i q 5 ) ω e L q u q 5 = ( 0 - i q 5 ) ( k p 5 + k i 5 s ) - 5 · ( 0 - i d 5 ) ω e L d u d 7 = ( 0 - i d 7 ) ( k p 7 + k i 7 s ) - 7 · ( 0 - i q 7 ) ω e L q u q 7 = ( 0 - i q 7 ) ( k q 7 + k i 7 s ) + 7 · ( 0 - i d 7 ) ω e L q u d 11 = ( 0 - i d 11 ) ( k p 11 + k i 11 s ) + 11 · ( 0 - i q 11 ) ω e L q u q 11 = ( 0 - i q 11 ) ( k p 11 + k i 11 s ) - 11 · ( 0 - i d 11 ) ω e L d u d 1 3 = ( 0 - i d 13 ) ( k p 13 + k i 13 s ) - 13 · ( 0 - i q 13 ) ω e L q u q 13 = ( 0 - i q 13 ) ( k p 13 + k i 13 s ) + 13 · ( 0 - i d 13 ) ω e L q - - - ( 3 )
其中,id5、iq5、id7、iq7、id11、iq11、id13、iq13分别表示五次、七次、十一次、十三次同步旋转坐标系下的dq直流分量,kp5、kp7、kp11、kp13分别表示五次、七次、十一次、十三次坐标系下的比例系数,ki5、ki7、ki11、ki13分别表示五次、七次、十一次、十三次坐标系下的积分系数,ωe表示由旋转变压器输出的转子电角速度,Ld、Lq分别表示电机的直轴电感和交轴电感。
6.根据权利要求1所述的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,所述两相静止坐标系下的电压补偿量uα_com、uβ_com满足以下公式:
u α _ com u β _ com = cos 5 θ sin 5 θ - sin 5 θ cos 5 θ u 5 d u 5 q + cos 7 θ - sin 7 θ sin 7 θ cos 7 θ u 7 d u 7 q + cos 11 θ sin 11 θ - sin 11 θ cos 11 θ u 11 d u 11 q + cos 13 θ - sin 13 θ sin 13 θ cos 13 θ u 13 d u 13 q - - - ( 4 )
其中,θ表示通过旋转变压器输出的转子旋转角度,ud5、uq5、ud7、uq7、ud11、uq11、ud13、uq13分别表示五次、七次、十一次、十三次同步旋转坐标系下的dq电压补偿分量。
7.根据权利要求1所述的基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法,其特征在于,所述两相静止坐标系下的电压补偿量补偿到输出的定子电压分量具体为:电机电磁转矩经MTPA弱磁控制输出dq轴电流指令,步骤S1的两相静止坐标系下的电流分量经dq变换后输出两相旋转坐标系下的电流分量,dq轴电流指令对应减去两相旋转坐标系下的电流分量后经电流PI调节输出αβ轴定子电压分量,αβ轴定子电压分量对应加上两相静止坐标系下的电压补偿量后通过SVPWM调制方法控制逆变器获得三相交流电,驱动永磁同步电机。
CN201510215878.1A 2015-04-29 2015-04-29 基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法 Active CN104852661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510215878.1A CN104852661B (zh) 2015-04-29 2015-04-29 基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510215878.1A CN104852661B (zh) 2015-04-29 2015-04-29 基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法

Publications (2)

Publication Number Publication Date
CN104852661A true CN104852661A (zh) 2015-08-19
CN104852661B CN104852661B (zh) 2017-09-26

Family

ID=53852058

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510215878.1A Active CN104852661B (zh) 2015-04-29 2015-04-29 基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法

Country Status (1)

Country Link
CN (1) CN104852661B (zh)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207563A (zh) * 2015-10-13 2015-12-30 中国船舶重工集团公司第七一二研究所 一种多相电机平衡控制方法及其应用
CN106026821A (zh) * 2016-05-16 2016-10-12 安徽大学 一种三角形连接的永磁同步电机定子绕组电阻性失衡故障诊断方法
CN106655940A (zh) * 2016-12-28 2017-05-10 广东美芝制冷设备有限公司 空调器及压缩机的谐波转矩补偿方法、控制方法和装置
CN106788088A (zh) * 2015-11-19 2017-05-31 联合汽车电子有限公司 新能源汽车电机转矩波动补偿方法
CN106786673A (zh) * 2017-02-07 2017-05-31 华北电力科学研究院有限责任公司 双馈风机串补输电***次同步谐振的抑制方法及装置
CN106817059A (zh) * 2015-11-30 2017-06-09 上海汽车集团股份有限公司 一种交流同步电机的相电流偏置补偿方法及装置
CN106972798A (zh) * 2017-05-27 2017-07-21 湖南大学 一种抑制电机不平衡负载下转矩脉动的控制方法及***
WO2017158386A1 (en) * 2016-03-18 2017-09-21 Trw Limited Control system for electric motor
US9912266B2 (en) 2016-08-02 2018-03-06 Otis Elevator Company Motor torque ripple reduction using DC bus harmonics
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
CN108199628A (zh) * 2017-12-12 2018-06-22 青岛海尔空调器有限总公司 电机谐振噪音的处理方法与装置
CN108847669A (zh) * 2018-07-25 2018-11-20 南京邮电大学 基于多同步旋转坐标系的多功能并网逆变器谐波治理方法
CN109039182A (zh) * 2018-08-17 2018-12-18 三重能有限公司 一种谐振抑制方法及装置
CN109687799A (zh) * 2018-11-16 2019-04-26 河海大学 基于假定旋转坐标的磁轴承转子分层振动补偿方法
CN109713950A (zh) * 2019-02-20 2019-05-03 浙江大学 永磁同步电机转矩脉动的抑制***及方法
CN109787462A (zh) * 2019-02-19 2019-05-21 中冶赛迪电气技术有限公司 一种pwm整流器直流偏置抑制的方法
CN109831133A (zh) * 2019-02-20 2019-05-31 浙江大学 永磁电机的转矩脉动的抑制方法和***
CN110168384A (zh) * 2017-09-08 2019-08-23 深圳欣锐科技股份有限公司 一种谐波检测方法及有源电力滤波器
CN110518852A (zh) * 2019-07-26 2019-11-29 合肥巨一动力***有限公司 基于谐波注入的永磁同步电机电流谐波抑制方法
CN111464085A (zh) * 2020-04-29 2020-07-28 华南理工大学 一种基于阶次提取的电机电流谐波及转矩脉动抑制方法
CN111512135A (zh) * 2017-12-29 2020-08-07 Avl李斯特有限公司 用于对具有基本频率和谐振的振荡分量的周期性的含噪声的测量信号进行滤波的方法
CN111669081A (zh) * 2020-06-12 2020-09-15 深圳市正弦电气股份有限公司 电机齿槽转矩的补偿方法和装置
CN111769775A (zh) * 2020-01-20 2020-10-13 合肥巨一动力***有限公司 电机三相电流不平衡的谐波电流控制方法及***
CN112019110A (zh) * 2020-08-24 2020-12-01 合肥工业大学 一种永磁同步电机磁链谐波观测及转矩脉动抑制方法
CN112910336A (zh) * 2021-01-15 2021-06-04 西安交通大学 谐波注入抑制永磁同步电机转矩脉动方法、***、装置及存储介质
CN113098346A (zh) * 2021-04-09 2021-07-09 广东美的暖通设备有限公司 一种永磁同步电机驱动方法、装置、变频器及存储介质
CN114070159A (zh) * 2020-08-04 2022-02-18 美的威灵电机技术(上海)有限公司 基于音频信号的电机的控制方法、电机和存储介质
WO2023051623A1 (zh) * 2021-09-29 2023-04-06 蔚来动力科技(合肥)有限公司 抑制车辆高阶噪声的谐波电流注入方法、计算机可读存储介质和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090232A1 (en) * 2001-11-06 2003-05-15 International Rectifier Current ripple reduction by harmonic current regulation
CN102201770A (zh) * 2011-05-30 2011-09-28 重庆大学 一种注入谐波电压抑制永磁同步电机谐波电流的控制方法
CN103117700A (zh) * 2013-02-25 2013-05-22 浙江大学 一种不平衡电网下基于谐振反馈的dfig控制方法
CN103441726A (zh) * 2013-08-25 2013-12-11 浙江大学 基于比例谐振调节器的双三相永磁电机矢量控制方法
CN103701392A (zh) * 2013-12-17 2014-04-02 华中科技大学 一种基于自适应陷波器的电流谐波补偿方法及***

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030090232A1 (en) * 2001-11-06 2003-05-15 International Rectifier Current ripple reduction by harmonic current regulation
CN102201770A (zh) * 2011-05-30 2011-09-28 重庆大学 一种注入谐波电压抑制永磁同步电机谐波电流的控制方法
CN103117700A (zh) * 2013-02-25 2013-05-22 浙江大学 一种不平衡电网下基于谐振反馈的dfig控制方法
CN103441726A (zh) * 2013-08-25 2013-12-11 浙江大学 基于比例谐振调节器的双三相永磁电机矢量控制方法
CN103701392A (zh) * 2013-12-17 2014-04-02 华中科技大学 一种基于自适应陷波器的电流谐波补偿方法及***

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105207563A (zh) * 2015-10-13 2015-12-30 中国船舶重工集团公司第七一二研究所 一种多相电机平衡控制方法及其应用
CN105207563B (zh) * 2015-10-13 2017-12-15 中国船舶重工集团公司第七一二研究所 一种多相电机平衡控制方法及其应用
CN106788088A (zh) * 2015-11-19 2017-05-31 联合汽车电子有限公司 新能源汽车电机转矩波动补偿方法
CN106817059A (zh) * 2015-11-30 2017-06-09 上海汽车集团股份有限公司 一种交流同步电机的相电流偏置补偿方法及装置
CN106817059B (zh) * 2015-11-30 2019-08-13 上海汽车集团股份有限公司 一种交流同步电机的相电流偏置补偿方法及装置
US10663517B2 (en) 2016-03-18 2020-05-26 Trw Limited Control system for electric motor
CN109155605A (zh) * 2016-03-18 2019-01-04 Trw有限公司 用于电动机的控制***
WO2017158386A1 (en) * 2016-03-18 2017-09-21 Trw Limited Control system for electric motor
CN109155605B (zh) * 2016-03-18 2022-02-18 Trw有限公司 用于电动机的控制***
CN106026821B (zh) * 2016-05-16 2018-05-04 安徽大学 一种三角形连接的永磁同步电机定子绕组电阻性失衡故障诊断方法
CN106026821A (zh) * 2016-05-16 2016-10-12 安徽大学 一种三角形连接的永磁同步电机定子绕组电阻性失衡故障诊断方法
US9912266B2 (en) 2016-08-02 2018-03-06 Otis Elevator Company Motor torque ripple reduction using DC bus harmonics
CN106655940A (zh) * 2016-12-28 2017-05-10 广东美芝制冷设备有限公司 空调器及压缩机的谐波转矩补偿方法、控制方法和装置
CN106655940B (zh) * 2016-12-28 2019-05-10 广东美芝制冷设备有限公司 空调器及压缩机的谐波转矩补偿方法、控制方法和装置
CN106786673A (zh) * 2017-02-07 2017-05-31 华北电力科学研究院有限责任公司 双馈风机串补输电***次同步谐振的抑制方法及装置
CN106972798A (zh) * 2017-05-27 2017-07-21 湖南大学 一种抑制电机不平衡负载下转矩脉动的控制方法及***
CN110168384A (zh) * 2017-09-08 2019-08-23 深圳欣锐科技股份有限公司 一种谐波检测方法及有源电力滤波器
CN107800344A (zh) * 2017-10-17 2018-03-13 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
CN107800344B (zh) * 2017-10-17 2019-10-11 浙江大学 基于虚拟信号注入的同步电机的最大转矩电流比控制方法
CN108199628A (zh) * 2017-12-12 2018-06-22 青岛海尔空调器有限总公司 电机谐振噪音的处理方法与装置
CN111512135A (zh) * 2017-12-29 2020-08-07 Avl李斯特有限公司 用于对具有基本频率和谐振的振荡分量的周期性的含噪声的测量信号进行滤波的方法
CN108847669A (zh) * 2018-07-25 2018-11-20 南京邮电大学 基于多同步旋转坐标系的多功能并网逆变器谐波治理方法
CN108847669B (zh) * 2018-07-25 2021-06-22 南京邮电大学 基于多同步旋转坐标系的多功能并网逆变器谐波治理方法
CN109039182A (zh) * 2018-08-17 2018-12-18 三重能有限公司 一种谐振抑制方法及装置
CN109687799A (zh) * 2018-11-16 2019-04-26 河海大学 基于假定旋转坐标的磁轴承转子分层振动补偿方法
CN109787462A (zh) * 2019-02-19 2019-05-21 中冶赛迪电气技术有限公司 一种pwm整流器直流偏置抑制的方法
CN109831133A (zh) * 2019-02-20 2019-05-31 浙江大学 永磁电机的转矩脉动的抑制方法和***
CN109831133B (zh) * 2019-02-20 2020-01-17 浙江大学 永磁电机的转矩脉动的抑制方法和***
CN109713950A (zh) * 2019-02-20 2019-05-03 浙江大学 永磁同步电机转矩脉动的抑制***及方法
CN110518852A (zh) * 2019-07-26 2019-11-29 合肥巨一动力***有限公司 基于谐波注入的永磁同步电机电流谐波抑制方法
CN110518852B (zh) * 2019-07-26 2021-10-15 合肥巨一动力***有限公司 基于谐波注入的永磁同步电机电流谐波抑制方法
CN111769775A (zh) * 2020-01-20 2020-10-13 合肥巨一动力***有限公司 电机三相电流不平衡的谐波电流控制方法及***
CN111464085A (zh) * 2020-04-29 2020-07-28 华南理工大学 一种基于阶次提取的电机电流谐波及转矩脉动抑制方法
CN111464085B (zh) * 2020-04-29 2022-03-29 华南理工大学 一种基于阶次提取的电机电流谐波及转矩脉动抑制方法
CN111669081A (zh) * 2020-06-12 2020-09-15 深圳市正弦电气股份有限公司 电机齿槽转矩的补偿方法和装置
CN114070159A (zh) * 2020-08-04 2022-02-18 美的威灵电机技术(上海)有限公司 基于音频信号的电机的控制方法、电机和存储介质
CN114070159B (zh) * 2020-08-04 2023-05-16 美的威灵电机技术(上海)有限公司 基于音频信号的电机的控制方法、电机和存储介质
CN112019110A (zh) * 2020-08-24 2020-12-01 合肥工业大学 一种永磁同步电机磁链谐波观测及转矩脉动抑制方法
CN112910336B (zh) * 2021-01-15 2022-06-07 西安交通大学 抑制永磁同步电机转矩脉动方法、***、装置及存储介质
CN112910336A (zh) * 2021-01-15 2021-06-04 西安交通大学 谐波注入抑制永磁同步电机转矩脉动方法、***、装置及存储介质
CN113098346A (zh) * 2021-04-09 2021-07-09 广东美的暖通设备有限公司 一种永磁同步电机驱动方法、装置、变频器及存储介质
CN113098346B (zh) * 2021-04-09 2022-05-17 广东美的暖通设备有限公司 一种永磁同步电机驱动方法、装置、变频器及存储介质
WO2023051623A1 (zh) * 2021-09-29 2023-04-06 蔚来动力科技(合肥)有限公司 抑制车辆高阶噪声的谐波电流注入方法、计算机可读存储介质和装置

Also Published As

Publication number Publication date
CN104852661B (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
CN104852661A (zh) 基于坐标变换谐波补偿的永磁同步电机转矩脉动抑制方法
CN110429886B (zh) 一种永磁同步电机低速域转子位置辨识方法
Piippo et al. Signal injection in sensorless PMSM drives equipped with inverter output filter
CN103997272A (zh) 永磁同步电机的负载扰动补偿装置及方法
CN104868497B (zh) 一种无磁链观测的双馈风机低电压穿越的控制方法及***
CN110518852B (zh) 基于谐波注入的永磁同步电机电流谐波抑制方法
CN104579080A (zh) 一种永磁同步电机转矩脉动抑制方法
CN106330042B (zh) 一种永磁同步电机谐波电流抑制方法及装置
CN103684178A (zh) 一种永磁同步电机转速滤波装置和滤波方法
CN105680756A (zh) 一种用于双三相异步电机的控制方法以及装置
CN112398399B (zh) 一种永磁同步电机振动噪声主动抑制方法
Wu et al. Order-domain-based harmonic injection method for multiple speed harmonics suppression of PMSM
CN113809959B (zh) 抑制车辆高阶噪声的谐波电流注入方法、计算机可读存储介质和装置
CN111293939B (zh) 一种电机谐波电流的抑制方法
CN106059419A (zh) 一种永磁同步电机并联矢量控制方案
CN105024615A (zh) 一种永磁同步电机低速无传感器控制方法及装置
CN103907282A (zh) 功率变换装置
CN111293946B (zh) 一种电机谐波电流的抑制方法
CN110729922B (zh) 电机控制方法、电机控制装置及计算机设备
Bisheimer et al. Full speed range permanent magnet synchronous motor control without mechanical sensors
CN113098335A (zh) 基于模糊qpr控制和电压补偿的永磁同步电机谐波抑制方法
Salomäki et al. Influence of inverter output filter on maximum torque and speed of PMSM drives
CN108448969B (zh) 一种非线性负载下独立无刷双馈发电机的控制***
Zhang et al. Position sensorless control system of SPMSM based on high frequency signal injection method with passive controller
CN111769775A (zh) 电机三相电流不平衡的谐波电流控制方法及***

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210923

Address after: 3 / F, building 19, building 8, No. 498, GuoShouJing Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Patentee after: ZHENQU TECHNOLOGY (SHANGHAI) Co.,Ltd.

Address before: 200092 Siping Road 1239, Shanghai, Yangpu District

Patentee before: TONGJI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20211027

Address after: 201203 3rd floor, building 19, building 8, No. 498, GuoShouJing Road, Pudong New Area (Shanghai) pilot Free Trade Zone, Shanghai

Patentee after: ZHENQU TECHNOLOGY (SHANGHAI) CO.,LTD.

Patentee after: Shanghai Lingang Power Electronics Research Co.,Ltd.

Address before: 3 / F, building 19, building 8, No. 498, GuoShouJing Road, China (Shanghai) pilot Free Trade Zone, Pudong New Area, Shanghai, 201203

Patentee before: ZHENQU TECHNOLOGY (SHANGHAI) CO.,LTD.