CN104467468A - 整流电路、电子电路及电子设备 - Google Patents

整流电路、电子电路及电子设备 Download PDF

Info

Publication number
CN104467468A
CN104467468A CN201410103953.0A CN201410103953A CN104467468A CN 104467468 A CN104467468 A CN 104467468A CN 201410103953 A CN201410103953 A CN 201410103953A CN 104467468 A CN104467468 A CN 104467468A
Authority
CN
China
Prior art keywords
diode
rectification
circuit
rectification unit
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410103953.0A
Other languages
English (en)
Inventor
大武宽和
北村纪之
高桥雄治
石川真人
三浦洋平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Toshiba Lighting and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Lighting and Technology Corp filed Critical Toshiba Lighting and Technology Corp
Publication of CN104467468A publication Critical patent/CN104467468A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/08Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in parallel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0814Diodes only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/18Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to reversal of direct current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/37Converter circuits
    • H05B45/3725Switched mode power supply [SMPS]
    • H05B45/38Switched mode power supply [SMPS] using boost topology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/4814Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate the wire connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48145Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • H01L2224/48149Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked the wire connector connecting to a bonding area protruding from the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Rectifiers (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供一种减少高温下及大电流区域内的损耗的整流电路、电子电路及电子设备。本发明实施方式的整流电路包括:第1整流单元,具有正的温度系数;及第2整流单元,具有负的温度系数,与所述第1整流单元并联连接,正向电压-正向电流曲线与所述第1整流元件的正向电压-正向电流曲线交叉。

Description

整流电路、电子电路及电子设备
技术领域
本发明的实施方式涉及一种整流电路、电子电路及电子设备。
背景技术
理想的是,电源设备等中使用的高耐压二极管(diode)等的整流电路的损耗低。而且,例如,在连接于交流供电线(line)的电源设备中,也须能抵抗重叠的雷电浪涌(lightning surge)电流。作为这种二极管,由宽带隙(wideband-gap)化合物半导体形成的元件受到关注。其中,由GaN等氮化物半导体所形成的二极管(以下,也称为GaN二极管)的饱和电子速度也大,作为高速器件(device)而正得到实用化。
GaN二极管的正向电压相对于温度具有正的温度系数。在常温环境下,与硅二极管相比,GaN二极管的正向电压更低且以更低的损耗而运行,但在高温区域,与具有负的温度系数的硅二极管相比,GaN二极管的导通损耗更大。而且,在小电流区域,GaN二极管的正向电压低于硅二极管的正向电压。然而,在大电流区域,表现出指数函数式的电流-电压特性的硅二极管的正向电压低,GaN二极管的导通损耗大。
当不慎流过雷电浪涌等过电流时,GaN二极管的正向电压骤增而产生大的损耗。与硅二极管相比,击穿耐受程度进一步下降。
在接通(on)电压具有正的温度系数、且使用GaN的常通(normally on)型场效应晶体管(Field Effect Transistor,FET)中,也存在同样的问题。
[现有技术文献]
[专利文献]
[专利文献1]日本专利特开2008-198735号公报
发明内容
本发明所要解决的问题在于提供一种减少高温下及大电流区域内的损耗的整流电路、电子电路及电子设备。
实施方式的整流电路包括:第1整流单元,具有正的温度系数;及第2整流单元,具有负的温度系数,与所述第1整流单元并联连接,正向电压-正向电流曲线与所述第1整流单元的正向电压-正向电流曲线交叉。
实施方式的电子电路包括所述整流电路。实施方式的电子设备包括所述电子电路。
[发明的效果]
根据本发明的实施方式,可提供一种减少高温下及大电流区域内的损耗的整流电路、电子电路及电子设备。
附图说明
图1是例示第1实施方式中的整流电路的电路图。
图2是表示硅二极管及GaN二极管的正向电压-正向电流曲线的温度依赖性的特性图。
图3是例示第2实施方式中的整流电路的电路图。
图4是表示常通型元件的漏极(drain)电流对于控制端子的电位的依赖性的特性图。
图5是例示第3实施方式中的整流电路的截面图。
图6是例示第4实施方式中的整流电路的截面图。
图7(a)、图7(b)是例示第5实施方式的电路图。
图8是例示第6实施方式的电路图。
[符号的说明]
1:整流电路
2:整流单元
3:整流单元
4:整流电路
5:整流单元
6:晶体管
7:二极管
8:整流电路(常通型晶体管)
9:GaN二极管
10:硅二极管
11:金属支撑基板
12:负极电极
13:半导体基板
14:正极电极
15:负极电极
16:半导体基板
17:正极电极
18:连接导体
19:端子
20:端子
21:整流电路
22:GaN二极管
23:硅二极管
24:负极电极
25:硅基板
26:半导体基板
27:半导体基板(二极管区域)
28:电子电路
29:交流供电线
30:电桥整流器
31:电感器
32:开关元件
33:整流元件
34:电容器
35:高电位输出端子
36:低电位输出端子
37:电子电路
38:直流供电线
39:整流元件
40:电容器
41:电子设备
42:电子电路
43:整流元件
44:电容器
45:电感器
46:开关元件
47:整流元件
48:电容器
49:照明负载
50:高电位输出端子
51:低电位输出端子
52:高电位端子
53:低电位端子
Id:漏极电流
If:正向电流
Vds:漏极、源极间电压
Vf:正向电压
Vgs:栅极、源极间的电压
具体实施方式
以下,参照图式,对实施方式进行说明。以下的说明中,对于相同的构件标注相同的符号,对于已作说明的构件适当地省略其说明。
(第1实施方式)
图1是例示第1实施方式中的整流电路的电路图。
整流电路1包括第1整流单元2及第2整流单元3。第1整流单元2与第2整流单元3并联连接。
第1整流单元2具有正的温度系数。第2整流单元3具有负的温度系数。所述第1整流单元2的正向电压-正向电流曲线与所述第2整流单元3的正向电压-正向电流曲线彼此交叉。
作为具有正的温度系数的整流单元,可使用由化合物半导体或氧化物半导体形成的二极管。化合物半导体例如为氮化镓(GaN)、碳化硅(SiC)。氧化物半导体例如为氧化锌(ZnO)。作为具有负的温度系数的整流单元,例如可使用由硅形成的二极管(以下,也称为硅二极管)。
以下,作为一例,对于使用GaN二极管作为第1整流单元、使用硅二极管作为第2整流单元的情况进行说明。如下文所述,这两个二极管的正向电压-正向电流曲线交叉。
图2是表示硅二极管及GaN二极管的正向电压-正向电流曲线的温度依赖性的特性图。
图2的横轴表示正向电压(Vf),纵轴表示正向电流(If)。如果温度从25℃上升至150℃,那么,GaN二极管的正向电压-正向电流曲线的斜度变小。即,因接通电阻增加,所以正向电压上升。硅二极管的正向电压-正向电流曲线向低电压方向移动,正向电压下降。
GaN二极管的正向电压-正向电流曲线是直线式的,与此相对,硅二极管的正向电压-正向电流曲线是指数函数式的。即便在相同的温度下,在小电流区域,GaN二极管的正向电压低,在大电流区域,硅二极管的正向电压低。这样,两者的正向电压-正向电流曲线交叉。
因此,如果将两者并联连接且构成整流电路1,那么,正向电压低的这一侧的二极管负责整流动作。在低温区域,GaN二极管负责整流动作,在高温区域,硅二极管负责整流动作。另一方面,在小电流区域,GaN二极管负责整流动作,在大电流区域,硅二极管负责整流动作。整流电路1的正向电压与GaN二极管及硅二极管中的任一较小的正向电压相等。
对于第1实施方式的效果进行说明。
根据本实施方式,与以单体的形式使用GaN二极管或硅二极管的情况相比,可获得如下效果:在宽广的温度及电流的范围内,能降低正向电压,减少损耗。即便当浪涌电流重叠时,也可达成能获得与硅二极管等同的浪涌耐受程度的效果。
(第2实施方式)
图3是例示第2实施方式中的整流电路的电路图。
整流电路4包括第1整流单元5及第2整流单元3。第1整流单元5与第2整流单元3并联连接。
第1整流单元5具有:二极管7;及晶体管6,串联连接于二极管7的负极(cathode),控制端子即栅极(gate)连接于二极管7的正极(anode)。第2整流单元3是硅二极管。
晶体管6是由化合物半导体或氧化物半导体形成的常通型场效应晶体管,例如为由GaN形成的高电子迁移率晶体管(High Electron MobilityTransistor,HEMT)。二极管7例如为硅肖特基势垒二极管(Schottky BarrierDiode)。
对于第1整流单元5的运行进行说明。
当正向地施加电压时、即向二极管7的正极侧施加正的电压时,二极管7导通,作为常通型元件的晶体管6也接通。因此,整流单元5成为接通状态。当逆向地施加电压时、即向二极管7的正极侧施加负的电压时,二极管7断开(off)。晶体管6的栅极、源极(source)间的电压Vgs成为负值,因此,晶体管6也断开。因此,整流单元5成为断开状态。
当逆向地施加电压时,二极管7上的逆电压是晶体管6的电压Vgs,因此,作为二极管7,可使用低耐压的硅肖特基势垒二极管。一般而言,低耐压的硅肖特基势垒二极管的正向电压低,晶体管6接通时的正向电压也低,因此,整流单元5的正向电压小于GaN二极管单体。
使用图4对晶体管6的特性进行说明。
图4是表示常通型晶体管6的漏极电流对控制端子的电位的依赖性的特性图。图4的横轴表示漏极、源极间电压(Vds),纵轴表示漏极电流。
由图4可知,如果漏极电流Id达到规定的电流值,那么常通型晶体管6的接通电阻上升。即,常通型晶体管6表现恒流特性。在表现恒流特性的状态下的漏极电流Id依赖于栅极、源极间的电压Vgs。栅极、源极间的电压Vgs的绝对值越大,恒流特性下的漏极电流Id的值越小。
当以整流单元5的正方向施加电压时,常通型晶体管6的电压Vgs为相当于硅肖特基势垒二极管的正向电压的电压,例如为0.2V。这时,常通型晶体管6的恒流特性下的漏极电流Id与图4中最大的漏极电流Id相等。如果要流动所述电流以上的电流,那么正向电压会急遽上升。
而且,GaN具有正的温度系数,因此,在高温环境下接通电阻也上升,正向电压也上升。
因此,如果将第2整流单元即硅二极管并联连接而构成整流电路,那么正向电压低的这一侧的二极管或整流单元负责整流动作。在低温区域,GaN二极管负责整流动作,在高温区域,硅二极管负责整流动作。另一方面,在小电流区域,GaN二极管负责整流动作,在大电流区域,硅二极管负责整流动作。整流电路1的正向电压与GaN二极管及硅二极管中的任一较小的正向电压相等。
对于第2实施方式的效果进行说明。
与以单体的形式使用包含由化合物半导体或氧化物半导体形成的常通型场效应晶体管及硅肖特基势垒二极管的整流单元5的情况相比,可获得如下效果:在宽广的温度及电流的范围内,能降低正向电压,减少损耗。与第1实施方式中的整流电路相同,也可获得能获得与硅二极管等同的浪涌耐受程度的效果。
(第3实施方式)
图1所示的整流电路的GaN二极管及硅二极管可安装于相同的封装体(package)中。这时的整流电路截面图示于图5中。
图5是例示第3实施方式中的整流电路的截面图。
整流电路8包括GaN二极管9及硅二极管10。另外,GaN二极管9、硅二极管10安装在金属支撑基板11上。GaN二极管9具有负极电极12、半导体基板13及正极电极14。半导体基板13包含硅基板、缓冲(buffer)层、n型GaN半导体及p型GaN半导体。硅二极管10具有负极电极15、半导体基板16及正极电极17。半导体基板16包含n型硅半导体及p型硅半导体。
正极电极14与正极电极17是由连接导体18而连接。端子19连接于正极电极14或正极电极17,端子20连接于金属支撑基板。
对于第3实施方式的效果进行说明。
根据本实施方式,与以单体的形式使用GaN二极管或硅二极管的情况相比,可获得如下效果:在宽广的温度及电流的范围内,能降低正向电压,减少损耗。当浪涌电流重叠时,也可获得能获得与硅二极管等同的浪涌耐受程度的效果。通过将GaN二极管与硅二极管安装在相同的金属支撑基板上而作为单一的封装体,也可获得能使整流电路小型化的效果。
(第4实施方式)
图1所示的整流电路的GaN二极管与硅二极管也可设为单片(monolithic)半导体。这时的整流电路的截面示于图6中。
图6是例示第4实施方式中的整流电路的示意截面图。
整流电路21包括GaN二极管22及硅二极管23。GaN二极管22具有半导体基板26及正极电极14。半导体基板26包含n型GaN半导体及p型GaN半导体。硅二极管27具有作为扩散层而设在硅基板25内的二极管区域27、及正极电极17。二极管区域27包含n型硅半导体及p型硅半导体。GaN二极管22、硅二极管23的负极电极24是共用的,且附设在硅基板25的背面。另外,硅基板25可为使GaN二极管22结晶成长的成长基板,或也可为使GaN二极管22的积层构造成长之后适当去除成长基板而进行贴合的支撑基板。
对于第4实施方式的效果进行说明。
根据本实施方式,与以单体的形式使用GaN二极管或硅二极管的情况相比,可获得如下效果:在宽广的温度及电流的范围内,能降低正向电压,减少损耗。即便当浪涌电流重叠时,也可获得能获得与硅二极管等同的浪涌耐受程度的效果。通过使GaN二极管与硅二极管作为单片半导体而成为单一的封装体,也可获得能使整流电路小型化的效果。
(第5实施方式)
接着,对设有本实施方式的整流电路的电子电路进行说明。
图7(a)、图7(b)分别是例示第5实施方式中的电子电路的电路图。
图7(a)所示的电子电路28包括电桥(bridge)整流器30、电感器(inductor)31、开关(switching)元件32、整流元件33、电容器(condenser)34及未图示的控制电路。开关元件32例如为金属氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field Effect Transistor,MOS FET)。构成电桥整流器30的各二极管及整流元件33中的至少任一个为本发明的实施方式中的整流电路。
交流供电线29连接于电桥整流器30的输入端。电感器31的一端连接于电桥整流器30的高电位输出端子50,电感器31的另一端连接于开关元件32的漏极。开关元件32的源极连接于电桥整流器30的低电位输出端子51。整流元件33的正极连接于开关元件32的漏极,整流元件33的负极连接于电容器34的一端。电容器34的另一端连接于电桥整流器30的低电位输出端子51。
电子电路28是对来自交流供电线29的交流电压进行整流,且通过使开关元件32接通、断开而进行升压的电路。
图7(b)所示的电子电路37包括整流元件39及电容器40。整流元件39是本发明的实施方式中的整流电路。
整流元件39的正极连接于直流供电线38的高电位端子52,整流元件39的负极连接于电容器40的一端。电容器40的另一端连接于直流供电线38的低电位端子53。实施方式中的整流电路可应用于整流元件39。
电子电路37作为直流供电线的逆连接保护电路而运行。
对第5实施方式的效果进行说明。
根据本实施方式,通过应用本发明的实施方式中的整流电路,可获得如下效果:在宽广的温度及电流的范围内,减少电子电路的损耗。即便当浪涌电流重叠时,也能获得与硅二极管等同的浪涌耐受程度,与使用GaN二极管时相比,也可获得能提供可靠性高的电子电路的效果。
(第6实施方式)
图8是例示第6实施方式的电路图。
图8所示的电子设备41包括电子电路42及照明负载49。照明负载49例如具有发光二极管(LED)等照明光源。
电子电路42具有电桥整流器30、整流元件43、电容器44、电感器45、开关元件46、整流元件47及电容器48。开关元件46例如为MOS FET。构成电桥整流器30的各二极管与整流元件43、整流元件47中的至少任一个为本发明的实施方式中的整流电路。
交流供电线29连接于电桥整流器30的输入端。整流元件43的正极连接于电桥整流器30的高电位输出端子50,整流元件43的负极连接于电容器44的一端。电容器44的另一端连接于电桥整流器30的低电位输出端子51。电感器45的一端连接于整流元件43的负极,电感器45的另一端连接于开关元件46的漏极。开关元件46的源极连接于电桥整流器30的低电位输出端子51。整流元件47的正极连接于电容器48的一端,电容器48的另一端连接于电桥整流器30的低电位输出端子51。照明负载49并联连接于电容器48。
电子设备41是对来自交流供电线29的交流电进行整流、降压后供给至照明负载49的照明设备。这种照明设备中,从熄灯时至100%点灯时,功耗可能会大范围地变化。因此,输入电流的大小也会大范围地变动。因所述电子设备41连接于交流供电线,所以,也须能抵抗雷电浪涌等浪涌电流。通过应用本发明的实施方式中的整流电路,可获得如下效果:在宽广的温度及电流的范围内,能降低整流元件的正向电压,减少损耗。即便当浪涌电流重叠时,也能获得与使用硅二极管时等同的浪涌耐受程度。
对于第6实施方式的效果进行说明。
根据本实施方式,通过应用本发明的实施方式中的整流电路,可获得减少电子设备的损耗的效果。实施方式中的整流电路可获得与硅二极管等同的浪涌耐受程度,因此,也可获得能提供可靠性高的电子设备的效果。
以上,已参照具体示例对实施方式进行了说明,但并不限于所述具体示例,而可进行各种变形。
例如,第1整流单元及第2整流单元并不限于GaN。例如,也可为使用碳化硅(SiC)或氮化镓(GaN)或金刚石(diamond)等具有宽带隙的半导体(宽带隙半导体)而形成在半导体基板上的半导体元件。这里,所谓宽带隙半导体是指带隙比带隙约为1.4eV的砷化镓(GaAs)更宽的半导体。例如,包括带隙为1.5eV以上的半导体、磷化镓(GaP,带隙约2.3eV)、氮化镓(GaN,带隙约3.4eV)、金刚石(C,带隙约5.27eV)、氮化铝(A1N,带隙约5.9eV)、碳化硅(SiC)等。
另外,照明负载并不限于LED,例如也可为有机电致发光(Electro-Luminescence,EL)或有机发光二极管(Organic light-emitting diode,OLED)等。
以上,已参照具体示例对实施方式进行了说明。然而,实施方式并不限于这些具体示例。即,只要具有实施方式的特征,那么由熟悉本领域的技术人员对这些具体示例适当进行设计变更后所得的方案也属于实施方式的范围。上文所述的各具体示例所含的各要素及其配置、材料、条件、形状、尺寸(size)等并不限于例示的类型,可适当地变更。
而且,可使上文所述的各实施方式中所含的各要素在技术上可行的范围内进行组合,将所述要素组合后所得的方案只要包含实施方式的特征,那么也属于实施方式的范围内。另外,应了解,在实施方式的思想范畴内,可由熟悉本领域的技术人员想到各种变更例与修正例,且这些变更例与修正例也属于实施方式的范围。
已对本发明的若干实施方式进行了说明,但这些实施方式仅作为示例提出,并非意在限定发明的范围。这些新颖的实施方式能以其他各种形态实施,且可在不脱离发明的宗旨的范围内,进行各种省略、置换、变更。这些实施方式及其变形属于发明的范围或宗旨,并且属于与及其同等的范围。

Claims (5)

1.一种整流电路,其特征在于包括:
第1整流单元,具有正的温度系数;及
第2整流单元,具有负的温度系数,与所述第1整流单元并联连接,正向电压-正向电流曲线与所述第1整流单元的正向电压-正向电流曲线交叉。
2.根据权利要求1所述的整流电路,其特征在于:
所述第1整流单元为化合物半导体或氧化物半导体二极管,
所述第2整流单元为硅二极管。
3.根据权利要求1所述的整流电路,其特征在于:
所述第1整流单元具有:二极管;及常通型场效应晶体管,串联连接于所述二极管的负极,控制端子连接于所述二极管的正极,且由化合物半导体或氧化物半导体形成;
所述第2整流单元为硅二极管。
4.一种电子电路,其特征在于:
包括根据权利要求1至权利要求3中任一项所述的整流电路。
5.一种电子设备,其特征在于:
包括根据权利要求4所述的电子电路。
CN201410103953.0A 2013-09-25 2014-03-19 整流电路、电子电路及电子设备 Pending CN104467468A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013198923A JP2015065767A (ja) 2013-09-25 2013-09-25 整流回路、電子回路及び電子機器
JP2013-198923 2013-09-25

Publications (1)

Publication Number Publication Date
CN104467468A true CN104467468A (zh) 2015-03-25

Family

ID=50336082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410103953.0A Pending CN104467468A (zh) 2013-09-25 2014-03-19 整流电路、电子电路及电子设备

Country Status (4)

Country Link
US (1) US20150085544A1 (zh)
EP (1) EP2854270A1 (zh)
JP (1) JP2015065767A (zh)
CN (1) CN104467468A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107565518A (zh) * 2016-07-01 2018-01-09 矢崎总业株式会社 半导体开关控制装置
CN107624217A (zh) * 2015-04-07 2018-01-23 三菱电机株式会社 电力转换装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278828A (en) * 1962-05-28 1966-10-11 Philips Corp Rectifier circuit for use in wide range temperature environments
US20080316785A1 (en) * 2006-10-26 2008-12-25 Sanken Electric Co., Ltd. Power source apparatus
JP2010200585A (ja) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd スイッチング回路
US20120074920A1 (en) * 2010-07-15 2012-03-29 Cree, Inc. Power converter circuits including high electron mobility transistors for switching and rectifcation

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875130A (en) * 1988-07-06 1989-10-17 National Semiconductor Corporation ESD low resistance input structure
US6950317B2 (en) * 2004-01-13 2005-09-27 The Boeing Company High temperature power supply
US20060152085A1 (en) * 2004-10-20 2006-07-13 Fred Flett Power system method and apparatus
JP5277579B2 (ja) * 2007-07-25 2013-08-28 日産自動車株式会社 半導体装置
JP4238935B1 (ja) * 2007-08-28 2009-03-18 ダイキン工業株式会社 直接形交流電力変換装置
JP5532625B2 (ja) * 2009-02-24 2014-06-25 ダイキン工業株式会社 電圧制限回路
JP2013013224A (ja) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd 双方向スイッチ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3278828A (en) * 1962-05-28 1966-10-11 Philips Corp Rectifier circuit for use in wide range temperature environments
US20080316785A1 (en) * 2006-10-26 2008-12-25 Sanken Electric Co., Ltd. Power source apparatus
JP2010200585A (ja) * 2009-02-27 2010-09-09 Nissan Motor Co Ltd スイッチング回路
US20120074920A1 (en) * 2010-07-15 2012-03-29 Cree, Inc. Power converter circuits including high electron mobility transistors for switching and rectifcation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107624217A (zh) * 2015-04-07 2018-01-23 三菱电机株式会社 电力转换装置
CN107624217B (zh) * 2015-04-07 2019-12-24 三菱电机株式会社 电力转换装置
CN107565518A (zh) * 2016-07-01 2018-01-09 矢崎总业株式会社 半导体开关控制装置
CN107565518B (zh) * 2016-07-01 2019-03-15 矢崎总业株式会社 半导体开关控制装置
US10296024B2 (en) 2016-07-01 2019-05-21 Yazaki Corporation Semiconductor switch control device

Also Published As

Publication number Publication date
JP2015065767A (ja) 2015-04-09
US20150085544A1 (en) 2015-03-26
EP2854270A1 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US9653449B2 (en) Cascoded semiconductor device
US10306714B2 (en) Semiconductor component and light emitting device using same
TWI726085B (zh) 發光二極體之驅動器
US7825435B2 (en) Diode-like composite semiconductor device
US8526207B2 (en) Bi-directional switch, alternating-current two-wire switch, switching power source circuit, and method of driving bi-directional switch
US9130570B2 (en) Four quadrant bidirectional switch
US20140375372A1 (en) Semiconductor device
WO2011089837A1 (ja) 複合型半導体装置
CN102857104B (zh) 开关电源以及照明装置
JP2020109909A (ja) 半導体装置及び半導体パッケージ
CN104470048B (zh) 电源装置及照明装置
CN107039482B (zh) 一种半导体组件及具有该半导体组件的发光装置
CN104467468A (zh) 整流电路、电子电路及电子设备
US10003331B2 (en) Semiconductor device including normally-off type transistors and normally-on type transistor connected series
US20220140731A1 (en) Semiconductor device
US10771057B1 (en) Semiconductor device
EP2863711A2 (en) Power supply device and luminaire
US8884539B2 (en) Rectifying circuit and power supply circuit
JP6388181B2 (ja) 半導体パッケージおよび電源装置
CN108696959B (zh) 发光二极管的驱动器
CN104470051A (zh) 电源装置及照明装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150325

WD01 Invention patent application deemed withdrawn after publication