CN104629264A - 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法 - Google Patents

一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法 Download PDF

Info

Publication number
CN104629264A
CN104629264A CN201510065088.XA CN201510065088A CN104629264A CN 104629264 A CN104629264 A CN 104629264A CN 201510065088 A CN201510065088 A CN 201510065088A CN 104629264 A CN104629264 A CN 104629264A
Authority
CN
China
Prior art keywords
polyacrylonitrile
carbon fiber
composite material
fibre
carbon fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510065088.XA
Other languages
English (en)
Inventor
林建江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foshan Saturday Technology R & D Co Ltd
Original Assignee
Foshan Saturday Technology R & D Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foshan Saturday Technology R & D Co Ltd filed Critical Foshan Saturday Technology R & D Co Ltd
Priority to CN201510065088.XA priority Critical patent/CN104629264A/zh
Publication of CN104629264A publication Critical patent/CN104629264A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种应用于鞋中底板的碳纤维增强环氧树脂复合材料的制备方法,包括以下步骤:将纺丝液通过干喷湿纺法制备得到1-1.5旦的聚丙烯腈纤维;将聚丙烯腈纤维在1000-1200℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;冷却后强酸电解改性:将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性;将聚丙烯腈碳纤维切断成长度为8-12mm的短切纤维;再将聚丙烯腈碳纤维浸泡在表面改性剂中24小时;将双酚A环氧树脂、苯乙烯、表面改性的聚丙烯腈碳纤维、加工助剂按其重量份用模塑法制备得到复合材料。本发明所述方法制备得到的复合材料,硬度大且其综合的力学性能比较好,可应用于鞋中底板,提高抗刺穿性能。

Description

一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法
技术领域
本发明涉及复合材料领域,特别涉及一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法。
背景技术
鞋底较多为发泡橡胶或塑胶等树脂材料制成,具有弹性质软的特性,穿上后脚底感觉柔软舒适,然此种鞋底也有一定的缺陷,当使用者踩至尖锐物上时,如铁钉等,可能刺穿鞋底以致脚底受伤。为了防止上述现象,一些鞋底加装上铁垫片等,然铁片重量重,不容易弯曲造成使用者活动不方便。聚丙烯腈纤维复合板材由于施工灵活方便,工效高,耐腐蚀性好等原因,在板材加固维护领域中应用得越来越广泛。但目前碳纤维板材料由于质量不稳定,强度还不足够达到需用强度,板材的抗老化性能也不存在缺陷,制约了聚丙烯腈纤维复合材料在所需领域的应用。
发明内容
综上所述,本发明有必要提供一种应用于鞋中底板的碳纤维增强环氧树脂复合材料的制备方法。
此外,还有必要提供一种上述制备方法制得的碳纤维增强环氧树脂复合材料。
一种碳纤维增强环氧树脂复合材料及其制备方法,
包括以下步骤:
1)将纺丝液通过干喷湿纺法制备得到1-1.5旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为2.6×105-4.0×105,重均分子量为5×105-8×105
2)将步骤1)所述的聚丙烯腈纤维在1000-1200℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为8-12mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30-40份;
苯乙烯:3-5份;
步骤5)表面改性的聚丙烯腈碳纤维:50-60份;
加工助剂:3-5份。
其中,所述双酚A环氧树指的数均分子量60000-80000,重均分子量100000-150000。
其中,所述步骤3)的具体方法是:将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3-4,电流密度为1-2A/m2,电解时间为2-3min,电解的温度为40-45℃。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10-25份、脂肪醇聚氧乙烯醚5-10份、双酚A二缩水甘油醚5-10份,表面活性剂10-15份,水40-50份。
其中,所述表面活性剂是两性表面活性剂。
其中,所述加工助剂是阻燃剂、光稳定剂、抗静电剂、抗氧化剂中的一种或多种。
其中,所述抗氧化剂是阻酚类抗氧剂、亚磷酸酯抗氧剂和有机硫抗氧剂中的一种或多种。
上述的方法制备得到的碳纤维增强环氧树脂复合材料,
所述复合材料的抗冲击强度为12.8KJ/m2以上。
其中,所述复合材料的抗弯曲强度为230MPa以上。
上述复合材料在鞋中底板材料领域中的应用。
所述加工助剂包括但不限于阻燃剂、光稳定剂、抗静电剂和抗氧化剂。所述抗氧化剂可以是阻酚类抗氧剂、亚磷酸酯抗氧剂和有机硫抗氧剂。
相较现有技术,本发明所述的方法通过对碳纤维表面的改性,通过两次改性,并在一定的比例条件与环氧树脂在模塑法的条件制备得的碳纤维增强环氧树脂复合材料,硬度大且其综合的力学性能比较好,可以满足鞋中底板的硬度需求。另外,本发明所述的复合材料使用的原料可以在一些废料中取得,利于废料循环利用,是一种环境友好的复合材料。
具体实施方式
下面结合一些具体实施方式对本发明做进一步描述。具体实施例为进一步详细说明本发明,非限定本发明的保护范围。
对本发明所用的材料的说明:
本发明所述物质均来源于市售。
表面活性剂为烷基二甲基甜菜碱性两性表面活性剂。
测试方法
复合材料的抗拉伸强度测试:按国标GB/T1040-2006进行,试样形状为哑铃形。
复合材料的抗层间剪切强度测试:按JC/T773-82(96)进行,试样形状为哑铃形。
复合材料的抗弯曲强度测试:按国标GB/T9341-2008进行,试样形状为哑铃形。
复合材料的抗冲击强度测试:按国标GB/T1043.1-2008进行,在摆锤式悬臂梁冲击试验机上进行测试,缺口类型为A。
复合材料的硬度测试:用邵氏D型硬度计进行硬度测试。
电解改性的条件复合材料力学性的影响
实施例1
1)将纺丝液通过干喷湿纺法制备得到1旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为2.6×105,重均分子量为5×105
2)将步骤1)所述的聚丙烯腈纤维在1000℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3,电流密度为1A/m2,电解时间为2min,电解的温度为40℃;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为10mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30份;
苯乙烯:3份;
步骤5)表面改性的聚丙烯腈碳纤维:50份;
加工助剂:3份。
其中双酚A环氧树指的数均分子量60000,重均分子量100000。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10份、脂肪醇聚氧乙烯醚5份、双酚A二缩水甘油醚5份,表面活性剂10份,水40份。
测试复合材料的各项力学性能,将数据列于表1中。
实施例2
1)将纺丝液通过干喷湿纺法制备得到1.5旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为4×105,重均分子量为6×105
2)将步骤1)所述的聚丙烯腈纤维在1200℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为4,电流密度为2A/m2,电解时间为3min,电解的温度为45℃;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为10mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30份;
苯乙烯:3份;
步骤5)表面改性的聚丙烯腈碳纤维:50份;
加工助剂:3份。
其中双酚A环氧树指的数均分子量70000,重均分子量120000。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10份、脂肪醇聚氧乙烯醚5份、双酚A二缩水甘油醚5份,表面活性剂10份,水40份。
测试复合材料的各项力学性能,将数据列于表1中。
实施例3
1)将纺丝液通过干喷湿纺法制备得到1.5旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为3×105,重均分子量为8×105
2)将步骤1)所述的聚丙烯腈纤维在1000℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3,电流密度为1A/m2,电解时间为2min,电解的温度为45℃;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为10mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30份;
苯乙烯:3份;
步骤5)表面改性的聚丙烯腈碳纤维:50份;
加工助剂:3份。
其中双酚A环氧树指的数均分子量80000,重均分子量150000。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10份、脂肪醇聚氧乙烯醚5份、双酚A二缩水甘油醚5份,表面活性剂10份,水40份。
测试复合材料的各项力学性能,将数据列于表1中。
对比例1
其余条件与实施例1相同,减少电解改性的步骤,测试得到的复合材料的各项力学性能,将数据列于表1中。
对比例2和对比例3
其余条件与实施例1相同,丙聚烯聚合物和双酚A环氧树脂的数均分子量与数均分子量以及电解改性的条件不同,按表1所示,分别制备得到的复合材料,分别测试复合材料的各项力学性能,将数据列于表1中。
表1
对实施例1-3和对比例1-3对比可以看出,当电解条件为强酸性电解液的pH值为3,电流密度为1A/m2,电解时间为2min,电解的温度为40℃时,所述复合材料的力学性能更好,由对比例3与实施例1-3的比对发现,当聚丙烯腈和双酚A环氧树指的重均分子量和数均分子量过高时,对复合材料的力学性能有负面的影响。
碳纤维长度对复合材料力学性能的影响
实施例4
1)将纺丝液通过干喷湿纺法制备得到1旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为2.6×105,重均分子量为5×105
2)将步骤1)所述的聚丙烯腈纤维在1000℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3,电流密度为1A/m2,电解时间为2min,电解的温度为40℃;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为8mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30份;
苯乙烯:3份;
步骤5)表面改性的聚丙烯腈碳纤维:50份;
加工助剂:3份。
其中双酚A环氧树指的数均分子量60000,重均分子量100000。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10份、脂肪醇聚氧乙烯醚5份、双酚A二缩水甘油醚5份,表面活性剂10份,水40份。
测试复合材料的各项力学性能,将数据列于表2中。
实施例5
其余条件与实施例4相同,在步骤4)中:将步骤3)得到的聚丙烯腈碳纤维切断成长度为12mm的短切纤维;测试复合材料的各项力学性能,将数据列于表2中。
对比例4
其余条件与实施例4相同,在步骤4)中:将步骤3)得到的聚丙烯腈碳纤维切断成长度为6mm的短切纤维;测试复合材料的各项力学性能,将数据列于表2中。
对比例5
其余条件与实施例4相同,在步骤4)中:将步骤3)得到的聚丙烯腈碳纤维切断成长度为15mm的短切纤维;测试复合材料的各项力学性能,将数据列于表2中。
表2
实施例1 实施例4 实施例5 对比例4 对比例5
纤维长度/mm 10 8 12 6 15
抗拉伸强度/MPa 180 184 182 178 176
抗层间剪切强度测试/MPa 95 96 93 89 88
抗弯曲强度/MPa 230 230 228 225 222
抗冲击强度/(KJ/m2) 13.0 12.8 13.2 12.4 12.2
硬度/邵氏硬度D 88 85 84 81 80
由实施例1、4、5和对比例4和对比例5对比发现,当聚丙烯腈碳纤维长度在8-12mm时,复合材料和综合力学性能更好。
复合材料配方对复合材料力学性能的影响
实施例6
1)将纺丝液通过干喷湿纺法制备得到1旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为2.6×105,重均分子量为5×105
2)将步骤1)所述的聚丙烯腈纤维在1000℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3,电流密度为1A/m2,电解时间为2min,电解的温度为40℃;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为10mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:40份;
苯乙烯:5份;
步骤5)表面改性的聚丙烯腈碳纤维:60份;
加工助剂:3份。
其中双酚A环氧树指的数均分子量60000,重均分子量100000。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10份、脂肪醇聚氧乙烯醚5份、双酚A二缩水甘油醚5份,表面活性剂10份,水40份。
测试复合材料的各项力学性能,将数据列于表3中。
实施例7和对比例6、7
与实施例6相比,其余条件均相同,在制备复合材料时,将双酚A环氧树脂、苯乙烯、步骤5)表面改性的聚丙烯腈碳纤维和加工助剂按表3所示的重量份用模塑法制得。分别测试复合材料的各项力学性能,将数据列于表3中。
表3
由上表也可以看出,当双酚A环氧树脂与聚丙烯腈碳纤维的比例以及苯乙烯的添加比例对复合材料的力学性能的影响也比较大。
改性剂配方对复合材料的影响
实施例8
1)将纺丝液通过干喷湿纺法制备得到1旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为2.6×105,重均分子量为5×105
2)将步骤1)所述的聚丙烯腈纤维在1000℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3,电流密度为1A/m2,电解时间为2min,电解的温度为40℃;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为10mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30份;
苯乙烯:3份;
步骤5)表面改性的聚丙烯腈碳纤维:50份;
加工助剂:3份。
其中双酚A环氧树指的数均分子量60000,重均分子量100000。
其中,所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜25份、脂肪醇聚氧乙烯醚10份、双酚A二缩水甘油醚10份,表面活性剂15份,水50份。
测试复合材料的各项力学性能,将数据列于表4中。
实施例9和对比例8、9
其余条件与实施例8相同,除了表面改性剂的配方不同,根据表4所示的配方制备表面改性剂,制备得到复合材料,分别测试复合材料的各项力学性能,将数据列于表4中。
表4
实施例1 实施例8 实施例9 对比例8 对比例9
二甲基亚砜 10 25 20 5 20
脂肪醇聚氧乙烯醚 5 10 7 10 10
双酚A二缩水甘油醚 5 10 8 0 15
表面活性剂 10 15 12 12 12
40 50 45 40 40
抗拉伸强度/MPa 180 182 178 170 174
抗层间剪切强度测试/MPa 95 96 92 89 89
抗弯曲强度/MPa 230 232 235 222 220
抗冲击强度/(KJ/m2) 13.0 13.2 13.5 12.4 12.2
硬度/邵氏硬度D 88 86 85 80 81
由表4可以看出,表面改性剂的配方对复合材料的力学性能也有影响。
综合以上,由本案所公开的技术方案可以制备得到一种力学性能优良的聚丙烯腈碳纤维增强环氧树脂复合材料,可直接用于制作鞋中底板,制得的鞋中底板硬度佳,可充分满足耐刺穿性能。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

1.一种应用于鞋中底板的碳纤维增强环氧树脂复合材料的制备方法,其特征在于,
包括以下步骤:
1)将纺丝液通过干喷湿纺法制备得到1-1.5旦的聚丙烯腈纤维,所述纺丝液是丙烯腈的单聚物,所述丙烯腈聚合物数均分子量为2.6×105-4.0×105,重均分子量为5×105-8×105
2)将步骤1)所述的聚丙烯腈纤维在1000-1200℃的条件下进行热处理20min,得到聚丙烯腈碳纤维;
3)待步骤2)的聚丙烯腈碳纤维冷却后进行强酸电解改性:将聚丙烯腈碳纤维在盛有强酸性电解液的电解槽中进行电化学改性;
4)将步骤3)得到的聚丙烯腈碳纤维切断成长度为8-12mm的短切纤维;
5)将步骤4)得到的聚丙烯腈碳纤维浸泡在表面改性剂中24小时;
6)将以下材料按其重量份用模塑法制备得到复合材料:
双酚A环氧树脂:30-40份;
苯乙烯:3-5份;
步骤5)表面改性的聚丙烯腈碳纤维:50-60份;
加工助剂:3-5份。
2.如权利要求1所述的方法,其特征在于:
所述双酚A环氧树指的数均分子量60000-80000,重均分子量100000-150000。
3.如权利要求1所述的方法,其特征在于:
所述步骤3)的具体方法是:将碳纤维在盛有强酸性电解液的电解槽中进行电化学改性,所述的强酸性电解液的pH值为3-4,电流密度为1-2A/m2,电解时间为2-3min,电解的温度为40-45℃。
4.如权利要求1所述的方法,其特征在于:
所述表面改性剂是由以下成按其重量份组成的:二甲基亚砜10-25份、脂肪醇聚氧乙烯醚5-10份、双酚A二缩水甘油醚5-10份,表面活性剂10-15份,水40-50份。
5.如权利要求1所述的方法,其特征在于:
所述表面活性剂是两性表面活性剂。
6.如权利要求1所述的方法,其特征在于:
所述加工助剂是阻燃剂、光稳定剂、抗静电剂、抗氧化剂中的一种或多种。
7.如权利要求1所述的方法,其特征在于:
所述抗氧化剂是阻酚类抗氧剂、亚磷酸酯抗氧剂和有机硫抗氧剂中的一种或多种。
8.一种如权利要求1-7任一项所述的方法制备得到的碳纤维增强环氧树脂复合材料,其特征在于:
所述复合材料的抗冲击强度为12.8KJ/m2以上。
9.如权利要求8所述的碳纤维增强环氧树脂复合材料,其特征在于:
所述复合材料的抗弯曲强度为230MPa以上。
10.一种权利要求8或9所述的复合材料在制作鞋中底板领域中的应用。
CN201510065088.XA 2015-02-06 2015-02-06 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法 Pending CN104629264A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510065088.XA CN104629264A (zh) 2015-02-06 2015-02-06 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510065088.XA CN104629264A (zh) 2015-02-06 2015-02-06 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN104629264A true CN104629264A (zh) 2015-05-20

Family

ID=53208528

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510065088.XA Pending CN104629264A (zh) 2015-02-06 2015-02-06 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104629264A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433027A (zh) * 2016-08-03 2017-02-22 衡阳冠力塑胶有限公司 一种聚丙烯腈碳纤维增强环氧树脂复合材料及其制备方法和应用
CN106751472A (zh) * 2016-11-24 2017-05-31 广州本色环保工程有限公司 一种碳纤维增强环氧树脂复合材料及其制备方法
CN107043530A (zh) * 2017-01-19 2017-08-15 佛山星期六科技研发有限公司 一种耐磨复合天皮及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553511A (zh) * 2006-10-18 2009-10-07 东丽株式会社 聚丙烯腈类聚合物和其制造方法及碳纤维母体纤维的制造方法及碳纤维和其制造方法
CN103154336A (zh) * 2010-10-13 2013-06-12 三菱丽阳株式会社 碳纤维前体纤维束、碳纤维束以及它们的用途
TW201437447A (zh) * 2013-01-25 2014-10-01 Toray Industries 塗布上漿劑的碳纖維束、碳纖維束之製造方法及預浸漬物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101553511A (zh) * 2006-10-18 2009-10-07 东丽株式会社 聚丙烯腈类聚合物和其制造方法及碳纤维母体纤维的制造方法及碳纤维和其制造方法
CN103154336A (zh) * 2010-10-13 2013-06-12 三菱丽阳株式会社 碳纤维前体纤维束、碳纤维束以及它们的用途
TW201437447A (zh) * 2013-01-25 2014-10-01 Toray Industries 塗布上漿劑的碳纖維束、碳纖維束之製造方法及預浸漬物

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433027A (zh) * 2016-08-03 2017-02-22 衡阳冠力塑胶有限公司 一种聚丙烯腈碳纤维增强环氧树脂复合材料及其制备方法和应用
CN106751472A (zh) * 2016-11-24 2017-05-31 广州本色环保工程有限公司 一种碳纤维增强环氧树脂复合材料及其制备方法
CN107043530A (zh) * 2017-01-19 2017-08-15 佛山星期六科技研发有限公司 一种耐磨复合天皮及其制备方法

Similar Documents

Publication Publication Date Title
CN104629264A (zh) 一种应用于鞋中底板的碳纤维增强环氧树脂复合材料及其制备方法
CN106433027A (zh) 一种聚丙烯腈碳纤维增强环氧树脂复合材料及其制备方法和应用
CN108192162B (zh) 一种运动鞋底用耐磨橡胶及其制备方法
CN103665700A (zh) 一种聚双环戊二烯复合材料及其制备方法
CN102816358A (zh) 透明抗静电鞋底及其生产方法
CN109354816A (zh) 一种耐腐蚀铅蓄电池塑壳及其制备方法
CN102952330B (zh) 低气味聚丙烯树脂及其制备方法
CN103232604B (zh) 环氧树脂改性水解胶原蛋白和由其制备的复鞣填充剂及它们的制备方法
CN104277258A (zh) 一种耐候性好的吸水膨胀橡胶的制备方法
CN105367852A (zh) 一种职业鞋橡胶鞋底及其制备方法
CN107337846A (zh) 一种橡塑发泡鞋底用组合物、橡塑发泡鞋底及其制造方法
CN106046466A (zh) 一种耐酸碱抗老化的鞋底材料
CN111906877B (zh) 一种竹编复合材料及其制备方法和应用
CN106479072B (zh) 一种ps复合材料及其制备方法
CN109638204A (zh) 一种高强度、复合型锂电池隔膜及其制备方法
CN106751472A (zh) 一种碳纤维增强环氧树脂复合材料及其制备方法
CN100575373C (zh) 一种高苯乙烯橡胶的制备方法
CN104629329A (zh) 一种高强耐候改性pc/abs合金及其制备方法
CN105255035A (zh) 一种聚苯乙烯改性耐热复合塑料
CN105885147A (zh) 一种高弹震鞋底的制作方法
CN109713320A (zh) 一种电池极板用bmc材料及其制备方法
CN108948742A (zh) 一种硅橡胶复合材料及其制备方法
CN113527719B (zh) 一种基于废铬革屑的高强度纳米复合三网络水凝胶的制备方法
CN112210132B (zh) 一种耐油耐腐蚀后跟标料及其制备方法
CN106566014A (zh) 一种绝缘耐酸碱胶料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150520

RJ01 Rejection of invention patent application after publication