CN104678316A - 锂离子电池荷电状态估算方法和装置 - Google Patents

锂离子电池荷电状态估算方法和装置 Download PDF

Info

Publication number
CN104678316A
CN104678316A CN201510090685.8A CN201510090685A CN104678316A CN 104678316 A CN104678316 A CN 104678316A CN 201510090685 A CN201510090685 A CN 201510090685A CN 104678316 A CN104678316 A CN 104678316A
Authority
CN
China
Prior art keywords
lithium ion
ion battery
charge
soc
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510090685.8A
Other languages
English (en)
Other versions
CN104678316B (zh
Inventor
姜久春
张彩萍
赵婷
张维戈
王占国
龚敏明
吴健
孙丙香
时玮
李雪
牛利勇
李景新
黄彧
黄勤河
鲍谚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING BEIJIAO NEW ENERGY TECHNOLOGY CO., LTD.
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong University filed Critical Beijing Jiaotong University
Priority to CN201510090685.8A priority Critical patent/CN104678316B/zh
Publication of CN104678316A publication Critical patent/CN104678316A/zh
Application granted granted Critical
Publication of CN104678316B publication Critical patent/CN104678316B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种锂离子电池荷电状态估算方法和装置。所述方法包括步骤:A、拟合锂离子电池的开路电压与荷电状态关系;B、利用观测器方法估算锂离子电池荷电状态;C、对于步骤B中估算出的锂离子电池荷电状态,如果大于预定阈值,则使用观测器方法估算锂离子电池荷电状态,如果小于预定阈值,则使用安时积分法估算锂离子电池荷电状态。通过本发明的锂离子电池荷电状态估算方法和装置,能够避免安时积分法和观测器方法的缺点,在全寿命周期、全荷电状态区域内提供高估算精度。

Description

锂离子电池荷电状态估算方法和装置
技术领域
本发明涉及储能设备技术领域,特别是涉及到可充电锂离子电池的状态检测技术。
背景技术
美国先进电池联合会(U.S.Advanced Battery Consortium,USABC)在其《电动汽车电池实验手册》中将电池的荷电状态(State of Charge,SOC)定义为剩余电量与实际容量的百分比。电池SOC的估算在电动汽车和智能电网的应用领域变得越来越必要,动力电池的SOC被用来反映电池的剩余可用电量状况,对电动汽车而言起着传统燃油汽车油表的作用,精确可靠的SOC估计值,不仅可以增强用户对电动汽车的操控性和舒适度,同时其作为电动汽车能量管理***不可或缺的决策因素,也是优化电动汽车能量管理、提高电池容量和能量利用率、防止电池过充电和过放电、保障电池在使用过程中的安全性和使用寿命的重要参数。
对于纯电动汽车而言,电池管理***是电动汽车中的一个重要部件,在线估算出电池的荷电状态是电池管理***的关键问题之一。现有技术中,对于SOC的估算方法包括开路电压法、安时积分法、内阻法、神经网络和卡尔曼滤波法等,其中最简单、常用的方法之一是安时积分法。
所谓安时积分法,是指如果充放电起始状态记为SOC0,那么当前状态的SOC为:其中CN为锂离子电池额定容量,I为锂离子电池电流,η为充放电效率。安时积分法应用中若电流测量不准,将造成SOC计算误差,长期积累,误差越来越大;另外,安时积分法需要考虑锂离子电池充放电效率,且在高温状态和电流波动剧烈的情况下,误差较大。
除安时积分法外,还有其他一些常用的锂离子电池SOC估算方法:开路电压法、电化学测试法、神经网络法、阻抗频谱法、卡尔曼滤波器法以及基于滑模观测器、龙贝格观测器等基于观测器的估算方法,但都存在局限性:开路电压法需要将锂离子电池充分静置,不能满足在线估算;电化学方法需要专用测试设备支持;神经网络需要大量试验和数据训练,且模型的自适应性有一定的限度;阻抗分析法受到温度和老化等因素的影响;卡尔曼滤波难于消除由于锂离子电池温度和老化导致模型及其参数自身变化带来的误差。
基于观测器的锂离子电池SOC估算方法是通过过程输出量来估计状态量,并且加入输出量的误差反馈,对安时积分法估算锂离子电池SOC进行修正,克服了安时积分法误差积累和需要知道锂离子电池SOC初值的缺点,极大提高了锂离子电池SOC的估算精度,但该法估算的精确性是由模型参数的准确性来保证的,实际应用中需要实现锂离子电池模型参数的在线辨识;此外,由于锂离子电池本身的特性(开路电压-剩余电量曲线等)导致锂离子电池SOC的估算在某区间内误差较大。
发明内容
鉴于此,本发明的目的在于克服现有技术的安时积分法需要知道锂离子电池的SOC初值,而且存在较大的累积误差,基于观测器的SOC估算方法在部分区间误差较大的缺陷,将二者有机结合起来组成新的SOC估算方法。
为了实现此目的,本发明采取的技术方案为如下。
一种锂离子电池荷电状态估算方法,所述方法包括步骤:
A、拟合锂离子电池的开路电压与荷电状态关系;
B、利用观测器方法估算锂离子电池荷电状态;
C、对于步骤B中估算出的锂离子电池荷电状态,如果大于预定阈值,则使用观测器方法估算锂离子电池荷电状态,如果小于预定阈值,则使用安时积分法估算锂离子电池荷电状态。
其中所述预定阈值为:根据开路电压与荷电状态关系导数最小值所对应的锂离子电池荷电状态值。
另外,步骤A中拟合锂离子电池的开路电压与荷电状态关系包括:
A1、在辨识工况下采集锂离子电池的端电压、锂离子电池充电或放电电流、锂离子电池充放电安时数与容量的比值;
A2、利用步骤A1的采集量,辨识锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数。
另外,开路电压OCV与荷电状态s的拟合关系为:
OCV=f(s)=a+b·(-ln(s))α+c·s+d·exp(s),
其中α为预定指数,
相应地,所述开路电压与荷电状态拟合关系的系数为a,b,c和d。
另一方面,所述辨识工况为:取一定数量的样本锂离子电池,将样本锂离子电池的荷电状态充电或放电至中间值,按照I1,I2,I3,…Ik,…,IN,-I1,-I2,-I3,…-Ik,…,-IN安培的电流进行相等时间间隔的充、放电,并根据步骤A1在每个时间间隔内采集预定次数的数据。
或者所述辨识工况为:取一定数量的样本锂离子电池,将样本锂离子电池的荷电状态充电或放电至中间值,按照I1,-I1,I2,-I2,I3,-I3,…Ik,-Ik…,IN,-IN安培的电流进行相等时间间隔的充、放电,并根据步骤A1在每个时间间隔内采集预定次数的数据。
所述步骤A2中辨识锂离子电池的欧姆内阻,极化电阻,极化电容以及开路电压与荷电状态拟合关系的系数的方法为:
以采集到的端电压、锂离子电池充电或放电电流、锂离子电池充放电安时数与容量的比值作为模型输入,经过数学运算组成输入矩阵Φ(1),Φ(2)……Φ(n),其中n为总的数据采集次数;
按照以下方式迭代,辨识锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数:
θ ^ ( k + 1 ) = θ ^ ( k ) + P ( k ) · Φ ( k + 1 ) λ + Φ T ( k + 1 ) · P ( k ) · Φ ( k + 1 ) · [ Y ( k + 1 ) - Φ T ( k + 1 ) · θ ^ ( k ) ]
P ( k + 1 ) = 1 λ [ P ( k ) - P ( k ) · Φ ( k + 1 ) · Φ T ( k + 1 ) · P ( k ) λ + Φ T ( k + 1 ) · P ( k ) · Φ ( k + 1 ) ]
θ ^ ( 0 ) = 0
P(0)=C·I
其中C为任意常数,为第k次迭代中的锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数组成的向量,总迭代次数为n,λ为遗忘因子,取值在0到1之间,Y(k)为第k次迭代中锂离子电池的端电压值。
所述锂离子电池荷电状态估算方法在全寿命区域内取样样本锂离子电池,充放电测试温度范围为0℃-45℃之间。
本发明还包括一种锂离子电池荷电状态估算装置,所述装置包括:
开路电压拟合单元,用于拟合锂离子电池的开路电压与荷电状态关系;
观测器估算单元,利用观测器方法估算锂离子电池荷电状态;
安时积分估算单元,利用安时积分法估算锂离子电池荷电状态;
控制器,用于对于观测器估算单元估算出的锂离子电池荷电状态,如果大于预定阈值,则使用观测器估算单元估算锂离子电池荷电状态,如果小于预定阈值,则使用安时积分估算单元估算锂离子电池荷电状态。
其中,所述控制器包括阈值确定单元,所述阈值确定单元根据荷电状态与开路电压关系导数最小值对应的荷电状态值,作为预定阈值。
通过本发明的锂离子电池荷电状态估算方法和装置,能够避免安时积分法和观测器方法的缺点,在全荷电状态区域内提供高估算精度。
另外,通过本发明的锂离子电池荷电状态估算方法和装置,能够找到适用安时积分法和观测器方法的最佳分界点,避免简单采用经验方法来选取,这样能够进一步提高估算的精度。
另外,本发明中通过迭代的方式,辨识出锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数,这样能够准确获知锂离子电池参数,避免了观测器方法中由于锂离子电池参数不准确而导致的错误。
本发明中的OCV–SOC关系拟合方式精度高,在全部SOC区间内均与实际的OCV–SOC曲线有较高的契合程度。
另外,本发明中设计了不同辨识工况,对于不同温度、不同锂离子电池类型、不同容量的锂离子电池进行了测试和数据采集,这样扩大了本发明锂离子电池荷电状态估算方法的应用范围。特别是对于全寿命周期的锂锂离子电池荷电状态估算,本发明的估算方法和装置能够明显提高现有技术的精度,具有良好的技术效果。
附图说明
图1是本发明实施方式参数在线辨识工况的示意图。
图2是针对不同温度、不同类型、不同老化情况的锂锂离子电池OCV-SOC曲线图。
图3是本发明实施方式中SOC-OCV函数的拟合精度示意图。
图4是DST工况下锂离子电池端电压真值、估算值以及端电压估算误差的对比示意图。
图5是本发明实施方式中参数辨识方法的流程示意图。
图6是本发明实施方式中观测器估算SOC的方法原理框图。
图7是本发明实施方式中锂离子电池SOC-OCV曲线的分段示意图。
图8是本发明实施方式中锂离子电池SOC-OCV函数曲线的一阶导数图。
图9是本发明实施方式中锂离子电池SOC-OCV函数曲线的二阶导数图。
图10是本发明实施方式中锂离子电池SOC估算方法流程示意图。
图11是25度下DST工况、利用观测器和安时法结合的SOC估算方法结果示意图。
具体实施方式
下面结合附图,对本发明作详细说明。
以下公开详细的示范实施例。然而,此处公开的具体结构和功能细节仅仅是出于描述示范实施例的目的。
然而,应该理解,本发明不局限于公开的具体示范实施例,而是覆盖落入本公开范围内的所有修改、等同物和替换物。在对全部附图的描述中,相同的附图标记表示相同的元件。
同时应该理解,如在此所用的术语“和/或”包括一个或多个相关的列出项的任意和所有组合。另外应该理解,当部件或单元被称为“连接”或“耦接”到另一部件或单元时,它可以直接连接或耦接到其他部件或单元,或者也可以存在中间部件或单元。此外,用来描述部件或单元之间关系的其他词语应该按照相同的方式理解(例如,“之间”对“直接之间”、“相邻”对“直接相邻”等)。
图10是本发明实施方式中锂离子电池SOC估算方法的流程示意图。参考图10,本发明实施方式中荷电状态估算方法包括:A、拟合锂离子电池的开路电压与SOC关系;B、利用观测器方法估算锂离子电池SOC;C、对于步骤B中估算出的锂离子电池SOC,如果大于预定阈值,则使用观测器方法估算锂离子电池SOC,如果小于预定阈值,则使用安时积分法估算锂离子电池SOC。
之所以要采取以上方式,是因为利用观测器方法估算锂离子电池SOC时,采用的锂离子电池模型参数,例如电阻或电容值在全SOC区间内取固定值,但该值与SOC低端的参数相差较大,这样SOC低端的锂离子电池模型估算的端电压会有比较大的误差,同时SOC-OCV关系曲线在SOC低端的特性比较复杂。例如图4是动态应力测试(Dynamic Stress Test,DST)工况下锂离子电池端电压实际值、估算值以及端电压估算误差的对比示意图。从图4中可以看出:放电过程中随着时间的延长,锂离子电池端电压逐渐下降,而锂离子电池实际端电压U和估计值U*之间的差距越来越大,说明在SOC低端,观测器方法的误差越来越大。这是由于观测器方法估算SOC很大程度上依赖于锂离子电池SOC-OCV关系曲线和模型参数,例如电阻或电容的准确性,这样SOC低端采用观测器方法估算SOC就存在问题,因此本发明实施方式中的锂离子电池SOC估算方法需要结合这两种方法:在SOC高端区域利用观测器方法来估算锂离子电池SOC,SOC低端区域采用安时积分法来估算锂离子电池SOC。
因此,通过使用本发明实施方式中的锂离子电池SOC估算方法,能够结合观测器方法和安时积分法的优点,达到锂离子电池全SOC区间内的精度提升,相对于现有技术中的单纯使用观测器方法或者安时积分法,都具有明显的优势。
如何确定所述预定阈值,可以考虑根据经验选取,例如当锂离子电池SOC小于30%时即考虑使用安时积分法来进行估算锂离子电池SOC,也可以根据SOC-OCV关系的特性来选择。
例如在本发明一个具体实施方式中,利用SOC-OCV关系导数最小值对应的锂离子电池SOC值来作为所述特定阈值,当观测器方法估算出的锂离子电池SOC值大于所述特定阈值时,采用观测器方法,否则改用安时积分法来估算锂离子电池SOC。
现在结合附图说明以上实施方式的原理和具体方法。由于采用观测器方法来估计锂离子电池SOC很大程度上依赖于锂离子电池模型参数,尤其是依赖于SOC-OCV曲线特性,图7为锂锂离子电池的SOC-OCV关系曲线,该曲线大致可以分为四段:0%-6%SOC、6%-32%SOC、32%-60%SOC、60%-100%SOC,由图7可以看出,0%-6%SOC电压变化率较大,6%-32%SOC电压曲线变缓,这一阶段曲线比较复杂,可以推断锂离子电池材料在该区间发生了较复杂的相变反应;32%-60%SOC,60%-100%SOC电压变化为两段斜率不同的直线,锂离子电池在SOC高端平衡电势增幅没有变化。
因此在SOC-OCV关系曲线的某些特殊区间段(锂离子电池SOC低端对数区以及特性相对复杂的区域)内,利用观测器方法估算锂离子电池SOC会有比较大的估算误差;由于通用的安时积分法需要预先知道锂离子电池SOC初值、存在累积误差,而观测器估算在一定程度上解决了这些问题;因此,可以通过结合观测器估算和安时积分计算两种方法来实现锂离子电池SOC的估算:在SOC高端区域利用观测器估算方法来估算,SOC低端区域采用安时积分法,而两种方法的SOC临界节点即为前述特定阈值,该特定阈值可以基于分析锂锂离子电池的SOC-OCV关系曲线特性来判断。
图8为图7所对应的OCV=f(SOC)关系曲线对锂离子电池SOC的导数曲线,由该图可以看出OCV的导数值先减小后增大,即SOC-OCV关系的斜率存在最小值。结合对图7的分析可以判断,可取SOC-OCV关系函数导数的最小值点所对应的SOC值作为观测器和安时积分法估算SOC的临界点,即如图9所示的OCV函数二阶导数取0值的SOC值处。
因此,在本发明具体实施方式中,利用到了锂离子电池的SOC-OCV关系曲线的特点,来精确选择了使用观测器方法和安时积分法之间的分界点。这样进一步提高了本发明实施方式的精度。
对于图6中的SOC-OCV关系曲线,可以采用多种拟合方法,在本发明的一个具体实施方式中,提出了一种利用迭代的方式进行拟合的方法,通过实验结果验证,此拟合方法得到的SOC-OCV关系精度高,有很好的实施效果。
例如在一个具体实施方式中,按照以下SOC-OCV关系式来拟合SOC-OCV关系曲线。
开路电压OCV与荷电状态s的拟合关系为:
OCV=f(s)=a+b·(-ln(s))α+c·s+d·exp(s),
其中α为预定指数,在一个具体实施方式中取值为2.1,本领域内技术人员应当明白,所述预定指数也可以根据实际情况进行调整,都属于本发明的保护范围。
这样就通过对参数a,b,c和d的调整来拟合SOC-OCV关系曲线。
在一个具体实施方式中,通过迭代的方式来拟合参数a,b,c和d,并且得到锂离子电池模型的参数,例如欧姆内阻、极化电阻、极化电容。这些参数的含义是锂离子电池的一阶戴维宁模型中的各种参量。
对于参数a,b,c和d的拟合,以及欧姆内阻、极化电阻、极化电容的获取,在以下被统称为对欧姆内阻、极化电阻、极化电容和参数a,b,c和d的辨识,本发明具体实施方式的参数辨识方法的流程图如图5所示,具体而言参数辨识方法包括以下步骤:
步骤A1、在辨识工况下采集锂离子电池的端电压、锂离子电池充电或放电电流、锂离子电池充放电安时数与容量的比值;
步骤A2、利用步骤A1的采集量,辨识锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数。
例如在辨识工况下共采集了n次数据,则以采集到的端电压、锂离子电池充电或放电电流、锂离子电池充放电安时数与容量的比值作为模型输入,经过数学运算组成输入矩阵Φ(1),Φ(2),……,Φ(n)。
这时按照以下方式进行迭代,辨识了锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数:
θ ^ ( k + 1 ) = θ ^ ( k ) + P ( k ) · Φ ( k + 1 ) λ + Φ T ( k + 1 ) · P ( k ) · Φ ( k + 1 ) · [ Y ( k + 1 ) - Φ T ( k + 1 ) · θ ^ ( k ) ]
P ( k + 1 ) = 1 λ [ P ( k ) - P ( k ) · Φ ( k + 1 ) · Φ T ( k + 1 ) · P ( k ) λ + Φ T ( k + 1 ) · P ( k ) · Φ ( k + 1 ) ]
θ ^ ( 0 ) = 0
P(0)=C·I
其中C为任意常数,为第k次迭代中的锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数组成的向量,总迭代次数为n,λ为遗忘因子,取值在0到1之间,Y(k)为第k次采集到的锂离子电池端电压。
在本发明一个更具体的实施方式中,遗忘因子λ取值为0.995。这是根据经验选取的数值,本发明并不限制于此,实际上本领域内技术人员可以根据情况进行遗忘因子数值的选取,并不会阻碍本发明具体实施方式的实现。
另外,所述的辨识工况,也可以通过特定的选取方式来实现,例如在一个具体实施方式中,按照图1(a)的方式来设计辨识工况,具体而言所述辨识工况为:取一定数量的样本锂离子电池,将样本锂离子电池的荷电状态充电或放电至中间值,按照I1,I2,I3,…Ik,…,IN,-I1,-I2,-I3,…-Ik,…,-IN安培的电流进行相等时间间隔的充、放电,在每个时间间隔采集预定次数的数据。例如每个时间间隔为5秒,每秒取1次,则一共采集2N×5次数据。
在另一个具体实施方式中,按照图1(b)的方式来设计辨识工况,具体而言所述辨识工况为:取一定数量的样本锂离子电池,将样本锂离子电池的荷电状态充电或放电至中间值,按照I1,-I1,I2,-I2,I3,-I3,…Ik,-Ik…,IN,-IN安培的电流进行相等时间间隔的充、放电,在每个时间间隔采集预定次数的数据。例如每个时间间隔为5秒,每秒取1次,则一共采集2N×5次数据。
虽然以上两个实施方式中提出了具体的辨识工况,但这并不意味本发明限于此方式,实际上本领域技术人员可以设计其他的辨识工况。为了确保准确性,一般需要保证充电和放电过程的安时数相同即可。
这样经过迭代次数为总的采样次数的迭代之后,辨识了中各参数的取值,包括锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数a,b,c和d。
为了使得本发明的锂离子电池SOC估算方法有更加宽广的适用范围,对于样本锂离子电池的选取可以选择不同老化程度的锂离子电池作为样本锂离子电池,也可以在不同温度下进行测试。
从图2(a)可以看出,在0℃-45℃之间不同温度状况下,SOC-OCV关系曲线差别不大,因此,本发明的锂离子电池SOC估算方法能够应用在各种温度条件下,特别地,适用于0℃-45℃之间。
从图2(b)和图2(c)可以看出,对于不同类型的锂离子电池(A类、B类锂离子电池)和不同老化程度的锂离子电池(容量A、容量B和容量C),本发明的锂离子电池SOC估算方法都能够适用。
拟合得到的SOC-OCV关系曲线和实际的SOC-OCV关系曲线如图3(a)所示,从图中可以看出,该拟合曲线在SOC低端及个别小区间内有少量误差,而在SOC的高端区域,拟合曲线几乎与实际曲线完全重合,在整体SOC区间上OCV的拟合精度都是比较高的。
从图3(b)可以看出,对于不同容量的三种锂离子电池(容量A、容量B和容量C),拟合得到的SOC-OCV关系曲线和实际的SOC-OCV关系曲线均符合以上特点:在SOC的低端区域,拟合得到的SOC-OCV关系曲线和实际的SOC-OCV关系曲线之间的误差较大,而在SOC的高端区域,所述误差较小,这再一次说明了本发明具体实施方式的技术效果。
辨识了SOC-OCV关系、锂离子电池的欧姆内阻、极化电阻、极化电容之后,就可以使用观测器方法来估算锂离子电池的SOC。
利用观测器方法估算锂离子电池的结构框图如图6所示。
图6中的y是锂离子电池的端电压,是锂离子电池实际端电压y和锂离子电池模型计算获得的端电压之间的误差,L是观测器误差增益矩阵。均代表相应的估计值。
图6中的锂离子电池模型采用一阶戴维宁模型,因此锂离子电池的端电压与开路电压OCV之间的关系为:y=OCV+Up+iRo
其中Up为锂离子电池的一阶戴维宁模型中极化电阻或极化电容两端的电压,而iRo为锂离子电池欧姆内阻两端的电压。
所以观测器方法中的参数关系为:
x · = U · p S O · C ,
y=OCV+Up+iRo
x ~ · = A x ~ + Bi + L ( y - y ~ ) y ~ = O C ~ V + U ~ p + i R ~ o ,
A = - 1 R p C p 0 0 0 ,
B = 1 C p 1 Q ,
其中Rp,Cp分别为极化电阻和极化电容,Q为锂离子电池的额定容量,而Uo为锂离子电池端电压锂离子电池。
基于本发明的锂离子电池OCV估算方法,可以得出25度下DST工况,利用观测器方法和安时积分法结合的锂离子电池SOC估算结果,如图11所示。由图可知,在SOC高端区域,由于观测器方法估算SOC初值为0%,而SOC实际初值为95%,即SOC估算存在很大的初始误差,而观测器方法估算SOC需要经过一段时间的调整才能更好地跟踪到SOC真值。从图11中可以看出,观测器估算经过500s左右实现较好地跟踪,达到相对稳定的估算效果,锂离子电池SOC的估计值与实际值之间的误差均在正负3%以内,因此本发明的锂离子电池SOC估算方法具有较高的估算精度。
为了实现本发明的锂离子电池SOC估算方法,本发明实施方式中还包括一种锂离子电池SOC估算装置,所述装置包括:
开路电压拟合单元,用于拟合锂离子电池的开路电压与荷电状态关系;
观测器估算单元,利用观测器方法估算锂离子电池荷电状态;
安时积分估算单元,利用安时积分法估算锂离子电池荷电状态;
控制器,用于对于观测器估算单元估算出的锂离子电池荷电状态,如果大于预定阈值,则使用观测器估算单元估算锂离子电池荷电状态,如果小于预定阈值,则使用安时积分估算单元估算锂离子电池荷电状态。
特别地,所述控制器包括阈值确定单元,所述阈值确定单元根据开路电压拟合单元所拟合的开路电压与荷电状态关系导数最小值对应的荷电状态值,作为预定阈值。
需要说明的是,上述实施方式仅为本发明较佳的实施方案,不能将其理解为对本发明保护范围的限制,在未脱离本发明构思前提下,对本发明所做的任何微小变化与修饰均属于本发明的保护范围。

Claims (10)

1.一种锂离子电池荷电状态估算方法,所述方法包括步骤:
A、拟合锂离子电池的开路电压与荷电状态关系;
B、利用观测器方法估算锂离子电池荷电状态;
C、对于步骤B中估算出的锂离子电池荷电状态,如果大于预定阈值,则使用观测器方法估算锂离子电池荷电状态,如果小于预定阈值,则使用安时积分法估算锂离子电池荷电状态。
2.根据权利要求1中所述的锂离子电池荷电状态估算方法,其特征在于,所述预定阈值为:根据开路电压与荷电状态关系导数最小值所对应的锂离子电池荷电状态值。
3.根据权利要求1中所述的锂离子电池荷电状态估算方法,其特征在于,步骤A中拟合锂离子电池的开路电压与荷电状态关系包括:
A1、在辨识工况下采集锂离子电池的端电压、锂离子电池充电或放电电流、锂离子电池充放电安时数与容量的比值;
A2、利用步骤A1的采集量,辨识锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数。
4.根据权利要求3中所述的锂离子电池荷电状态估算方法,其特征在于,开路电压OCV与荷电状态s的拟合关系为:
OCV=f(s)=a+b·(-ln(s))α+c·s+d·exp(s),
其中α为预定指数,
相应地,所述开路电压与荷电状态拟合关系的系数为a,b,c和d。
5.根据权利要求3中所述的锂离子电池荷电状态估算方法,其特征在于,所述辨识工况为:取一定数量的样本锂离子电池,将样本锂离子电池的荷电状态充电或放电至中间值,按照I1,I2,I3,…Ik,…,IN,-I1,-I2,-I3,…-Ik,…,-IN安培的电流进行相等时间间隔的充、放电,并根据步骤A1在每个时间间隔内采集预定次数的数据。
6.根据权利要求3中所述的锂离子电池荷电状态估算方法,其特征在于,所述辨识工况为:取一定数量的样本锂离子电池,将样本锂离子电池的荷电状态充电或放电至中间值,按照I1,-I1,I2,-I2,I3,-I3,…Ik,-Ik…,IN,-IN安培的电流进行相等时间间隔的充、放电,并根据步骤A1在每个时间间隔内采集预定次数的数据。
7.根据权利要求5或6中任一项所述的锂离子电池荷电状态估算方法,其特征在于,所述步骤A2中辨识锂离子电池的欧姆内阻,极化电阻,极化电容以及开路电压与荷电状态拟合关系的系数的方法为:
以采集到的端电压、锂离子电池充电或放电电流、锂离子电池充放电安时数与容量的比值作为模型输入,经过数学运算组成输入矩阵Φ(1),Φ(2)……Φ(n),其中n为总的数据采集次数;
按照以下方式迭代,辨识锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数:
θ ^ ( k + 1 ) = θ ^ ( k ) + P ( k ) · Φ ( k + 1 ) λ + Φ T ( k + 1 ) · P ( k ) · Φ ( k + 1 ) · [ Y ( k + 1 ) - Φ T ( k + 1 ) · θ ^ ( k ) ]
P ( k + 1 ) = 1 λ [ P ( k ) - P ( k ) · Φ ( k + 1 ) · Φ T ( k + 1 ) · P ( k ) λ + Φ T ( k + 1 ) · P ( k ) · Φ ( k + 1 ) ]
θ ^ ( 0 ) = 0
P(0)=C·I
其中C为任意常数,为第k次迭代中的锂离子电池的欧姆内阻、极化电阻、极化电容以及开路电压与荷电状态拟合关系的系数组成的向量,总迭代次数为n,λ为遗忘因子,取值在0到1之间,Y(k)为第k次迭代中锂离子电池的端电压值。
8.权利要求5或6中任一项所述的锂离子电池荷电状态估算方法,其特征在于,在全寿命区域内取样样本锂离子电池,充放电测试温度范围为0℃-45℃之间。
9.一种锂离子电池荷电状态估算装置,所述装置包括:
开路电压拟合单元,用于拟合锂离子电池的开路电压与荷电状态关系;
观测器估算单元,利用观测器方法估算锂离子电池荷电状态;
安时积分估算单元,利用安时积分法估算锂离子电池荷电状态;
控制器,用于对于观测器估算单元估算出的锂离子电池荷电状态,如果大于预定阈值,则使用观测器估算单元估算锂离子电池荷电状态,如果小于预定阈值,则使用安时积分估算单元估算锂离子电池荷电状态。
10.权利要求9中所述的锂离子电池荷电状态估算装置,其特征在于,所述控制器包括阈值确定单元,所述阈值确定单元根据荷电状态与开路电压关系导数最小值对应的荷电状态值,作为预定阈值。
CN201510090685.8A 2015-02-28 2015-02-28 锂离子电池荷电状态估算方法和装置 Active CN104678316B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510090685.8A CN104678316B (zh) 2015-02-28 2015-02-28 锂离子电池荷电状态估算方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510090685.8A CN104678316B (zh) 2015-02-28 2015-02-28 锂离子电池荷电状态估算方法和装置

Publications (2)

Publication Number Publication Date
CN104678316A true CN104678316A (zh) 2015-06-03
CN104678316B CN104678316B (zh) 2017-08-01

Family

ID=53313647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510090685.8A Active CN104678316B (zh) 2015-02-28 2015-02-28 锂离子电池荷电状态估算方法和装置

Country Status (1)

Country Link
CN (1) CN104678316B (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068006A (zh) * 2015-06-24 2015-11-18 汪建立 一种基于库伦soc与电压soc相结合的快速学习方法
CN105425153A (zh) * 2015-11-02 2016-03-23 北京理工大学 一种估计电动车辆的动力电池的荷电状态的方法
CN105467328A (zh) * 2015-12-29 2016-04-06 哈尔滨工业大学 一种锂离子电池荷电状态估计方法
CN105552465A (zh) * 2015-12-03 2016-05-04 北京交通大学 一种基于时间和温度的锂离子电池优化充电方法
CN105607009A (zh) * 2016-02-01 2016-05-25 深圳大学 一种基于动态参数模型的动力电池soc估计方法和***
CN105629173A (zh) * 2015-12-22 2016-06-01 东软集团股份有限公司 估计电池的荷电状态soc的方法和装置
CN105759216A (zh) * 2016-02-26 2016-07-13 同济大学 一种软包锂离子电池荷电状态估算方法
CN106324523A (zh) * 2016-09-26 2017-01-11 合肥工业大学 基于离散变结构观测器的锂电池soc估计方法
CN107819336A (zh) * 2016-09-13 2018-03-20 成都天府新区光启未来技术研究院 锂电池的均衡方法、装置和***
CN107870306A (zh) * 2017-12-11 2018-04-03 重庆邮电大学 一种基于深度神经网络下的锂电池荷电状态预测算法
CN108051756A (zh) * 2017-12-14 2018-05-18 株洲广锐电气科技有限公司 蓄电池soc的估算方法、***及存储介质
CN108107372A (zh) * 2017-12-14 2018-06-01 株洲广锐电气科技有限公司 基于soc分区估算的蓄电池健康状况量化方法及***
CN108474824A (zh) * 2016-01-15 2018-08-31 株式会社杰士汤浅国际 蓄电元件管理装置、蓄电元件模块、车辆及蓄电元件管理方法
CN109557475A (zh) * 2018-11-30 2019-04-02 北京新能源汽车股份有限公司 一种电池可用容量soc的确定方法及装置
CN109725265A (zh) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 估算电池包的soc的方法和装置及机器可读存储介质
CN110244237A (zh) * 2019-06-20 2019-09-17 广东志成冠军集团有限公司 海岛电源储能电池估算方法、模型及***
CN110308394A (zh) * 2019-06-25 2019-10-08 南京理工大学 一种新型状态观测器的锂离子电池荷电状态估测方法
CN110398698A (zh) * 2019-07-30 2019-11-01 惠州市科达星辰技术有限公司 一种电池管理***soh估算的方法
CN110488194A (zh) * 2019-09-02 2019-11-22 中南大学 一种基于电化学阻抗模型的锂电池soc估算方法及其***
CN110506216A (zh) * 2017-03-31 2019-11-26 三菱电机株式会社 蓄电池状态推定装置
CN110609236A (zh) * 2019-09-24 2019-12-24 无锡凌博电子技术有限公司 一种基于静态极化和卡尔曼滤波的soc估算方法
CN110673050A (zh) * 2018-07-03 2020-01-10 法国电力公司 评估电池健康状态的方法
CN111426960A (zh) * 2020-05-26 2020-07-17 中国恩菲工程技术有限公司 储能锂电池荷电状态监控方法与装置
CN111596219A (zh) * 2020-06-15 2020-08-28 国网江苏省电力有限公司经济技术研究院 一种储能电池组soc的估算方法
CN112415399A (zh) * 2020-10-16 2021-02-26 欣旺达电子股份有限公司 电池单体ocv-soc曲线修正方法、设备及存储介质
CN112649745A (zh) * 2020-12-16 2021-04-13 北京理工大学 一种协同重组ocv的线性化类状态观测器的电池soc估算方法
CN113447824A (zh) * 2021-06-28 2021-09-28 三一重型装备有限公司 电池最大充放电电流的估算方法、装置及存储介质
CN110867620B (zh) * 2018-08-27 2021-12-07 比亚迪股份有限公司 一种电池保护方法、电池保护装置、电子设备
CN114069077A (zh) * 2021-11-22 2022-02-18 东莞新能安科技有限公司 电化学装置管理方法、电子设备及电池***
WO2023184824A1 (zh) * 2022-03-31 2023-10-05 上海玫克生储能科技有限公司 电池簇荷电状态的估计方法及***、电子设备及存储介质

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215151A (ja) * 2005-12-27 2011-10-27 Toyota Motor Corp 二次電池の充電状態推定装置および充電状態推定方法
CN102756661A (zh) * 2011-04-27 2012-10-31 北京八恺电气科技有限公司 车用电池荷电状态的确定方法及装置
CN102930173A (zh) * 2012-11-16 2013-02-13 重庆长安汽车股份有限公司 一种锂离子电池荷电状态在线估算方法
CN103389468A (zh) * 2012-05-08 2013-11-13 通用汽车环球科技运作有限责任公司 电池荷电状态观测器
CN103698713A (zh) * 2013-12-30 2014-04-02 长城汽车股份有限公司 一种锂离子电池健康状态评估方法
CN103901354A (zh) * 2014-04-23 2014-07-02 武汉市欧力普能源与自动化技术有限公司 一种电动汽车车载动力电池soc预测方法
WO2014112181A1 (ja) * 2013-01-21 2014-07-24 株式会社豊田自動織機 充電率推定装置および充電率推定方法
CN203786271U (zh) * 2014-04-22 2014-08-20 桂林电子科技大学 电动汽车动力电池组荷电状态检测装置
CN104007395A (zh) * 2014-06-11 2014-08-27 北京交通大学 锂离子电池荷电状态与参数自适应联合估计方法
CN104076293A (zh) * 2014-07-07 2014-10-01 北京交通大学 基于观测器的锂电池soc估算误差的定量分析方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011215151A (ja) * 2005-12-27 2011-10-27 Toyota Motor Corp 二次電池の充電状態推定装置および充電状態推定方法
CN102756661A (zh) * 2011-04-27 2012-10-31 北京八恺电气科技有限公司 车用电池荷电状态的确定方法及装置
CN103389468A (zh) * 2012-05-08 2013-11-13 通用汽车环球科技运作有限责任公司 电池荷电状态观测器
CN102930173A (zh) * 2012-11-16 2013-02-13 重庆长安汽车股份有限公司 一种锂离子电池荷电状态在线估算方法
WO2014112181A1 (ja) * 2013-01-21 2014-07-24 株式会社豊田自動織機 充電率推定装置および充電率推定方法
CN103698713A (zh) * 2013-12-30 2014-04-02 长城汽车股份有限公司 一种锂离子电池健康状态评估方法
CN203786271U (zh) * 2014-04-22 2014-08-20 桂林电子科技大学 电动汽车动力电池组荷电状态检测装置
CN103901354A (zh) * 2014-04-23 2014-07-02 武汉市欧力普能源与自动化技术有限公司 一种电动汽车车载动力电池soc预测方法
CN104007395A (zh) * 2014-06-11 2014-08-27 北京交通大学 锂离子电池荷电状态与参数自适应联合估计方法
CN104076293A (zh) * 2014-07-07 2014-10-01 北京交通大学 基于观测器的锂电池soc估算误差的定量分析方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
曾求勇等: "电动汽车动力电池荷电状态估计方法探讨", 《电测与仪表》 *
李琳辉等: "电动汽车用动力电池SOC估算方法概述", 《汽车电器》 *
许伟等: "储能锂离子电池荷电状态估算方法", 《上海电气技术》 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105068006A (zh) * 2015-06-24 2015-11-18 汪建立 一种基于库伦soc与电压soc相结合的快速学习方法
CN105425153A (zh) * 2015-11-02 2016-03-23 北京理工大学 一种估计电动车辆的动力电池的荷电状态的方法
CN105425153B (zh) * 2015-11-02 2017-12-05 北京理工大学 一种估计电动车辆的动力电池的荷电状态的方法
CN105552465A (zh) * 2015-12-03 2016-05-04 北京交通大学 一种基于时间和温度的锂离子电池优化充电方法
CN105629173A (zh) * 2015-12-22 2016-06-01 东软集团股份有限公司 估计电池的荷电状态soc的方法和装置
CN105629173B (zh) * 2015-12-22 2019-04-12 东软集团股份有限公司 估计电池的荷电状态soc的方法和装置
CN105467328B (zh) * 2015-12-29 2018-07-03 哈尔滨工业大学 一种锂离子电池荷电状态估计方法
CN105467328A (zh) * 2015-12-29 2016-04-06 哈尔滨工业大学 一种锂离子电池荷电状态估计方法
CN108474824A (zh) * 2016-01-15 2018-08-31 株式会社杰士汤浅国际 蓄电元件管理装置、蓄电元件模块、车辆及蓄电元件管理方法
CN105607009A (zh) * 2016-02-01 2016-05-25 深圳大学 一种基于动态参数模型的动力电池soc估计方法和***
CN105759216A (zh) * 2016-02-26 2016-07-13 同济大学 一种软包锂离子电池荷电状态估算方法
CN105759216B (zh) * 2016-02-26 2018-10-26 同济大学 一种软包锂离子电池荷电状态估算方法
CN107819336A (zh) * 2016-09-13 2018-03-20 成都天府新区光启未来技术研究院 锂电池的均衡方法、装置和***
CN106324523B (zh) * 2016-09-26 2019-02-19 合肥工业大学 基于离散变结构观测器的锂电池soc估计方法
CN106324523A (zh) * 2016-09-26 2017-01-11 合肥工业大学 基于离散变结构观测器的锂电池soc估计方法
CN110506216A (zh) * 2017-03-31 2019-11-26 三菱电机株式会社 蓄电池状态推定装置
CN107870306A (zh) * 2017-12-11 2018-04-03 重庆邮电大学 一种基于深度神经网络下的锂电池荷电状态预测算法
CN108051756A (zh) * 2017-12-14 2018-05-18 株洲广锐电气科技有限公司 蓄电池soc的估算方法、***及存储介质
CN108107372A (zh) * 2017-12-14 2018-06-01 株洲广锐电气科技有限公司 基于soc分区估算的蓄电池健康状况量化方法及***
CN108107372B (zh) * 2017-12-14 2020-06-16 株洲广锐电气科技有限公司 基于soc分区估算的蓄电池健康状况量化方法及***
CN110673050A (zh) * 2018-07-03 2020-01-10 法国电力公司 评估电池健康状态的方法
CN110673050B (zh) * 2018-07-03 2021-11-30 法国电力公司 评估电池健康状态的方法
CN110867620B (zh) * 2018-08-27 2021-12-07 比亚迪股份有限公司 一种电池保护方法、电池保护装置、电子设备
CN109557475B (zh) * 2018-11-30 2022-01-04 北京新能源汽车股份有限公司 一种电池可用容量soc的确定方法及装置
CN109557475A (zh) * 2018-11-30 2019-04-02 北京新能源汽车股份有限公司 一种电池可用容量soc的确定方法及装置
CN109725265A (zh) * 2018-12-29 2019-05-07 蜂巢能源科技有限公司 估算电池包的soc的方法和装置及机器可读存储介质
CN110244237A (zh) * 2019-06-20 2019-09-17 广东志成冠军集团有限公司 海岛电源储能电池估算方法、模型及***
CN110308394B (zh) * 2019-06-25 2020-11-06 南京理工大学 一种新型状态观测器的锂离子电池荷电状态估测方法
CN110308394A (zh) * 2019-06-25 2019-10-08 南京理工大学 一种新型状态观测器的锂离子电池荷电状态估测方法
CN110398698B (zh) * 2019-07-30 2021-05-07 惠州市科达星辰技术有限公司 一种电池管理***soh估算的方法
CN110398698A (zh) * 2019-07-30 2019-11-01 惠州市科达星辰技术有限公司 一种电池管理***soh估算的方法
CN110488194A (zh) * 2019-09-02 2019-11-22 中南大学 一种基于电化学阻抗模型的锂电池soc估算方法及其***
CN110609236B (zh) * 2019-09-24 2020-06-19 无锡凌博电子技术有限公司 一种基于静态极化和卡尔曼滤波的soc估算方法
CN110609236A (zh) * 2019-09-24 2019-12-24 无锡凌博电子技术有限公司 一种基于静态极化和卡尔曼滤波的soc估算方法
CN111426960A (zh) * 2020-05-26 2020-07-17 中国恩菲工程技术有限公司 储能锂电池荷电状态监控方法与装置
CN111596219A (zh) * 2020-06-15 2020-08-28 国网江苏省电力有限公司经济技术研究院 一种储能电池组soc的估算方法
CN112415399B (zh) * 2020-10-16 2023-10-10 欣旺达电动汽车电池有限公司 电池单体ocv-soc曲线修正方法、设备及存储介质
CN112415399A (zh) * 2020-10-16 2021-02-26 欣旺达电子股份有限公司 电池单体ocv-soc曲线修正方法、设备及存储介质
CN112649745A (zh) * 2020-12-16 2021-04-13 北京理工大学 一种协同重组ocv的线性化类状态观测器的电池soc估算方法
CN113447824A (zh) * 2021-06-28 2021-09-28 三一重型装备有限公司 电池最大充放电电流的估算方法、装置及存储介质
CN114069077A (zh) * 2021-11-22 2022-02-18 东莞新能安科技有限公司 电化学装置管理方法、电子设备及电池***
CN114069077B (zh) * 2021-11-22 2024-06-04 东莞新能安科技有限公司 电化学装置管理方法、电子设备及电池***
WO2023184824A1 (zh) * 2022-03-31 2023-10-05 上海玫克生储能科技有限公司 电池簇荷电状态的估计方法及***、电子设备及存储介质

Also Published As

Publication number Publication date
CN104678316B (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN104678316B (zh) 锂离子电池荷电状态估算方法和装置
CN107533105B (zh) 锂离子电池荷电状态估算方法和装置
Murnane et al. A closer look at state of charge (SOC) and state of health (SOH) estimation techniques for batteries
Yang et al. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles
Xiong et al. A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter
TWI708068B (zh) 用於測定鋰硫電池之健康狀態及充電狀態的方法及裝置
CN103020445B (zh) 一种电动车车载磷酸铁锂电池的soc与soh预测方法
CN103744030B (zh) 电池组健康状态和荷电状态在线估算装置及估算方法
Sun et al. A novel dual-scale cell state-of-charge estimation approach for series-connected battery pack used in electric vehicles
Hu et al. Robustness analysis of State-of-Charge estimation methods for two types of Li-ion batteries
Hu et al. Online estimation of an electric vehicle lithium-ion battery using recursive least squares with forgetting
CN105301509A (zh) 锂离子电池荷电状态、健康状态与功率状态的联合估计方法
WO2015106691A1 (zh) 一种混合动力车用动力电池soc估算方法
CN106716158A (zh) 电池荷电状态估算方法和装置
CN105223487B (zh) 一种锂离子电池的多状态解耦估计方法
CN106249171A (zh) 一种用于宽采样间隔的动力电池***辨识和状态估计方法
CN104569835A (zh) 一种估计电动汽车的动力电池的荷电状态的方法
KR100901252B1 (ko) 슬라이딩 모드 관측기를 이용한 2차 전지 soc 예측방법 및 장치
Li et al. A new parameter estimation algorithm for an electrical analogue battery model
CN110795851A (zh) 一种考虑环境温度影响的锂离子电池建模方法
CN105425154A (zh) 一种估计电动汽车的动力电池组的荷电状态的方法
CN110221221A (zh) 锂离子电池荷电状态和健康状态联合估计方法
CN106872899A (zh) 一种基于降维观测器的动力电池soc估计方法
CN105699910A (zh) 一种锂电池剩余电量在线估计方法
Feng et al. A graphical model for evaluating the status of series‐connected lithium‐ion battery pack

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180606

Address after: 100044 2-305-1, 3 floor, 2 building, 59 courtyard street, Haidian District, Beijing.

Patentee after: BEIJING BEIJIAO NEW ENERGY TECHNOLOGY CO., LTD.

Address before: 100044 Beijing city Haidian District Xizhimen Shangyuan Village No. 3

Patentee before: Beijing Jiaotong University

TR01 Transfer of patent right