CN104518804A - High-speed QC-LDPC encoder based on three-stage assembly line - Google Patents

High-speed QC-LDPC encoder based on three-stage assembly line Download PDF

Info

Publication number
CN104518804A
CN104518804A CN201510047861.XA CN201510047861A CN104518804A CN 104518804 A CN104518804 A CN 104518804A CN 201510047861 A CN201510047861 A CN 201510047861A CN 104518804 A CN104518804 A CN 104518804A
Authority
CN
China
Prior art keywords
matrix
vectorial
section
vector
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510047861.XA
Other languages
Chinese (zh)
Inventor
张鹏
刘志文
张燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Original Assignee
RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd filed Critical RONGCHENG DINGTONG ELECTRONIC INFORMATION TECHNOLOGY Co Ltd
Priority to CN201510047861.XA priority Critical patent/CN104518804A/en
Publication of CN104518804A publication Critical patent/CN104518804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Complex Calculations (AREA)

Abstract

The invention provides a high-speed QC-LDPC (quasi-cyclic low-density parity-check) encoder based on a three-stage assembly line. The encoder comprises a sparse matrix and vector multiplier, a type-I backward iterative circuit and a type-II backward iterative circuit, wherein the sparse matrix and vector multiplier is used for sparse matrix and vector multiply operation; the type-I backward iterative circuit and the type-II backward iterative circuit are used for backward iterative operation; the whole encoding process is divided into three assembly line stages. The high-speed QC-LDPC encoder provided by the invention has the advantages of simple structure, low cost, high throughput capacity and the like.

Description

Based on the high speed QC-LDPC encoder of three class pipeline
Technical field
The present invention relates to field of channel coding, particularly in a kind of communication system based on the high speed QC-LDPC encoder of three class pipeline.
Background technology
Code is one of efficient channel coding technology to low-density checksum (Low-Density Parity-Check, LDPC), and quasi-cyclic LDPC (Quasi-Cyclic LDPC, QC-LDPC) code is a kind of special LDPC code.The generator matrix G of QC-LDPC code and check matrix H are all the arrays be made up of circular matrix, have the feature of stages cycle, therefore are called as QC-LDPC code.The first trip of circular matrix is the result of footline ring shift right 1, and all the other each provisional capitals are results of its lastrow ring shift right 1, and therefore, circular matrix is characterized by its first trip completely.Usually, the first trip of circular matrix is called as its generator polynomial.
Communication system adopts the QC-LDPC code of system form usually, and the left-half of its generator matrix G is a unit matrix, and right half part is by e × c b × b rank circular matrix G i,jthe array that (0≤i<e, e≤j<t, t=e+c) is formed, as follows:
Wherein, I is b × b rank unit matrixs, and 0 is the full null matrix in b × b rank.The continuous b of G capable and b row are called as the capable and block row of block respectively.From formula (1), G has e block capable and t block row.
At present, what QC-LDPC code extensively adopted is the serial encoder adding accumulator (Type-IShift-Register-Adder-Accumulator, SRAA-I) circuit based on c I type shift register.The serial encoder be made up of c SRAA-I circuit, completes coding within e × b clock cycle.The program needs 2 × c × b register, c × b two inputs to input XOR gate with door and c × b individual two, also needs e × c × b bit ROM to store the generator polynomial of circular matrix.The program has two shortcomings: one is need a large amount of memory, causes circuit cost high; Two is serial input information bits, and coding rate is slow.
Summary of the invention
In communication system there is the shortcoming that cost is high, coding rate is slow in the existing implementation of QC-LDPC encoder, for these technical problems, the invention provides a kind of high speed QC-LDPC encoder based on three class pipeline.
As shown in Figure 2, the high speed QC-LDPC encoder based on three class pipeline in communication system forms primarily of 3 parts: sparse matrix and the multiplier of vector, after I type after iterative circuit and II type to iterative circuit.Cataloged procedure divides 3 steps to complete: the 1st step, uses sparse matrix and vectorial multiplier compute vector f and w; 2nd step, uses to iterative circuit compute vector q and x after I type, thus obtains part and verify vectorial p x=x; 3rd step, obtains part to iterative circuit compute vector y, y and vectorial q XOR after using II type and verifies vectorial p y, thus obtain verifying vectorial p=(p x, p y).
High speed QC-LDPC coder structure provided by the invention is simple, without the need to memory, can significantly improve coding rate, thus reduce costs, and improves throughput.
Be further understood by detailed description and accompanying drawings below about advantage of the present invention and method.
Accompanying drawing explanation
Fig. 1 is the structural representation of near lower triangular check matrix after ranks exchange;
Fig. 2 is the QC-LDPC cataloged procedure based on three class pipeline;
Fig. 3 is sparse matrix and vectorial multiplier;
Fig. 4 is to iterative circuit after I type;
Fig. 5 is to iterative circuit after II type;
Fig. 6 summarizes each coding step of encoder and the hardware resource needed for whole cataloged procedure and processing time.
Embodiment
Below in conjunction with accompanying drawing, preferred embodiment of the present invention is elaborated, can be easier to make advantages and features of the invention be readily appreciated by one skilled in the art, thus more explicit defining is made to protection scope of the present invention.
The row of circular matrix is heavy identical with column weight, is denoted as w.If w=0, so this circular matrix is full null matrix.If w=1, so this circular matrix is replaceable, is called permutation matrix, and it is by obtaining the some positions of unit matrix I ring shift right.The check matrix H of QC-LDPC code is by c × t b × b rank circular matrix H j,kthe following array that (1≤j≤c, 1≤k≤t, t=e+c) is formed:
Under normal circumstances, the arbitrary circular matrix in check matrix H is full null matrix (w=0) or is permutation matrix (w=1).Make circular matrix H j,kfirst trip g j,k=(g j, k, 1, g j, k, 2..., g j, k, b) be its generator polynomial, wherein g j, k, m=0 or 1 (1≤m≤b).Because H is sparse, so g j,konly have 1 ' 1 ', even there is no ' 1 '.
That the front e block row of H are corresponding is information vector a, and that rear c block row are corresponding is the vectorial p of verification.Be one section with b bit, information vector a is divided into e section, i.e. a=(a 1, a 2..., a e); Verify vectorial p and be divided into c section, be i.e. p=(p 1, p 2..., p c).
Check matrix H is gone and exchanges and row swap operation, be converted near lower triangular shape H aLT, as shown in Figure 1.In FIG, the unit of all matrixes is all b bit instead of 1 bit.A is made up of (c-u) × e b × b rank circular matrix, B is made up of (c-u) × u b × b rank circular matrix, T is made up of (c-u) × (c-u) individual b × b rank circular matrix, C is made up of u × e b × b rank circular matrix, D is made up of u × u b × b rank circular matrix, and E is made up of u × (c-u) individual b × b rank circular matrix.T is lower triangular matrix, and u reflects check matrix H aLTwith the degree of closeness of lower triangular matrix.In FIG, matrix A and C corresponding informance vector a, matrix B and the vectorial p of the corresponding part verification of D x=(p 1, p 2..., p u), matrix T and E be corresponding remaining verification vector p then y=(p u+1, p u+2..., p c).p=(p x,p y)。Above-mentioned matrix and vector meet following relation:
p x Τ=Φ(ET -1Aa Τ+Ca Τ) (3)
p y Τ=T -1(Aa Τ+Bp x Τ) (4)
Wherein, Φ=(ET -1b+D) -1, subscript Τwith -1represent transposition and inverse respectively.As everyone knows, circular matrix inverse, product and remain circular matrix.Therefore, Φ is also the array be made up of circular matrix.
When Φ equals unit matrix, namely during Φ=I, formula (3) can be reduced to p x Τ=ET -1aa Τ+ Ca Τ.Make f t=Aa t, q t=T – 1f t, w t=Ca t, x t=Eq t+ w t, p x t=x t, y t=T – 1bp x tand p y t=q t+ y t.Vector f and w can be calculated by following formula:
f w T = A C a T = Fa T - - - ( 5 )
Wherein,
F = A C - - - ( 6 )
Q t=T – 1f tand x t=Eq t+ w tcan matrix equality be constructed as follows:
T 0 E I q x T = Q q x T = f w T - - - ( 7 )
Wherein,
Q = T 0 E I - - - ( 8 )
Once calculate p x, y t=T – 1bp x tcan be rewritten as:
[B T][p xy] Τ=Y[p xy] Τ=0 (9)
Wherein,
Y=[B T] (10)
Because Q is the same with Y and T is all lower triangular matrix, so [the q x] in formula (7) and the y in formula (9) can adopt the account form of backward iteration.
F relates to sparse matrix and vectorial multiplication, and Q and Y relates to backward iterative computation.Based on the above discussion, a kind of QC-LDPC cataloged procedure based on three class pipeline can be provided, as shown in Figure 2.
Make f=(f 1, f 2..., f c – u) and w=(f c – u+1, f c – u+2..., f c), then [f w]=(f 1, f 2..., f c).From formula (5), f jthe capable and a of the jth block of matrix F tproduct, namely
f j = H j , 1 a 1 T + H j , 2 a 2 T + . . . + H j , i a i T + . . . + H j , e a e T - - - ( 11 )
Wherein, 1≤i≤e, 1≤j≤c.F jthe n-th bit f j,n(1≤n≤b) is
f j , n = g j , 1 rs ( n - 1 ) a 1 + g j , 2 rs ( n - 1 ) a 2 + . . . + g j , i rs ( n - 1 ) a i + . . . + g j , e rs ( n - 1 ) a e = g j , 1 a 1 ls ( n - 1 ) + g j , 2 a 2 ls ( n - 1 ) + . . . + g j , i a i ls ( n - 1 ) + . . . + g j , e a e ls ( n - 1 ) - - - ( 12 )
Wherein, subscript rs (n – 1)with ls (n – 1)represent ring shift right n – 1 and ring shift left n – 1 respectively.Since arbitrary circular matrix generator polynomial g j,ionly have a small amount of ' 1 ' or even complete zero, the inner product so in formula (12) realizes by suing for peace to the tap of ring shift left register, sparse matrix as shown in Figure 3 and vectorial multiplier.Sparse matrix and vectorial multiplier are by t b bit register R 1,1, R 1,2..., R 1, twith c multi input XOR gate X 1,1, X 1,2..., X 1, ccomposition.Register R 1,1, R 1,2..., R 1, efor loading and ring shift left message segment a 1, a 2..., a e, register R 1, e+1, R 1, e+2..., R 1, tfor storing the array section f of [f w] 1, f 2..., f c.Partially connected in Fig. 3 depends on all circular matrix generator polynomials in matrix F.If g j, i, m=1 (1≤m≤b), so message segment a im bit be connected to XOR gate X 1, j.Therefore, register R 1, iall taps depend on the nonzero element position of all circular matrix generator polynomials in matrix F i-th piece row, and multi input XOR gate X 1, jinput depend on matrix F jth block capable in the nonzero element position of all circular matrix generator polynomials.If all circular matrix generator polynomials in F have α ' 1 ', so sparse matrix needs to use (α – c with the multiplier of vector) individual two input XOR gate and calculate f simultaneously 1, n, f 2, n..., f c,n.F and w can calculate complete within b clock cycle.Use sparse matrix as follows with the step of vectorial multiplier compute vector f and w:
1st step, input message segment a 1, a 2..., a e, by them respectively stored in register R 1,1, R 1,2..., R 1, ein;
2nd step, register R 1,1, R 1,2..., R 1, ering shift left 1 time simultaneously, XOR gate X 1,1, X 1,2..., X 1, crespectively XOR result is moved to left into register R 1, e+1, R 1, e+2..., R 1, tin;
3rd step, repeats the 2nd step b time, after completing, and register R 1, e+1, R 1, e+2..., R 1, tthe content stored is array section f respectively 1, f 2..., f c, they constitute vector f and w.
Formula (7) implies backward iterative operation, must solve vectorial q and x piecemeal.Definition [q x]=(q 1, q 2..., q c), and be initialized as complete zero.First, q 1just f is equaled 1.Secondly, q 2the 2nd piece of row of matrix Q and vector [q x] tlong-pending and f 2mould 2 He.Then, q 3the 3rd piece of row of matrix Q and vector [q x] tlong-pending and f 3mould 2 He.Repeat said process, until calculated q ctill, to iterative circuit after I type as shown in Figure 4.After I type to iterative circuit by c b bit register R 2,1, R 2,2..., R 2, cwith c-1 multi input modulo 2 adder A 2,2, A 2,3..., A 2, ccomposition.
To calculate q j(1≤j≤c) is example.The ring shift right version of the normally unit matrix of the nonzero circle matrix in check matrix H.Have N number of nonzero circle matrix during the jth block of hypothesis matrix Q is capable, their ring shift right figure place is s respectively j, k1, s j, k2..., s j, kN(1≤k1, k2 ..., kN<j).Then,
q j = f j + I rs ( s j , k 1 ) q k 1 + I rs ( s j , k 2 ) q k 2 + . . . + I rs ( s j , kN ) q kN = f j + q k 1 ls ( s j , k 1 ) + q k 2 ls ( s j , k 2 ) + . . . + q kN ls ( s j , kN ) - - - ( 13 )
Because N is very little, so formula (13) can calculate complete to the multi input modulo 2 adder of input ring shift left by one within 1 clock cycle.Therefore, compute vector [q x] needs c clock cycle altogether.Total β nonzero circle matrix in hypothesis matrix Q, so needs to use (β – c) b two input XOR gate to iterative circuit after I type.
Matrix Q is by c × c b × b rank circular matrix Q j,kthe array that (1≤j≤c, 1≤k≤c) is formed.Nonzero circle matrix Q j,ks relative to the ring shift right figure place of b × b rank unit matrix j,k, 0≤s j,k<b.For ease of describing, complete zero circular matrix is denoted as s relative to the ring shift right figure place of b × b rank circular matrix j,k='-'.In the diagram, nonzero circle matrix Q j,kcorresponding array section q kbe recycled the s that moves to left j,kmulti input modulo 2 adder A is sent into behind position 2, jin with array section f jcarry out XOR, the array section that complete zero circular matrix is corresponding does not participate in XOR, A 2, jresult of calculation be q j, stored in register R 2, jin.Step to iterative circuit compute vector q and x after use I type is as follows:
1st step, input vector section f 1, by array section q 1=f 1stored in register R 2,1in;
2nd step, input vector section f j, nonzero circle matrix Q j,kcorresponding array section q kbe recycled the s that moves to left j,kmulti input modulo 2 adder A is sent into behind position 2, jin with array section f jcarry out XOR, XOR result q jbe stored into register R 2, jin, wherein, 2≤j≤c, 1≤k<j, 0≤s j,k<b;
3rd step, with 1 for step-length increases progressively the value changing j, repeats the 2nd step c-1 time, finally, and register R 2,1, R 2,2..., R 2, cthat store is array section q respectively 1, q 2..., q c, they constitute vectorial q and x.
Formula (9) also implies backward iterative operation, must solve vectorial y piecemeal.Definition y=(y 1, y 2..., y c – u), and be initialized as complete zero.First, y 1the 1st piece of row of matrix Y and vector [p xy] tlong-pending.Secondly, y 2the 2nd piece of row of matrix Y and vector [p xy] tlong-pending.Repeat said process, until calculated y c – utill, to iterative circuit after II type as shown in Figure 5.After II type to iterative circuit by c b bit register R 3,1, R 3,2..., R 3, cwith c-u multi input modulo 2 adder A 3,1, A 3,2..., A 3, c-ucomposition.Compute vector y needs altogether (c – u) the individual clock cycle.Total ξ nonzero circle matrix in hypothesis matrix Y, so needs to use (ξ – 2c+2u) b two input XOR gate to iterative circuit after II type.Matrix Y is by (c-u) × c b × b rank circular matrix Y j,kthe array that (1≤j≤c-u, 1≤k≤c) is formed.Nonzero circle matrix Y j,ks relative to the ring shift right figure place of b × b rank unit matrix j,k, 0≤s j,k<b.Step to iterative circuit compute vector y after use II type is as follows:
1st step, input validation section p 1, p 2..., p u, by them respectively stored in register R 3, c-u+1, R 3, c-u+2..., R 3, cin;
2nd step, nonzero circle matrix Y j,kcorresponding array section p kor y kbe recycled the s that moves to left j,kmulti input modulo 2 adder A is sent into behind position 3, jin carry out XOR, XOR result y jbe stored into register R 3, jin, wherein, 1≤j≤c-u, 1≤k<u+j, 0≤s j,k<b;
3rd step, with 1 for step-length increases progressively the value changing j, repeats the 2nd step c-u time, finally, and register R 3,1, R 3,2..., R 3, c-uthat store is array section y respectively 1, y 2..., y c-u, they constitute vectorial y.
The invention provides a kind of high speed QC-LDPC coding method based on three class pipeline, be applicable to the QC-LDPC code in communication system, its coding step is described below:
1st step, uses sparse matrix and vectorial multiplier compute vector f and w;
2nd step, uses to iterative circuit compute vector q and x after I type, thus obtains part and verify vectorial p x=x;
3rd step, obtains part to iterative circuit compute vector y, y and vectorial q XOR after using II type and verifies vectorial p y, thus obtain verifying vectorial p=(p x, p y).
Fig. 6 summarizes each coding step of encoder and the hardware resource consumption needed for whole cataloged procedure and processing time.
Be not difficult to find out from Fig. 6, when streamline is full of, whole cataloged procedure needs max (t – c+b, c) the individual clock cycle altogether, much smaller than e × b the clock cycle needed for the serial encoding method based on c SRAA-I circuit.
In communication system, the existing solution of QC-LDPC encoder needs e × c × b bit ROM, and the present invention is without the need to ROM.
As fully visible, compared with traditional serial SRAA method, the present invention have coding rate fast, without the need to advantages such as memories.
The above; be only one of the specific embodiment of the present invention; but protection scope of the present invention is not limited thereto; any those of ordinary skill in the art are in the technical scope disclosed by the present invention; the change can expected without creative work or replacement, all should be encompassed within protection scope of the present invention.Therefore, the protection range that protection scope of the present invention should limit with claims is as the criterion.

Claims (5)

1. the high speed QC-LDPC encoder based on three class pipeline, the check matrix H of QC-LDPC code is the array be made up of c × t b × b rank circular matrix, wherein, c, t and b are all positive integer, t=e+c, check matrix H is exchanged by ranks and is transformed near lower triangular shape, can be divided into 6 submatrixs H = A B T C D E , A is made up of (c-u) × e b × b rank circular matrix, B is made up of (c-u) × u b × b rank circular matrix, lower triangular matrix T is made up of (c-u) × (c-u) individual b × b rank circular matrix, C is made up of u × e b × b rank circular matrix, D is made up of u × u b × b rank circular matrix, and E is made up of u × (c-u) individual b × b rank circular matrix, wherein, u is positive integer, Φ=(ET -1b+D) -1ub × ub rank unit matrixs, wherein, subscript Τwith -1represent transposition and inverse respectively, Q = T 0 E I By c × c b × b rank circular matrix Q j,kform, wherein, I is unit matrix, and 0 is full null matrix, 1≤j≤c, 1≤k≤c, nonzero circle matrix Q j,ks relative to the ring shift right figure place of b × b rank unit matrix j,k, wherein, 0≤s j,k<b, Y=[B T] are by (c-u) × c b × b rank circular matrix Y j,kform, wherein, 1≤j≤c-u, 1≤k≤c, nonzero circle matrix Y j,ks relative to the ring shift right figure place of b × b rank unit matrix j,k, wherein, 0≤s j,k<b, A and C corresponding informance vector a, matrix B and the vectorial p of the corresponding part verification of D x, matrix T and E be corresponding remaining verification vector p then y, verify vectorial p=(p x, p y), be one section with b bit, information vector a is divided into e section, i.e. a=(a 1, a 2..., a e), verify vectorial p and be divided into c section, be i.e. p=(p 1, p 2..., p c), p x=(p 1, p 2..., p u), p y=(p u+1, p u+2..., p c), vector f is divided into c-u section, i.e. f=(f 1, f 2..., f c – u), vectorial w is divided into u section, i.e. w=(f c – u+1, f c – u+2..., f c), [f w]=(f 1, f 2..., f c), vectorial q is divided into c-u section, i.e. q=(q 1, q 2..., q c – u), vector x is divided into u section, i.e. x=(q c – u+1, q c – u+2..., q c), [q x]=(q 1, q 2..., q c), vectorial y is divided into c-u section, i.e. y=(y 1, y 2..., y c – u), it is characterized in that, described encoder comprises following parts:
Sparse matrix and vectorial multiplier, by t b bit register R 1,1, R 1,2..., R 1, twith c multi input XOR gate X 1,1, X 1,2..., X 1, ccomposition, for compute vector f and w;
To iterative circuit after I type, by c b bit register R 2,1, R 2,2..., R 2, cwith c-1 multi input modulo 2 adder A 2,2, A 2,3..., A 2, ccomposition, for compute vector q and x, thus obtains part and verifies vectorial p x=x;
To iterative circuit after II type, by c b bit register R 3,1, R 3,2..., R 3, cwith c-u multi input modulo 2 adder A 3,1, A 3,2..., A 3, c-ucomposition, obtains part for compute vector y, y and vectorial q XOR and verifies vectorial p y, thus obtain verifying vectorial p=(p x, p y).
2. a kind of high speed QC-LDPC encoder based on three class pipeline according to claim 1, is characterized in that, described sparse matrix is as follows with the step of vectorial multiplier compute vector f and w:
1st step, input message segment a 1, a 2..., a e, by them respectively stored in register R 1,1, R 1,2..., R 1, ein;
2nd step, register R 1,1, R 1,2..., R 1, ering shift left 1 time simultaneously, XOR gate X 1,1, X 1,2..., X 1, crespectively XOR result is moved to left into register R 1, e+1, R 1, e+2..., R 1, tin;
3rd step, repeats the 2nd step b time, after completing, and register R 1, e+1, R 1, e+2..., R 1, tthe content stored is array section f respectively 1, f 2..., f c, they constitute vector f and w.
3. a kind of high speed QC-LDPC encoder based on three class pipeline according to claim 1, it is characterized in that, the step to iterative circuit compute vector q and x after described I type is as follows:
1st step, input vector section f 1, by array section q 1=f 1stored in register R 2,1in;
2nd step, input vector section f j, nonzero circle matrix Q j,kcorresponding array section q kbe recycled the s that moves to left j,kmulti input modulo 2 adder A is sent into behind position 2, jin with array section f jcarry out XOR, XOR result q jbe stored into register R 2, jin, wherein, 2≤j≤c, 1≤k<j, 0≤s j,k<b;
3rd step, with 1 for step-length increases progressively the value changing j, repeats the 2nd step c-1 time, finally, and register R 2,1, R 2,2..., R 2, cthat store is array section q respectively 1, q 2..., q c, they constitute vectorial q and x.
4. a kind of high speed QC-LDPC encoder based on three class pipeline according to claim 1, it is characterized in that, the step to iterative circuit compute vector y after described II type is as follows:
1st step, input validation section p 1, p 2..., p u, by them respectively stored in register R 3, c-u+1, R 3, c-u+2..., R 3, cin;
2nd step, nonzero circle matrix Y j,kcorresponding array section p kor y kbe recycled the s that moves to left j,kmulti input modulo 2 adder A is sent into behind position 3, jin carry out XOR, XOR result y jbe stored into register R 3, jin, wherein, 1≤j≤c-u, 1≤k<u+j, 0≤s j,k<b;
3rd step, with 1 for step-length increases progressively the value changing j, repeats the 2nd step c-u time, finally, and register R 3,1, R 3,2..., R 3, c-uthat store is array section y respectively 1, y 2..., y c-u, they constitute vectorial y.
5. the high speed QC-LDPC coding method based on three class pipeline, the check matrix H of QC-LDPC code is the array be made up of c × t b × b rank circular matrix, wherein, c, t and b are all positive integer, t=e+c, check matrix H is exchanged by ranks and is transformed near lower triangular shape, can be divided into 6 submatrixs H = A B T C D E , A is made up of (c-u) × e b × b rank circular matrix, B is made up of (c-u) × u b × b rank circular matrix, lower triangular matrix T is made up of (c-u) × (c-u) individual b × b rank circular matrix, C is made up of u × e b × b rank circular matrix, D is made up of u × u b × b rank circular matrix, and E is made up of u × (c-u) individual b × b rank circular matrix, wherein, u is positive integer, Φ=(ET -1b+D) -1ub × ub rank unit matrixs, wherein, subscript Τwith -1represent transposition and inverse respectively, Q = T 0 E I By c × c b × b rank circular matrix Q j,kform, wherein, I is unit matrix, and 0 is full null matrix, 1≤j≤c, 1≤k≤c, nonzero circle matrix Q j,ks relative to the ring shift right figure place of b × b rank unit matrix j,k, wherein, 0≤s j,k<b, Y=[B T] are by (c-u) × c b × b rank circular matrix Y j,kform, wherein, 1≤j≤c-u, 1≤k≤c, nonzero circle matrix Y j,ks relative to the ring shift right figure place of b × b rank unit matrix j,k, wherein, 0≤s j,k<b, A and C corresponding informance vector a, matrix B and the vectorial p of the corresponding part verification of D x, matrix T and E be corresponding remaining verification vector p then y, verify vectorial p=(p x, p y), be one section with b bit, information vector a is divided into e section, i.e. a=(a 1, a 2..., a e), verify vectorial p and be divided into c section, be i.e. p=(p 1, p 2..., p c), p x=(p 1, p 2..., p u), p y=(p u+1, p u+2..., p c), vector f is divided into c-u section, i.e. f=(f 1, f 2..., f c– u), vectorial w is divided into u section, i.e. w=(f c – u+1, f c – u+2..., f c), [f w]=(f 1, f 2..., f c), vectorial q is divided into c-u section, i.e. q=(q 1, q 2..., q c – u), vector x is divided into u section, i.e. x=(q c – u+1, q c – u+2..., q c), [q x]=(q 1, q 2..., q c), vectorial y is divided into c-u section, i.e. y=(y 1, y 2..., y c – u), it is characterized in that, described coding method comprises the following steps:
1st step, uses sparse matrix and vectorial multiplier compute vector f and w;
2nd step, uses to iterative circuit compute vector q and x after I type, thus obtains part and verify vectorial p x=x;
3rd step, obtains part to iterative circuit compute vector y, y and vectorial q XOR after using II type and verifies vectorial p y, thus obtain verifying vectorial p=(p x, p y).
CN201510047861.XA 2015-01-30 2015-01-30 High-speed QC-LDPC encoder based on three-stage assembly line Pending CN104518804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510047861.XA CN104518804A (en) 2015-01-30 2015-01-30 High-speed QC-LDPC encoder based on three-stage assembly line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510047861.XA CN104518804A (en) 2015-01-30 2015-01-30 High-speed QC-LDPC encoder based on three-stage assembly line

Publications (1)

Publication Number Publication Date
CN104518804A true CN104518804A (en) 2015-04-15

Family

ID=52793609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510047861.XA Pending CN104518804A (en) 2015-01-30 2015-01-30 High-speed QC-LDPC encoder based on three-stage assembly line

Country Status (1)

Country Link
CN (1) CN104518804A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141788A (en) * 1998-03-13 2000-10-31 Lucent Technologies Inc. Method and apparatus for forward error correction in packet networks
CN102122963A (en) * 2011-04-08 2011-07-13 中国传媒大学 Encoder and encoding method for Quasic-low-density parity-check (QC-LDPC) codes in digital television terrestrial multimedia broadcasting (DTMB) system
CN102843150A (en) * 2012-09-27 2012-12-26 苏州威士达信息科技有限公司 Low-latency QC-LDPC (Quasi-Cyclic Low-Density Parity-Check) parallel encoder and encoding method
CN102857235A (en) * 2012-09-27 2013-01-02 苏州威士达信息科技有限公司 LDPC (low-density parity-check) encoder and encoding method in DTMB (digital terrestrial multimedia broadcasting) system based on shared register
CN102932007A (en) * 2012-11-21 2013-02-13 苏州威士达信息科技有限公司 Highly parallel encoder and method for encoding QC-LDPC (quasi-cyclic low-density parity-check) codes for deep space communication

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6141788A (en) * 1998-03-13 2000-10-31 Lucent Technologies Inc. Method and apparatus for forward error correction in packet networks
CN102122963A (en) * 2011-04-08 2011-07-13 中国传媒大学 Encoder and encoding method for Quasic-low-density parity-check (QC-LDPC) codes in digital television terrestrial multimedia broadcasting (DTMB) system
CN102843150A (en) * 2012-09-27 2012-12-26 苏州威士达信息科技有限公司 Low-latency QC-LDPC (Quasi-Cyclic Low-Density Parity-Check) parallel encoder and encoding method
CN102857235A (en) * 2012-09-27 2013-01-02 苏州威士达信息科技有限公司 LDPC (low-density parity-check) encoder and encoding method in DTMB (digital terrestrial multimedia broadcasting) system based on shared register
CN102932007A (en) * 2012-11-21 2013-02-13 苏州威士达信息科技有限公司 Highly parallel encoder and method for encoding QC-LDPC (quasi-cyclic low-density parity-check) codes for deep space communication

Similar Documents

Publication Publication Date Title
CN104579366B (en) High speed QC-LDPC encoder in WPAN based on three class pipeline
CN103269228B (en) Share quasi-cyclic LDPC serial encoder in the CMMB of memory mechanism
CN103236859B (en) Share the quasi-cyclic LDPC serial encoder of memory mechanism
CN105141319A (en) High-speed QC-LDPC encoder based on three-stage pipeline in deep space communication
CN104518804A (en) High-speed QC-LDPC encoder based on three-stage assembly line
CN105141320A (en) High-speed QC-LDPC encoder based on three-stage pipeline
CN105099468A (en) High-speed QC-LDPC (quasi-cyclic-low-density parity-check) encoder based on four-level flow lines and used for deep space communication
CN104539297A (en) Four-stage production line-based high-speed QC-LDPC coder in DTMB
CN104579365A (en) High-speed QC-LDPC (quasi-cyclic low-density parity-check) encoder based on four-level assembly lines
CN104518803A (en) High-speed QC-LDPC (Quasi-cyclic Low-density Parity-check) encoder based on four-stage flow line in CMMB (China Mobile Multimedia Broadcasting)
CN105141321A (en) High-speed QC-LDPC encoder based on two-stage pipeline
CN103269226B (en) Share quasi-cyclic LDPC serial encoder in the near-earth communication of memory mechanism
CN104579364A (en) High-speed QC (quasi-cyclic)-LDPC (low-density parity-check) encoder on basis of four levels of flow lines in CDR (China digital radio)
CN105245236A (en) High-speed QC-LDPC encoder based on two-level pipeline in WPAN
CN103236849B (en) Based on quasi cyclic matrix serial multiplier in the DTMB of shared memory mechanism
CN105119608A (en) High-speed QC-LDPC (quasi-cyclic low-density parity-check) encoder based on three-stage assembly line in CMMB (China mobile multimedia broadcasting)
CN105356889A (en) High-speed QC-LDPC (quasi-cyclic low-density parity check) encoder based on three-stage pipeline in CDR (China Digital Radio)
CN105245237A (en) High-speed QC-LDPC encoder based on three-level pipeline in DTMB
CN103236852B (en) Without quasi cyclic matrix serial multiplier in the DTMB of multiplying
CN103269225B (en) Share quasi-cyclic LDPC serial encoder in the deep space communication of memory mechanism
CN103929194A (en) Partially parallel input QC-LDPC encoder based on right-shift accumulation in WPAN
CN103929207A (en) Partially parallel input QC-LDPC encoder based on right-shift accumulation in CMMB
CN103905055A (en) Partial parallel input QC-LDPC encoder for right shift accumulation
CN103929189A (en) Partial parallel input left shift accumulation QC-LDPC encoder in near-earth communications
CN105117197A (en) Multiplication-free quasi-cyclic matrix serial multiplier for WPAN (wireless personal area network)

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150415