CN104369628A - 扭振模式轮胎磨损状态估算***和方法 - Google Patents

扭振模式轮胎磨损状态估算***和方法 Download PDF

Info

Publication number
CN104369628A
CN104369628A CN201410394500.8A CN201410394500A CN104369628A CN 104369628 A CN104369628 A CN 104369628A CN 201410394500 A CN201410394500 A CN 201410394500A CN 104369628 A CN104369628 A CN 104369628A
Authority
CN
China
Prior art keywords
tire
wear
torsional mode
data
tyres
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410394500.8A
Other languages
English (en)
Other versions
CN104369628B (zh
Inventor
K.B.辛赫
陆耀华
A.W.帕森斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodyear Tire and Rubber Co
Original Assignee
Goodyear Tire and Rubber Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodyear Tire and Rubber Co filed Critical Goodyear Tire and Rubber Co
Publication of CN104369628A publication Critical patent/CN104369628A/zh
Application granted granted Critical
Publication of CN104369628B publication Critical patent/CN104369628B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/24Wear-indicating arrangements
    • B60C11/246Tread wear monitoring systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Measuring Fluid Pressure (AREA)
  • Computer Networks & Wireless Communication (AREA)

Abstract

一种轮胎磨损状态估算***,包括:轮胎压力测量装置,其附接至交通工具轮胎,来测量轮胎充气压力,并生成轮胎充气压力数据;轮胎扭振模式测量装置,其用于测量轮胎扭振模式频率,并生成轮胎扭振模式频率数据;和轮胎识别装置,其使用轮胎特定识别数据来生成轮胎特定扭振模式系数。基于轮胎充气压力数据、扭振模式频率数据和轮胎识别所推导出的扭振模式系数进行轮胎磨损估算。

Description

扭振模式轮胎磨损状态估算***和方法
技术领域
本发明总体上涉及用于在交通工具操作期间收集所测轮胎参数数据的轮胎监测***,并且更特别地涉及基于这些测量值来估算轮胎磨损状态的***和方法。
背景技术
安装于交通工具的轮胎可以由轮胎压力监测***(TPMS)监测,所述轮胎压力监测***(TPMS)测量交通工具操作期间的比如压力和温度等轮胎参数。来自配备有TPMS轮胎的***的数据被用于基于所测轮胎参数确定轮胎的状态,并提醒驾驶员这些状况,比如低轮胎压力或漏气,其可能需要补救维修。每个轮胎内的传感器被安装在轮胎制造的固化前阶段或在向轮胎的固化后组装中。
其它因素比如轮胎磨损状态等对于交通工具操作和安全性来说是重要的考虑因素。相应地进一步希望的是测量轮胎磨损状态并将磨损状态与压力和温度等所测轮胎参数一起传送至交通工具***比如制动和稳定性控制***。
发明内容
根据本发明的一个方面,一种轮胎磨损状态估算***包括:轮胎压力测量装置,其附接至交通工具轮胎,来测量轮胎充气压力,并生成轮胎充气压力数据;轮胎扭振模式测量装置(means),其用于测量轮胎扭振模式频率,并生成轮胎扭振模式频率数据;和轮胎识别装置,其使用轮胎特定识别数据来生成轮胎特定扭振模式系数。基于轮胎充气压力数据、扭振模式频率数据和轮胎特定扭振模式系数进行轮胎磨损估算。
在另一方面,安装于轮胎的压力测量装置进行操作,以通过压力传感器测量轮胎腔体压力,并传输来自轮胎腔体压力测量的轮胎充气压力数据。轮胎特定识别数据被存储在基于轮胎的数据存储器内,并且从基于轮胎的数据存储器是可访问的,所述基于轮胎的数据存储器例如为但不限于安装于轮胎的压力测量装置。
根据本发明的另一方面,从获得于安装于轮毂的加速计或安装于基于轮胎的胎冠的加速计的纵向加速度信号或轮速信号生成轮胎特定扭振模式系数。
另一方面,轮胎磨损状态估算***使用轮胎磨损状态与轮胎扭振模式频率之间的关联模型,其中所述关联模型采用基于多项式模型的递归最小二乘算法,其捕捉轮胎的磨损状态、轮胎充气压力数据和轮胎扭振模式频率之间的依存性(dependency)。
本公开还提供以下技术方案:
1. 一种轮胎磨损状态估算***,包括:
支承交通工具的至少一个轮胎;
轮胎压力测量装置,其附接至所述一个轮胎,来测量轮胎充气压力,并生成轮胎充气压力数据;
轮胎扭振模式测量装置,其用于测量轮胎扭振模式频率,并生成轮胎扭振模式频率数据;
轮胎识别装置,其使用轮胎特定识别数据来生成轮胎特定频率模式系数;和
轮胎磨损估算装置,其基于所述轮胎充气压力数据、所述扭振模式频率数据和所述轮胎特定频率模式系数来计算轮胎磨损状态的估算值。
2. 如技术方案1所述的轮胎磨损状态估算***,其中,所述轮胎压力测量装置包括安装于轮胎的压力测量装置,其进行操作以通过压力传感器测量轮胎腔体压力,并传输来自轮胎腔体压力测量的轮胎充气压力数据。
3. 如技术方案2所述的轮胎磨损状态估算***,其中,所述轮胎特定识别数据存储在所述安装于轮胎的压力测量装置内,并且从所述安装于轮胎的压力测量装置是可访问的。
4. 如技术方案3所述的轮胎磨损状态估算***,其中,使用轮速信号或安装于轮毂的加速计传感器信号来生成轮胎特定扭振频率模式系数。
5. 如技术方案4所述的轮胎磨损状态估算***,其中,所述轮胎扭振模式频率的测量值来自于安装于轮子的加速计或安装于轮胎胎冠的加速计。
6. 如技术方案4所述的轮胎磨损状态估算***,其中,所述轮胎磨损估算装置包括所述轮胎磨损状态与所述轮胎扭振模式频率之间的关联模型。
7. 如技术方案6所述的轮胎磨损状态估算***,其中,所述关联模型包括基于多项式模型的递归最小二乘算法,其捕捉轮胎的磨损状态、轮胎充气压力数据和轮胎扭振模式频率之间的依存性。
8. 如技术方案1所述的轮胎磨损状态估算***,其中,所述轮胎磨损估算装置包括所述轮胎磨损状态与所述轮胎扭振模式频率之间的关联模型。
9. 如技术方案8所述的轮胎磨损状态估算***,其中,所述关联模型包括基于多项式模型的递归最小二乘算法,其捕捉轮胎磨损状态、轮胎充气压力数据和轮胎扭振模式频率之间的依存性。
10. 一种轮胎磨损状态估算***,包括:
用于支承交通工具的至少一个轮胎;
安装于轮胎的压力测量装置,其附接至所述一个轮胎,进行操作以测量轮胎腔体压力,并传输来自轮胎腔体压力测量的轮胎充气压力数据;
轮胎特定识别数据,其存储在安装于轮胎的数据存储装置内,并且从安装于轮胎的数据存储装置是可访问的;
轮胎扭振模式测量装置,其用于测量轮胎扭振模式频率,并生成轮胎扭振模式频率数据;
轮胎识别装置,用于使用所述轮胎特定识别数据以及轮胎扭振模式频率的轮速信号或纵向加速度信号测量值,来生成轮胎特定扭振模式频率系数;和
轮胎磨损估算装置,其基于所述轮胎充气压力数据、所述轮胎扭振模式频率数据和所述轮胎特定扭振模式系数来计算轮胎磨损状态的估算值。
11. 如技术方案10所述的轮胎磨损状态估算***,其中,所述轮胎扭振模式频率的测量值来自于安装于轮子的加速计或安装于轮胎胎冠的加速计。
12. 如技术方案10所述的轮胎磨损状态估算***,其中,所述轮胎磨损估算装置包括所述轮胎磨损状态与所述轮胎扭振模式频率之间的关联模型。
13. 如技术方案12所述的轮胎磨损状态估算***,其中,所述关联模型包括基于多项式模型的递归最小二乘算法,其捕捉轮胎的磨损状态、轮胎充气压力数据和轮胎扭振模式频率之间的依存性。
14. 一种轮胎磨损状态估算的方法,包括:
将轮胎压力测量装置附接至支承交通工具的轮胎,所述压力测量装置具有至少一个压力传感器,其测量轮胎腔体充气压力并生成轮胎充气压力数据;
测量轮胎扭振模式频率并生成轮胎扭振模式频率数据;
基于所述轮胎特定识别数据生成轮胎特定扭振模式系数;以及
基于所述轮胎特定识别数据,在所述轮胎充气压力数据、所测的扭振模式频率数据和所述轮胎特定频率模式系数的基础上,计算轮胎磨损状态的估算值。
15. 如技术方案14所述的方法,其中,进一步包括:使用轮胎扭振模式频率的轮速信号或纵向加速度信号测量值来生成所述轮胎特定扭振模式系数。
16. 如技术方案15所述的方法,其中,进一步包括:从安装于轮子的加速计或安装于轮胎胎冠的加速计测量所述轮胎扭振模式频率。
17. 如技术方案14所述的方法,其中,计算轮胎磨损状态的估算值包括:采用所述轮胎磨损状态与所述轮胎扭振模式频率之间的关联模型。
18. 如技术方案17所述的方法,其中,进一步包括:将所述关联模型构造为包括基于多项式模型的递归最小二乘算法,其捕捉轮胎磨损状态、轮胎充气压力数据和轮胎扭振模式频率之间的依存性。
定义
“ANN”或“人工神经网络”是用于非线性统计数据建模的调整性工具,其基于在学习过程中流动穿过网络的外部或内部信息改变其结构。ANN神经网络是非线性统计数据建模工具,其用于对输入与输出之间的复杂关系建立模型,或者用于发现数据中的模式。
轮胎的“高宽比”是指其断面高度(SH)与其断面宽度(SW)的比值,该比值乘以100%,以作为百分比来表达。
“不对称胎面”是指具有关于轮胎的中心面或赤道面EP不对称的胎面花纹的胎面。
“轴向”和“轴向地(沿轴向)”是指平行于轮胎旋转轴线的线或方向。
“CAN总线”是控制器区域网络的缩写。
“胎圈包布”是围绕轮胎胎圈的外侧放置的窄材料带,用以防止帘线层磨损和被轮辋切割,并将挠曲分布在轮辋上方。
“周向”是指垂直于轴向方向沿环形胎面表面的周长延伸的线或方向。
“赤道中心面(CP)”是指垂直于轮胎的旋转轴线并穿过胎面中心的平面。
“印迹”是指在轮胎旋转或滚动时由轮胎胎面与平坦表面生成的接触区块或接触区域。
“沟槽”是指轮胎壁中的细长空隙区域,其可以围绕轮胎壁周向地或横向地延伸。“沟槽宽度”等于在其整个长度之上的平均宽度。沟槽的尺寸做成适应如所描述的空气管。
“内侧面(inboard side)”是指当轮胎安装在轮子上并且轮子安装在交通工具上时轮胎的最靠近交通工具的侧面。
“卡尔曼滤波器(Kalman Filter)”是一组数学公式,其实施预测校正式型估量值,其从它在一些假定状况被满足时使估算误差协方差最小化这个意义上来说是最佳的。
“横向”是指轴向方向。
“横向边缘”是指在正常载荷和轮胎充气情况下测量的、与轴向最外侧的胎面接触区块或印迹相切的线,所述线平行于赤道中心面。
“龙贝格观测器(Luenberger Observer)”是状态观测器或估算模型。“状态观测器”是这样一种***,其从给定真实***的输入和输出的测量值,来提供给定真实***的内状态的估算值。它通常由计算机实施,并且提供许多实际应用的基础。
“MSE”是均方误差的缩写,即所测信号与由卡尔曼滤波器最小化的估算信号之间的误差。
“净接触面积”是指围绕胎面的整个圆周的横向边缘之间的接地胎面元件的总面积除以横向边缘之间整个胎面的全面积。
“非定向胎面”是指这样一种胎面,其没有优选的向前行进方向也不要求定位在交通工具上特定的轮子位置或多个轮子位置来保证胎面花纹与优选的行进方向对齐。相反地,定向胎面花纹具有需要特定轮子定位的优选行进方向。
“外侧面(outboard side)”是指当轮胎安装在轮子上并且轮子安装在交通工具上时最远离交通工具的轮胎的侧面。
“蠕动”是指通过沿管状通道推动内含物(例如空气)的波状收缩所进行的操作。
“压电膜传感器”是呈膜体形式的装置,其使用由膜体的弯曲致动的压电效果,来测量压力、加速度、应变或作用力,方法是将它们转换为电荷。
“PSD”是功率谱密度(FFT(快速傅里叶变换)的技术同义词)。
“径向”和“径向地(沿径向)”是指沿径向朝向或远离轮胎的旋转轴线的方向。
“肋”是指胎面上沿周向延伸的橡胶条,其由至少一个周向沟槽与第二个这样的沟槽或横向边缘限定出,该条在横向方向上未被全深度沟槽分割。
“细缝(sipe)”是指模制到轮胎的胎面元件中、细分胎面表面并改进牵引的小狭槽,细缝通常在宽度上窄并且在轮胎印迹内闭合,这与在轮胎印迹中保持敞开的沟槽相反。
“胎面元件”或“牵引元件”是指通过具有邻近沟槽的形状限定出的肋或块状元件。
“胎面弧宽”是指如在胎面的横向边缘之间测得的胎面的弧长。
附图说明
将通过示例并参考附图描述本发明,附图中:
图1是具有被包含到胎面区域中的轮胎压力监测***的轮胎的透视图。
图2是频率图示,示出了轮胎的振幅vs频率,并且指出了用于提取扭振模式分量的感兴趣的图示区域。
图3A是在32psi时处于三个载荷水平的轮胎的频率vs振幅图示,并且示出了处于不同载荷的第二扭振模式频率。
图3B是频率vs振幅图示,示出了在36psi时处于三个轮胎载荷的扭振模式。
图3C是频率vs振幅图示,示出了处于三个轮胎载荷并且处于40psi的轮胎充气的扭振模式。
图4A是在三个不同轮胎充气压力水平时用于3mm大的轮胎楔障的概要频率vs振幅图示。
图4B是在三个不同压力水平时用于5mm大的轮胎楔障的概要频率vs振幅图示,其中轮胎设定在60kph并且轮胎载荷为1300磅。
图5是一组图示,示出了频率vs振幅以及第二扭振模式区域,其用于处于全、半和无胎面状况以及1300磅载荷的轮胎,比较在三个轮胎胎面状况水平时取得的扭振模式频率的实验结果。
图6A、6B和6C是扭振模式频率vs振幅的比较图示,其分别用于处于32、36和40psi的全、半和无胎面状况,并且以表格形式示出了处于三个充气压力用于三个轮胎状况的扭振模式的敏感度。
图7是轮胎磨损估算***的模块级图示,所述轮胎磨损估算***使用交通工具轮速信号或纵向加速度信号以及轮胎充气压力和轮胎识别信息,来基于此获得轮胎扭振模式频率和轮胎磨损状态的估算值。
具体实施方式
参考图1,轮胎胎面磨损估算***10被示出,其基于轮胎扭振振动信号的光谱分析。这种***有利于告知交通工具所有者何时更换轮胎,并且可以用于为驾驶员提供轮胎胎面磨损的状态与其它因素比如道路状况之间的相互关系。轮胎性能一般根据轮胎磨损而改变。相应地,轮胎胎面磨损水平的估算可以被用作用于轮胎状态估算的一个输入。
安装至交通工具22的轮胎(代表性的一个)12包括接地胎面区域14,其随时间推移而磨损。轮胎12借助于轮胎内衬16封闭轮胎腔体18。轮胎压力监测***模块(TPMS)20可以被附接至轮胎内衬16。模块20存储轮胎ID信息,从其可以识别轮胎特定构造数据。
采用轮胎磨损状态估算算法的***10使用可在交通工具22的CAN(控制器区域网络)总线24上获得的信号26。所述信号可以包括:轮速信号,作为用于ABS(防抱死制动***)的输入而有用;和/或轮毂纵向加速度信号,这是在配备有主动悬架管理***的交通工具上。从轮速信号或纵向加速度信号,进行模式提取28,从而提取扭振模式。另外,从轮毂加速度信号,可以进行轮胎垂直模式提取,并基于提取的轮胎垂直模式进行轮胎磨损估算。2013年6月14日提交的共同未决美国专利申请No.13/917,691描述了一种基于垂直振动信号的光谱分析的轮胎磨损估算***,并通过引用并入本文。本发明利用所提取的扭振模式,并使本轮胎磨损估算基于其上。
图1示出了TPMS模块20,其处于轮胎12中的胎冠安装位置,相反于胎面区域14。如本文中所使用的命名方式“TPMS+”意指在其中构建有无线数据通信能力的轮胎压力监测***。相应地,TPMS模块监测腔体18内的轮胎压力,并将压力数据传输至远程接收器用于处理。接收器(未示出)可以基于交通工具和/或位于远程。
继续参考图7,于是通过使用光谱分析方法28,对轮胎扭振模式频率提取进行评估30,以使轮胎磨损状态(轮胎胎面14的深度水平)的影响与轮胎扭振模式相关联。应用关联模型36(见图6A-6C),其中对于给定的所测轮胎充气压力,轮胎磨损状态估算基于轮胎扭振模式频率。通过轮胎模型识别号建立轮胎特定模型,并且轮胎压力值被生成并被存储来用于咨询。一旦TPMS促进的轮胎识别信息从轮胎获得后,使用所提取的第二模式扭振频率和TPMS测量轮胎压力,来应用正确的关联模型。咨询适当的轮胎特定关联模型将得到轮胎磨损水平的准确估算。从图7,将进一步看出的是:关联模型进一步包含数据38,其指示用以检测轮胎自由滚动状态的节流阀位置。
现在将说明用于使用扭振模式频率与轮胎磨损状态之间的关联的基础。参考图2,轮胎振幅对频率[Hz]的图示被示出,其中长暂停(suspension)、同相旋转和反相旋转峰值被标出。该图示的以虚线示出的区域40表示在进行本载荷估算时感兴趣的模式,即第二扭振模式。正是振动轮胎的该模式有利于轮胎磨损状态(胎面14的深度水平),其可以在建立轮胎磨损状态与轮胎扭振模式之间的关联模型时,通过使用光谱分析方法来得到分析。
扭振(旋转)振动模式在下面概述。如本文中所使用的“带束(belt)”是指轮胎的结构性带束增强件。
第一扭振模式:在处于30~40Hz的同相模式中,轮辋具有旋转振动,并且带束旋转具有处于相同相位的振动。
第二扭振模式:轮辋和带束的旋转速度在反相模式(约80Hz)中处于相反相位。
为了本文所依赖的实验测试目的,使用了固特异Eagle F1不对称轮胎,尺寸255/45ZR19。轮胎的胎面深度被分类为:“新”,其表示12kg的轮胎重量;“半磨损”,其表示11Kg的轮胎重量;或者“完全磨损”,其表示9.9Kg的轮胎重量。胎面深度每减小2.5mm,轮胎重量损失大致10%。
使用固定主轴机器上的楔障式转鼓(cleated wheel)在轮胎上进行测试。工业中常用的固定主轴机器代表对轮胎载荷和滚动速度的良好控制。在每次测试之前手动地改变充气压力,并且通过使用具有不同水平的防滑深度的轮胎来捕捉磨损依存性。楔障输入是已知的用以在轮胎中引入扭振和垂直激励,并且本测试设备相应地在本磨损估算操作方法的评估中生成感兴趣的轮胎激励。
在图3A中,使用3mm和5mm的楔障,并且在32psi充气对于700、1000和1300磅的载荷确定扭振模式FFT-Fx。在图3B中,对于相同的两个楔障尺寸,示出了在36psi的充气时对于相同轮胎载荷的图示。在图3C的图示中,使用了40psi的充气。图3A-3C的图示结果表明轮胎载荷状况的变化影响信号振幅,但是信号光谱含量(模式频率)的变化相对较低。
在图4A和4B的图示中比较了3mm和5mm的楔障尺寸。还测试了轮胎充气依存性,如图4A和4B的测试结果中所反映的。图4A示出了对于32、36和40psi的充气压力对于楔障尺寸为3mm的楔障式转鼓上的轮胎的测试结果。处于所测试充气压力的第二扭振模式分别被发现为81、82.5和85Hz。这些结果表明信号振幅及其光谱含量的变化作为轮胎充气变化的结果而适度地高。图4B示出了轮胎在具有5mm的楔障的转鼓上在一系列载荷作用下的测试结果。处于所测试充气压力的第二扭振模式分别被发现为81、83和85Hz。这些结果表明信号振幅及其光谱含量的变化作为轮胎充气变化的结果而适度地高。
图5图解地并且通过表格概述了对于三个胎面磨损状况水平在60kph的速度、1300磅的载荷时的第二扭振模式变化。对在扭振模式的光谱分析中感兴趣的图示部分给出了标识。表格表明了对于三个胎面状况的第二扭振模式。
在图6A-6C中,对于处于全胎面、半胎面和无胎面的轮胎图解地示出了扭振模式频率FFT-Fx的压力依存性。如通过表格中的不同扭振模式计算看出的,轮胎磨损状态依存性生成最高的扭振模式分散度。相对较高的轮胎磨损状态依存性基于根据本发明的扭振模式分析为轮胎磨损状态估算算法的建立提供验证和基础。另外,图示表明轮胎充气压力在分析中具有的关系,并且提供基础来将所测轮胎压力数据用作向轮胎磨损状态模型中的输入。
从以上,将看出的是:充气压力、胎面深度、垂直载荷和速度(旋转速度)等影响因素是依存性的。充气压力影响轮胎的垂直和扭振刚度;胎面深度影响胎面质量;垂直载荷影响对轮胎的冲击力;而速度影响冲击力和刚度(离心强化效果)。每个影响因素的水平体现在振幅和频率中。对于充气变化,振幅和频率变化相对较适度。胎面深度高度地影响振幅和频率。垂直载荷变化对振幅影响高但对频率影响低,而速度高度地影响振幅,但只是适度地影响频率。
多个依存性使基于“振幅”的途径有问题。然而,轮胎第二扭振模式频率对轮胎磨损状态和充气压力的依存性使本操作方法的基于“频率”的途径有效。
从图7,将看出的是,关于轮胎扭振频率的信息可使用以下方法之一获得:
途径1:从轮速信号。
途径2:从安装于轮毂的加速计传感器的纵向加速度信号的测量。
已通过实验证明:胎面磨损估算模型的拟合优度是可接受的。模型拟合与实验数据进行比较,并且拟合得到关联系数(r)=0.988。因此表明了模型的验证。多项式模型(压力上为二阶而胎面深度上为一阶)被发现给予良好拟合。
从图7中示出的基于轮胎的流程图模型实施方式,推导出轮胎磨损状态,从而捕捉轮胎磨损状态、充气压力和轮胎扭振模式频率之间的依存性。从安装至轮胎的TPMS模块20获得轮胎12的充气压力和轮胎ID信息34。模型系数是特定于轮胎构造的,并且由从TPMS存储数据获得的轮胎标识来确定。对于给定轮胎构造,可使用轮胎充气压力、轮胎ID(用以使用正确的模型系数)和轮胎扭振模式频率信息,来进行轮胎磨损状态的递归最小二乘(RLS)估算。传感器和存储于TPMS模块20内的数据被用于获得压力和轮胎ID信息。从以上表明并在图7中由26指示的途径推导交通工具上的轮胎扭振模式的测量。可以使用安装于轮子的加速计或安装于轮胎胎冠的加速计来提供信号。
RLS估算算法(具有遗忘因子)提供一种方法来在每个采样时间迭代地更新未知参数,以使用包含在回归向量内的过去数据,来使建模误差的平方和最小化。以下是捕捉轮胎磨损状态、充气压力和轮胎扭振模式频率之间的依存性的模型:
拟合模型
轮胎扭振模式频率=p00+p10*压力+p01*胎面深度+p20*压力^2+p11*压力*胎面深度
模型系数(具有95%置信度边界):
p00      =          -35.94  (-171.6, 99.72)
p10      =          6.586  (-0.9712, 14.14)
p01      =          -2.31  (-5.37, 0.7512)
p20      =          -0.08333  (-0.1881, 0.02144)
p11      =          0.01786  (-0.06682, 0.1025)
以上公式可重写为如下标准参数识别形式:
其中:
y=(轮胎扭振模式频率-p00-p10*压力-p20*压力^2)/(p11*压力+p01)
用于解决RLS问题的程序如下:
步骤0:初始化未知参数和协方差矩阵P(0);设定遗忘因子λ。 
步骤1:测量***输出并计算回归向量。 
步骤2:计算识别误差
步骤3:计算增益
步骤4:计算协方差矩阵:
步骤5:更新未知参数:
步骤6:对于每个时间步长重复步骤1-5。
其中:y是输出;ψ是回归向量;并且θ是未知参数。回归向量的输入和输出分别被用作递归最小二乘(具有遗忘因子)参数估算算法中的输入和输出,来求解轮胎胎面深度的未知参数。
用于轮胎磨损估算的本方法可以采用轮胎扭振模式的交通工具上(on-vehicle)测量、或轮胎扭振模式的轮胎中(in-tire)测量、或两者,以便达到交叉验证的目的。对于交通工具上测量,从轮速信号或来自安装于轮毂的加速计的纵向加速度信号26提取扭振模式。安装于轮毂的加速计是可在市场上获得的,并且被用作交通工具悬架管理***的一部分。从在各种表面上进行的测试,发现:在所有道路状况下均成功地检测到轮胎扭振模式。测试结果均验证了根据本操作方法从任一途径提取扭振模式以便达到胎面磨损估算的目的。
本***的交通工具上算法实施方式可以用于轮胎扭振模式的轮胎中测量。交通工具22通过CAN总线24提供交通工具速度、载荷和节流阀位置作为向轮胎磨损状态估算模型中的输入。从轮胎12,TPMS(包括加速计)模块20提供充气压力、轮胎ID数据和来自安装于胎冠的加速计的加速度信号。从径向加速度信号的光谱分析,如以上所说明的,轮胎扭振模式频率被获得并输入至轮胎磨损状态估算模型(图6A)。因此可获得估算轮胎磨损状态。
从前述内容,将理解的是:本胎面磨损估算***采用新颖算法来估算轮胎磨损状态。通过使用RLS算法来递归地估算轮胎磨损状态,所述RLS算法是基于捕捉轮胎磨损状态、充气压力和轮胎扭振模式频率之间的依存性的多项式模型而形成的。用于RLS算法的模型输入包括:轮胎充气压力、轮胎ID(使用正确的轮胎特定模型系数所需的)和轮胎扭振模式频率。轮胎充气压力和轮胎ID信息可从附接于轮胎的TPMS模块获得。关于轮胎扭振模式频率的信息可通过使用本文给出的途径之一来获得。
两个途径都可以被采用来交叉验证结果。实时RLS算法在实现所需胎面磨损估算中的应用以及准确的估算结果都通过实验得到验证。
鉴于本文提供的对本发明的描述,本发明的变型是有可能的。尽管为了说明本发明的目的而示出了某些代表性的实施例和细节,但对本领域的技术人员来说显而易见的是:在不背离本发明的范围的情况下,能够在其中做出各种变化和修改。因此,应该明白的是:能够在所描述的特定实施例中做出变化,其将落入如后面所附权利要求书限定出的本发明的完整预期范围内。

Claims (10)

1.一种轮胎磨损状态估算***,其特征在于包括:
支承交通工具的至少一个轮胎;
轮胎压力测量装置,其附接至所述一个轮胎,来测量轮胎充气压力,并生成轮胎充气压力数据;
轮胎扭振模式测量装置,其用于测量轮胎扭振模式频率,并生成轮胎扭振模式频率数据;
轮胎识别装置,其使用轮胎特定识别数据来生成轮胎特定频率模式系数;和
轮胎磨损估算装置,其基于所述轮胎充气压力数据、所述扭振模式频率数据和所述轮胎特定频率模式系数来计算轮胎磨损状态的估算值。
2.如权利要求1所述的轮胎磨损状态估算***,其特征在于,所述轮胎压力测量装置包括安装于轮胎的压力测量装置,其进行操作以通过压力传感器测量轮胎腔体压力,并传输来自轮胎腔体压力测量的轮胎充气压力数据。
3.如权利要求2所述的轮胎磨损状态估算***,其特征在于,所述轮胎特定识别数据存储在所述安装于轮胎的压力测量装置内,并且从所述安装于轮胎的压力测量装置是可访问的。
4.如权利要求3所述的轮胎磨损状态估算***,其特征在于,使用轮速信号或安装于轮毂的加速计传感器信号来生成轮胎特定扭振频率模式系数。
5.如权利要求4所述的轮胎磨损状态估算***,其特征在于,所述轮胎扭振模式频率的测量值来自于安装于轮子的加速计或安装于轮胎胎冠的加速计。
6.如权利要求4所述的轮胎磨损状态估算***,其特征在于,所述轮胎磨损估算装置包括所述轮胎磨损状态与所述轮胎扭振模式频率之间的关联模型。
7.如权利要求6所述的轮胎磨损状态估算***,其特征在于,所述关联模型包括基于多项式模型的递归最小二乘算法,其捕捉轮胎的磨损状态、轮胎充气压力数据和轮胎扭振模式频率之间的依存性。
8.如权利要求1所述的轮胎磨损状态估算***,其特征在于,所述轮胎磨损估算装置包括所述轮胎磨损状态与所述轮胎扭振模式频率之间的关联模型。
9.一种轮胎磨损状态估算***,其特征在于包括:
用于支承交通工具的至少一个轮胎;
安装于轮胎的压力测量装置,其附接至所述一个轮胎,进行操作以测量轮胎腔体压力,并传输来自轮胎腔体压力测量的轮胎充气压力数据;
轮胎特定识别数据,其存储在安装于轮胎的数据存储装置内,并且从安装于轮胎的数据存储装置是可访问的;
轮胎扭振模式测量装置,其用于测量轮胎扭振模式频率,并生成轮胎扭振模式频率数据;
轮胎识别装置,用于使用所述轮胎特定识别数据以及轮胎扭振模式频率的轮速信号或纵向加速度信号测量值,来生成轮胎特定扭振模式频率系数;和
轮胎磨损估算装置,其基于所述轮胎充气压力数据、所述轮胎扭振模式频率数据和所述轮胎特定扭振模式系数来计算轮胎磨损状态的估算值。
10.一种轮胎磨损状态估算的方法,其特征在于包括:
将轮胎压力测量装置附接至支承交通工具的轮胎,所述压力测量装置具有至少一个压力传感器,其测量轮胎腔体充气压力并生成轮胎充气压力数据;
测量轮胎扭振模式频率并生成轮胎扭振模式频率数据;
基于所述轮胎特定识别数据生成轮胎特定扭振模式系数;以及
基于所述轮胎特定识别数据,在所述轮胎充气压力数据、所测的扭振模式频率数据和所述轮胎特定频率模式系数的基础上,计算轮胎磨损状态的估算值。
CN201410394500.8A 2013-08-12 2014-08-12 扭振模式轮胎磨损状态估算***和方法 Expired - Fee Related CN104369628B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/964307 2013-08-12
US13/964,307 US9259976B2 (en) 2013-08-12 2013-08-12 Torsional mode tire wear state estimation system and method

Publications (2)

Publication Number Publication Date
CN104369628A true CN104369628A (zh) 2015-02-25
CN104369628B CN104369628B (zh) 2017-06-16

Family

ID=51298604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410394500.8A Expired - Fee Related CN104369628B (zh) 2013-08-12 2014-08-12 扭振模式轮胎磨损状态估算***和方法

Country Status (5)

Country Link
US (1) US9259976B2 (zh)
EP (1) EP2837510B1 (zh)
JP (1) JP6420589B2 (zh)
CN (1) CN104369628B (zh)
BR (1) BR102014019972A2 (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677649A (zh) * 2015-03-23 2015-06-03 吉林大学 一种轮胎力学特性智能检测装置及其检测方法
CN108146161A (zh) * 2016-12-05 2018-06-12 固特异轮胎和橡胶公司 车轮不平衡检测***及方法
CN108146162A (zh) * 2016-12-05 2018-06-12 固特异轮胎和橡胶公司 间接轮胎压力和磨损状态估计***及方法
CN108688414A (zh) * 2017-04-07 2018-10-23 通用汽车环球科技运作有限责任公司 基于道路振动数据和轮胎胎面凹槽深度确定轮胎剩余寿命的方法和设备
CN112373248A (zh) * 2020-11-27 2021-02-19 北京因泰智行科技有限公司 轮胎磨损检测方法、轮胎磨损检测装置及车辆
CN112440629A (zh) * 2019-08-30 2021-03-05 固特异轮胎和橡胶公司 用于提取轮胎特性的变化的方法
CN112533775A (zh) * 2018-08-06 2021-03-19 普利司通欧洲有限公司 胎面磨损监测***和方法
CN112590464A (zh) * 2019-10-02 2021-04-02 韩国轮胎与科技株式会社 轮胎磨损测定装置及利用其的轮胎磨损测定方法
CN112789182A (zh) * 2018-10-05 2021-05-11 株式会社普利司通 轮胎磨损估计方法
CN113424039A (zh) * 2018-12-14 2021-09-21 米其林集团总公司 用于预测轮胎的磨损和寿命终止的模型
CN113710505A (zh) * 2019-04-17 2021-11-26 奥迪股份公司 用于确定车辆轮胎的轮胎状态的***
US20220016940A1 (en) * 2019-04-01 2022-01-20 Bridgestone Americas Tire Operations, Llc System and method for predicting wear progression for vehicle tires
CN114103560A (zh) * 2020-08-26 2022-03-01 固特异轮胎和橡胶公司 轮胎磨损状态估计***
CN114290857A (zh) * 2020-10-08 2022-04-08 萨基姆通讯能源及电信联合股份公司 一种评估轮胎磨损的方法
CN114407583A (zh) * 2022-01-20 2022-04-29 东风汽车集团股份有限公司 一种轮胎状态监测方法及监测***
TWI801947B (zh) * 2021-07-30 2023-05-11 建大工業股份有限公司 設置有感測器之輪胎(一)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9650053B2 (en) * 2014-12-03 2017-05-16 The Goodyear Tire & Rubber Company Slip ratio point optimization system and method for vehicle control
US10121378B2 (en) * 2014-12-26 2018-11-06 The Yokohama Rubber Co., Ltd. Collision avoidance system
GB2539272A (en) * 2015-06-12 2016-12-14 Jaguar Land Rover Ltd Control system, vehicle and method
US9821611B2 (en) 2015-10-21 2017-11-21 The Goodyear Tire & Rubber Company Indirect tire wear state estimation system
US9873293B2 (en) 2015-10-21 2018-01-23 The Goodyear Tire & Rubber Company Indirect tire wear state prediction system and method
US9878721B2 (en) 2015-11-11 2018-01-30 The Goodyear Tire & Rubber Company Tire sensor-based robust mileage tracking system and method
CN106198058B (zh) * 2016-08-03 2017-04-19 东南大学 一种基于胎压监测的竖向车轮冲击力实时测量方法
EP3318422B1 (en) * 2016-11-08 2019-08-28 The Goodyear Tire & Rubber Company Indirect tire wear state prediction system and method
US20180272813A1 (en) * 2017-03-23 2018-09-27 The Goodyear Tire & Rubber Company Model based tire wear estimation system and method
US10603962B2 (en) 2017-06-29 2020-03-31 The Goodyear Tire & Rubber Company Tire wear state estimation system and method
IT201800006322A1 (it) * 2018-06-14 2019-12-14 Sistema e metodo per monitorare il consumo di battistrada
US11644386B2 (en) 2018-12-11 2023-05-09 The Goodyear Tire & Rubber Company Tire wear state estimation system and method
US11498371B2 (en) 2018-12-12 2022-11-15 The Goodyear Tire & Rubber Company Tire data information system
JP6935812B2 (ja) * 2018-12-13 2021-09-15 株式会社Soken タイヤ摩耗検知装置
JP6790142B2 (ja) * 2019-01-31 2020-11-25 Toyo Tire株式会社 タイヤ力推定システムおよびタイヤ力推定方法
DE102019207820A1 (de) * 2019-05-28 2020-12-03 Continental Reifen Deutschland Gmbh Fahrzeugreifen
AU2020220054A1 (en) * 2019-08-30 2021-03-18 The Goodyear Tire & Rubber Company Tire wear state estimation system and method employing footprint length
FR3105759B1 (fr) * 2019-12-30 2022-01-07 Michelin & Cie Procédé d’obtention de la CHARGE appliquee à un pneumatique en roulage
US11458784B2 (en) * 2020-03-25 2022-10-04 Ford Global Technologies, Llc Methods and apparatus to determine tire tread depth
CN116601019A (zh) * 2020-12-30 2023-08-15 倍耐力轮胎股份公司 用于监测轮胎的状态的方法和***
KR102587220B1 (ko) * 2021-03-29 2023-10-10 버추얼모션(주) 차량용 드라이브 라인의 내구 해석 장치 및 방법
CN113203583A (zh) * 2021-05-07 2021-08-03 安徽德技汽车检测中心有限公司 一种检测恶劣路况轮胎胎面磨损程度的试验方法
US20240190179A1 (en) * 2022-12-12 2024-06-13 The Goodyear Tire & Rubber Company System for estimation of tire tread depth employing wheel speed
US20240192093A1 (en) 2022-12-13 2024-06-13 The Goodyear Tire & Rubber Company System for estimation of remaining tire mileage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090055040A1 (en) * 2005-03-24 2009-02-26 Kabushiki Kaisha Bridgestone Method for estimating tire slip angle and a tire with sensors mounted therein
US20100199756A1 (en) * 2007-07-11 2010-08-12 Kabushiki Kaisha Bridgestone Method and apparatus for detecting wear of tire

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19716586C1 (de) * 1997-04-21 1998-08-06 Continental Ag Verfahren zum Ermitteln der Profiltiefe eines Fahrzeugreifens am fahrenden Fahrzeug
US6789416B1 (en) * 1999-01-14 2004-09-14 Roger H. Tracy Hand held probe for measuring tire tread wear
US6278361B1 (en) * 1999-12-03 2001-08-21 Trw Inc. System and method for monitoring vehicle conditions affecting tires
TW539627B (en) * 2001-12-17 2003-07-01 Taiheiyo Kogyo Kk Apparatus and method for monitoring tire condition
US6580980B1 (en) * 2002-03-05 2003-06-17 Michelin Recherche Et Technique S.A. System and method for testing deflated tire handling
US6705156B2 (en) * 2002-05-02 2004-03-16 The Goodyear Tire & Rubber Company Cross-correlation method for identification and removal of machine contribution from tire uniformity measurements
US7552628B2 (en) * 2003-10-24 2009-06-30 Pirelli Pneumatici S.P.A. Method and system for determining a cornering angle of a tyre during the running of a vehicle
JP4258423B2 (ja) * 2004-04-23 2009-04-30 株式会社アドヴィックス 車両の足回り劣化度推定装置及び車両の足回り劣化度推定方法
JP4680532B2 (ja) * 2004-06-02 2011-05-11 株式会社ブリヂストン タイヤの動的状態推定方法とその装置
WO2006034731A1 (en) * 2004-09-29 2006-04-06 Pirelli Tyre S.P.A. Method and system for determining a cornering angle of a tyre during the running of a vehicle
JP4762123B2 (ja) * 2006-12-13 2011-08-31 株式会社ブリヂストン タイヤ摩耗量推定装置、及びタイヤ摩耗量推定装置を搭載した車両
US7578180B2 (en) * 2007-06-29 2009-08-25 The Goodyear Tire & Rubber Company Tread depth sensing device and method for measuring same
US7969293B2 (en) * 2008-10-13 2011-06-28 The Goodyear Tire & Rubber Company Integrated read station for a wheel-mounted vehicle
IT1393072B1 (it) * 2008-10-24 2012-04-11 Pirelli Metodo e sistema per la segnalazione di una condizione di acquaplano di un pneumatico montato su un veicolo
WO2011054363A1 (en) 2009-11-04 2011-05-12 Nira Dynamics Ab Surface classification
JP5531265B2 (ja) * 2010-10-12 2014-06-25 パナソニック株式会社 タイヤ状態検出装置およびタイヤ状態検出方法
US9050864B2 (en) * 2013-06-14 2015-06-09 The Goodyear Tire & Rubber Company Tire wear state estimation system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090055040A1 (en) * 2005-03-24 2009-02-26 Kabushiki Kaisha Bridgestone Method for estimating tire slip angle and a tire with sensors mounted therein
US20100199756A1 (en) * 2007-07-11 2010-08-12 Kabushiki Kaisha Bridgestone Method and apparatus for detecting wear of tire

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104677649A (zh) * 2015-03-23 2015-06-03 吉林大学 一种轮胎力学特性智能检测装置及其检测方法
CN108146161A (zh) * 2016-12-05 2018-06-12 固特异轮胎和橡胶公司 车轮不平衡检测***及方法
CN108146162A (zh) * 2016-12-05 2018-06-12 固特异轮胎和橡胶公司 间接轮胎压力和磨损状态估计***及方法
CN108146161B (zh) * 2016-12-05 2020-12-25 固特异轮胎和橡胶公司 车轮不平衡检测***及方法
CN108688414A (zh) * 2017-04-07 2018-10-23 通用汽车环球科技运作有限责任公司 基于道路振动数据和轮胎胎面凹槽深度确定轮胎剩余寿命的方法和设备
CN112533775A (zh) * 2018-08-06 2021-03-19 普利司通欧洲有限公司 胎面磨损监测***和方法
US11662272B2 (en) 2018-10-05 2023-05-30 Bridgestone Corporation Tire wear estimation method
CN112789182A (zh) * 2018-10-05 2021-05-11 株式会社普利司通 轮胎磨损估计方法
CN113424039A (zh) * 2018-12-14 2021-09-21 米其林集团总公司 用于预测轮胎的磨损和寿命终止的模型
CN113424039B (zh) * 2018-12-14 2023-11-10 米其林集团总公司 用于预测轮胎的磨损和寿命终止的模型
US20220016940A1 (en) * 2019-04-01 2022-01-20 Bridgestone Americas Tire Operations, Llc System and method for predicting wear progression for vehicle tires
CN113710505A (zh) * 2019-04-17 2021-11-26 奥迪股份公司 用于确定车辆轮胎的轮胎状态的***
CN112440629A (zh) * 2019-08-30 2021-03-05 固特异轮胎和橡胶公司 用于提取轮胎特性的变化的方法
CN112590464B (zh) * 2019-10-02 2022-11-04 韩国轮胎与科技株式会社 轮胎磨损测定装置及利用其的轮胎磨损测定方法
CN112590464A (zh) * 2019-10-02 2021-04-02 韩国轮胎与科技株式会社 轮胎磨损测定装置及利用其的轮胎磨损测定方法
CN114103560A (zh) * 2020-08-26 2022-03-01 固特异轮胎和橡胶公司 轮胎磨损状态估计***
CN114290857A (zh) * 2020-10-08 2022-04-08 萨基姆通讯能源及电信联合股份公司 一种评估轮胎磨损的方法
CN112373248A (zh) * 2020-11-27 2021-02-19 北京因泰智行科技有限公司 轮胎磨损检测方法、轮胎磨损检测装置及车辆
CN112373248B (zh) * 2020-11-27 2022-08-19 智周博行(北京)科技有限公司 轮胎磨损检测方法、轮胎磨损检测装置及车辆
TWI801947B (zh) * 2021-07-30 2023-05-11 建大工業股份有限公司 設置有感測器之輪胎(一)
CN114407583B (zh) * 2022-01-20 2023-04-21 东风汽车集团股份有限公司 一种轮胎状态监测方法及监测***
CN114407583A (zh) * 2022-01-20 2022-04-29 东风汽车集团股份有限公司 一种轮胎状态监测方法及监测***

Also Published As

Publication number Publication date
US20150040656A1 (en) 2015-02-12
BR102014019972A2 (pt) 2015-09-22
JP6420589B2 (ja) 2018-11-07
EP2837510B1 (en) 2016-03-30
EP2837510A1 (en) 2015-02-18
CN104369628B (zh) 2017-06-16
US9259976B2 (en) 2016-02-16
JP2015036296A (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
CN104369628A (zh) 扭振模式轮胎磨损状态估算***和方法
EP2813378B1 (en) Tire wear state estimation system and method
US20180154707A1 (en) Indirect tire pressure and wear state estimation system and method
US10603962B2 (en) Tire wear state estimation system and method
JP6563165B2 (ja) タイヤサイドウォール荷重推定システム及び方法
US9739689B2 (en) Tire cornering stiffness estimation system and method
US9874496B2 (en) Tire suspension fusion system for estimation of tire deflection and tire load
US9821611B2 (en) Indirect tire wear state estimation system
US9120356B2 (en) Load estimation system and method for a vehicle tire
US9610810B1 (en) Method of tire state estimation through wheel speed signal feature extraction
JP6265411B2 (ja) 車両重量および重心推定システムおよび方法
US9290069B2 (en) Tire innerliner-based parameter estimation system and method
CN103863029B (zh) 轮胎滑移角估计***和方法
US10048170B2 (en) Vehicle loading condition detection system and method
US20180154709A1 (en) Wheel imbalance detection system and method
EP3159189B1 (en) Indirect tire wear state estimation system and method of tire state estimation through wheel speed signal feature extraction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170616

Termination date: 20190812