CN104310304A - 可控尺寸及表面结构的纳米柱阵列制备方法 - Google Patents

可控尺寸及表面结构的纳米柱阵列制备方法 Download PDF

Info

Publication number
CN104310304A
CN104310304A CN201410564829.4A CN201410564829A CN104310304A CN 104310304 A CN104310304 A CN 104310304A CN 201410564829 A CN201410564829 A CN 201410564829A CN 104310304 A CN104310304 A CN 104310304A
Authority
CN
China
Prior art keywords
sio
column array
nano
particle
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410564829.4A
Other languages
English (en)
Inventor
张朝
郭坤平
陈长博
李炜玲
张静
徐韬
魏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN201410564829.4A priority Critical patent/CN104310304A/zh
Publication of CN104310304A publication Critical patent/CN104310304A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Photovoltaic Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本发明公开了一种可控尺寸及表面结构的纳米柱阵列制备方法,对SiO2纳米粒子进行表面改性,使其具有亲水及疏水的双亲性;然后用Langmuir-Blodget膜技术在衬底上沉积SiO2单层膜;用各向同性反应离子刻蚀技术刻蚀SiO2进一步改变SiO2纳米粒子的尺寸;将沉积的SiO2粒子作为刻蚀掩膜板分别用各向异性的深度反应离子刻蚀技术及感应耦合等离子体刻蚀技术刻蚀硅;用氢氟酸腐蚀掉残余的SiO2粒子,最终得到可控尺寸及可控表面结构的纳米柱阵列。本发明有效克服了电子束曝光高成本及批量加工方法的限制,可以有效地降低太阳电池的表面反射率,提高太阳电池的光电转换效率。

Description

可控尺寸及表面结构的纳米柱阵列制备方法
技术领域
本发明涉及一种半导体电子器件的制备工艺,特别是涉及一种半导体衬底的制备和优化工艺,应用于太阳电池制备技术领域。
背景技术
太阳能作为一种可永续利用的清洁能源,有着巨大的应用潜力。目前的光伏市场,仍以晶体硅制备的第一代太阳能电为主,然而受Shockley-Queisser效应限制的光电转换效率不高晶体硅理论上极限为33.7%。为了进一步发展光伏产业,必须要提高太阳能电池的光电转换效率和降低成本。在众多类型的纳米材料中,Si纳米柱阵列凭借其一维的柱形结构、独特的电学和光学性能在近年来得到了广泛的关注和深入的研究,特别是在太阳电池应用方面具有很大的潜在应用价值。
硅纳米柱/线凭借其一维的柱形结构、独特的电学和光学性能在近年来得到了广泛的关注和深入的研究,比如在太阳电池、场效应晶体管、生物传感器、发光材料等方面已经取得了一定成果,特别是在太阳电池应用方面具有很大的潜在应用价值。目前,对于高效单晶硅太阳电池而言,其表面反射率是影响电池光电转换效率的重要因素之一,而纳米柱/线阵列的织构化结构可以有效地降低太阳电池的表面反射率。
目前,制备硅纳米柱/线阵列可以采用的方法主要有两种:化学腐蚀和物理刻蚀。国内大多数的研究组是用化学腐蚀方法来制备硅纳米柱/线,化学腐蚀法虽然简单易操作,但其物理化学机理尚待进一步探索研究,且制备的硅纳米柱/线有着质量不高,表面缺陷较多,结构尺寸不易可控等缺点。相比,物理刻蚀法制备的纳米柱/线结构尺寸、表面形貌易控制,所用工艺也与传统的半导体技术相匹配。但是物理刻蚀的成本较高,得到的纳米柱/线高度有限而且刻蚀所用的等离子体轰击会造成衬底的晶格缺陷从而会影响纳米柱/线的电学性能。因此,如何实现纳米柱/线阵列的低成本可控制备以及改善其表面结构仍是目前纳米柱/线在太阳电池中应用中亟待解决的技术难题。
发明内容
为了解决现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种可控尺寸及表面结构的纳米柱阵列制备方法,有效克服了电子束曝光高成本及批量加工方法的限制,能够在衬底上制备可控尺寸及可控表面结构硅纳米柱阵列,可以有效地降低太阳电池的表面反射率,提高太阳电池的光电转换效率。
为达到上述发明创造目的,本发明采用下述技术方案:
一种可控尺寸及表面结构的纳米柱阵列制备方法,包括以下步骤:
ⅰ.对纳米粒子溶液的SiO2粒子进行表面改性,使其具有双亲性,然后采用Langmuir-Blodgett膜工艺,使具有双亲性的SiO2粒子在衬底上沉积得到SiO2单层膜;采用Langmuir-Blodgett膜工艺在衬底上沉积SiO2粒子过程中,对于900nm级的SiO2粒子,优选采用的表面压控制在10~14mN/m,而对于600nm级的SiO2粒子,优选采用的表面压控制在2.5~4mN/m;衬底的材料优选采用硅、锗、Ⅲ-Ⅴ族半导体材料、有机半导体材料或半导体复合材料;
ⅱ. 采用各向同性的反应离子刻蚀工艺,对在所述步骤ⅰ中制备的衬底上的SiO2单层膜进行刻蚀,调整SiO2粒子的大小和粒子间隙,对SiO2单层膜进行图案修饰,使SiO2单层膜形成衬底的刻蚀掩模板;采用各向同性的反应离子刻蚀工艺刻蚀衬底上的SiO2单层膜时,蚀刻气体优选采用CHF3和O2的混合气体,且刻蚀腔的气压为250mTorr,RF功率为100W;
ⅲ. 将在所述步骤ⅱ中制备的经过图案修饰的SiO2单层膜作为刻蚀掩模板,采用各向异性的深度反应离子刻蚀工艺来蚀刻衬底,制备锯齿状表面的纳米柱阵列,此时SiO2粒子留在纳米柱的顶部;采用各向异性的深度反应离子刻蚀工艺来蚀刻衬底时,蚀刻气体优选采用SF6和O2的混合气体,且钝化气体C4F8,刻蚀功率为2100W,钝化功率为2200W;
ⅳ. 将在所述步骤ⅱ中制备的经过图案修饰的SiO2单层膜作为刻蚀掩模板,采用感应耦合等离子体刻蚀工艺来蚀刻衬底,制备平整表面的纳米柱阵列,此时SiO2粒子留在纳米柱的顶部;采用感应耦合等离子体刻蚀工艺来蚀刻衬底,刻蚀气体优选采用Cl2为30sccm,且刻蚀腔内压强为10 mTorr,刻蚀功率为40W;
ⅴ.将在所述步骤ⅲ或步骤ⅳ中得到的带有纳米柱阵列的衬底放置于氢氟酸溶液中,除去残留在纳米柱阵列顶部的SiO2粒子,最终得到具有所需尺寸及表面结构的Si纳米柱阵列的衬底。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1. 本发明纳米柱阵列的制备工艺,以“自下而上”的纳米球刻蚀技术与“自上而下”的刻蚀技术相结合制备纳米柱阵列,获得可控尺寸及可控表面结构的纳米柱阵列;
2. 本发明选用Langmuir-Blodgett膜技术来制备掩模板,避免了电子束曝光技术,降低了制备成本;
3.本发明通过选用DRIE及ICP两种不同的刻蚀技术能够根据需要得到不同的表面结构;
4.本发明通过选用最初不同尺寸SiO2纳米粒子及各向同性的反应离子刻蚀时间来控制纳米柱的直径及间隙,使掩模板的制备更加方便和可靠;
5.本发明通过控制各向异性的DRIE或ICP刻蚀时间来控制Si纳米柱的高度,可以根据不同的需要获得可控尺寸及可控表面结构纳米柱阵列,以满足不同的太阳能电池的需要。
附图说明
图1是本发明优选实施例可控尺寸及表面结构的纳米柱阵列制备方法的工艺流程图。
图2是本发明优选实施例制备的硅纳米柱阵列的SEM图。
具体实施方式
本发明的优选实施例详述如下:
在本实施例中,参见图1和图2,一种可控尺寸及表面结构的纳米柱阵列制备方法,包括以下步骤:
ⅰ. 选用含有粒子直径分别为400nm和900nm的SiO2纳米粒子的溶液,对纳米粒子溶液的SiO2粒子进行表面改性,使其具有亲水及疏水的双亲性,然后采用Langmuir-Blodgett膜工艺,将含有SiO2纳米粒子的溶液滴在Langmuir-Blodgett槽1中蒸馏水的表面上;沿着T2和T2的方向,压缩Langmuir-Blodgett槽1,使Langmuir-Blodgett槽1的表面积减小,表面压力增加,一定表面压力范围内,在Si衬底2上沉积SiO2纳米粒子3,沿着图1中图b中的v的方向向上匀速提拉Si衬底2,使具有双亲性的SiO2粒子在衬底上沉积得到SiO2单层膜,参见图1中的图a、图b和图c。
ⅱ. 在步骤ⅰ后得到Si衬底2上,采用各向同性的反应离子刻蚀工艺,对在所述步骤ⅰ中制备的Si衬底2上的SiO2单层膜进行刻蚀,调整SiO2纳米粒子3的大小和粒子间隙,对SiO2单层膜进行图案修饰,使SiO2单层膜形成衬底的刻蚀掩模板,参见图d。蚀刻气体为CHF3和O2的混合气体,它是以刻蚀SiO2为主的化学蚀刻。刻蚀腔的气压为250mTorr,RF功率为100W。
ⅲ. 为了得到较高长径比的硅纳米柱4,将在所述步骤ⅱ中制备的经过图案修饰的SiO2单层膜作为刻蚀掩模板,采用各向异性的深度反应离子刻蚀工艺DRIE来蚀刻衬底,制备锯齿状表面的硅纳米柱阵列,此时SiO2纳米粒子3留在硅纳米柱4的顶部。DRIE是MEMS加工工艺中最具特色的一项技术,普遍采用Bosch刻蚀钝化交替的加工技术。将步骤ⅱ后得到的Si衬底2清洗干净后,使用深度反应离子刻蚀技术来刻蚀Si,如图1中的图e所示。实验过程中,所使用的是STS DRIE system刻蚀***,蚀刻气体为SF6和O2的混合气体,钝化气体为C4F8,刻蚀功率为2100W,钝化功率为2200W。首先,刻蚀步骤利用SF6对Si衬底2进行一次刻蚀;然后工艺切换到钝化步骤,C4F8在Si衬底2上形成一层保护层;在刻蚀与钝化交替进行后形成高长径比,最终得到高刻蚀速率,良好的各向异性的完美结合。通过刻蚀时间来控制硅纳米柱4的长度,刻蚀出微米级长度的Si纳米柱阵列。
ⅳ. 为了提高硅纳米柱的表面结构质量,将在所述步骤ⅱ中制备的经过图案修饰的SiO2单层膜作为刻蚀掩模板,采用感应耦合等离子体刻蚀工艺ICP来蚀刻衬底,制备平整表面的硅纳米柱阵列,此时SiO2纳米粒子3留在硅纳米柱4的顶部。ICP刻蚀由于具有可同时提供较高的等离子体密度及独立的衬底偏压源控制的特点,在较低的偏压下可获得合适的刻蚀速率,从而可以获得较低的刻蚀损伤,更有利于控制表面结构。将步骤2后得到的Si衬底2清洗干净后,使用感应耦合等离子体(inductively coupled plasma ,ICP)刻蚀技术来刻蚀Si,也如图1中的图e所示。实验中,刻蚀气体Cl2为30sccm,刻蚀腔内压强为10mTorr;刻蚀功率为40W。它是以沿纵向蚀刻Si为主的物理蚀刻,选择比很大,因此刻蚀出来的硅纳米柱4表面较平整。
ⅴ.将在所述步骤ⅲ或步骤ⅳ中得到的带有硅纳米柱阵列的衬底放置于质量百分比浓度为50%氢氟酸溶液中保持30s,通过化学腐蚀除去残留在硅纳米柱阵列顶部的SiO2纳米粒子3,最终得到具有所需尺寸及表面结构的Si纳米柱阵列的衬底,参见图1中的图f和图2。
本实施例通过控制各向异性的DRIE或ICP刻蚀时间来控制Si纳米柱的高度,可以根据不同的需要获得可控尺寸及可控表面结构纳米柱阵列,以满足不同的太阳能电池的需要,参见图2。本实施例采用“自下而上”的纳米球刻蚀与“自上而下”的刻蚀工艺相结合,制备有序分布的硅纳米柱阵列结构。通过选用“自下而上”的纳米球刻蚀技术中的Langmuir-Blodgett膜技术取代电子束曝光技术来制备掩模板,降低了成本;通过选用不同的“自上而下”各向异性的刻蚀技术来获得不同表面结构的纳米柱,控制刻蚀时间来控制纳米柱阵列的尺寸。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合、简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明可控尺寸及表面结构的纳米柱阵列制备方法的技术原理和发明构思,都属于本发明的保护范围。 

Claims (6)

1.一种可控尺寸及表面结构的纳米柱阵列制备方法,其特征在于,包括以下步骤:
ⅰ.对纳米粒子溶液的SiO2粒子进行表面改性,使其具有双亲性,然后采用Langmuir-Blodgett膜工艺,使具有双亲性的SiO2粒子在衬底上沉积得到SiO2单层膜;  
ⅱ. 采用各向同性的反应离子刻蚀工艺,对在所述步骤ⅰ中制备的衬底上的SiO2单层膜进行刻蚀,调整SiO2粒子的大小和粒子间隙,对SiO2单层膜进行图案修饰,使SiO2单层膜形成衬底的刻蚀掩模板;
ⅲ. 将在所述步骤ⅱ中制备的经过图案修饰的SiO2单层膜作为刻蚀掩模板,采用各向异性的深度反应离子刻蚀工艺来蚀刻衬底,制备锯齿状表面的纳米柱阵列,此时SiO2粒子留在纳米柱的顶部; 
ⅳ. 将在所述步骤ⅱ中制备的经过图案修饰的SiO2单层膜作为刻蚀掩模板,采用感应耦合等离子体刻蚀工艺来蚀刻衬底,制备平整表面的纳米柱阵列,此时SiO2粒子留在纳米柱的顶部;
ⅴ.将在所述步骤ⅲ或步骤ⅳ中得到的带有纳米柱阵列的衬底放置于氢氟酸溶液中,除去残留在纳米柱阵列顶部的SiO2粒子,最终得到具有所需尺寸及表面结构的Si纳米柱阵列的衬底。
2.根据权利要求1所述可控尺寸及表面结构的纳米柱阵列制备方法,其特征在于:在所述步骤ⅰ中采用Langmuir-Blodgett膜工艺在衬底上沉积SiO2粒子过程中,对于900nm级的SiO2粒子,采用的表面压控制在10~14mN/m,而对于600nm级的SiO2粒子,采用的表面压控制在2.5~4mN/m。
3.根据权利要求1所述可控尺寸及表面结构的纳米柱阵列制备方法,其特征在于:在所述步骤ⅱ中,采用各向同性的反应离子刻蚀工艺刻蚀衬底上的SiO2单层膜时,蚀刻气体为CHF3和O2的混合气体,刻蚀腔的气压为250mTorr,RF功率为100W。
4.根据权利要求1所述可控尺寸及表面结构的纳米柱阵列制备方法,其特征在于:在所述步骤ⅲ中,采用各向异性的深度反应离子刻蚀工艺来蚀刻衬底时,蚀刻气体为SF6和O2的混合气体,钝化气体C4F8,刻蚀功率为2100W,钝化功率为2200W。
5.根据权利要求1所述可控尺寸及表面结构的纳米柱阵列制备方法,其特征在于:在所述步骤ⅳ中,采用感应耦合等离子体刻蚀工艺来蚀刻衬底,刻蚀气体Cl2为30sccm,刻蚀腔内压强为10 mTorr,刻蚀功率为40W。
6.根据权利要求1~5中任意一项所述可控尺寸及表面结构的纳米柱阵列制备方法,其特征在于:在所述步骤ⅰ中,采用的衬底的材料为硅、锗、Ⅲ-Ⅴ族半导体材料、有机半导体材料或半导体复合材料。
CN201410564829.4A 2014-10-22 2014-10-22 可控尺寸及表面结构的纳米柱阵列制备方法 Pending CN104310304A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410564829.4A CN104310304A (zh) 2014-10-22 2014-10-22 可控尺寸及表面结构的纳米柱阵列制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410564829.4A CN104310304A (zh) 2014-10-22 2014-10-22 可控尺寸及表面结构的纳米柱阵列制备方法

Publications (1)

Publication Number Publication Date
CN104310304A true CN104310304A (zh) 2015-01-28

Family

ID=52365659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410564829.4A Pending CN104310304A (zh) 2014-10-22 2014-10-22 可控尺寸及表面结构的纳米柱阵列制备方法

Country Status (1)

Country Link
CN (1) CN104310304A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104709872A (zh) * 2015-02-06 2015-06-17 中国科学院物理研究所 金刚石纳米线阵列、其制备方法及用于电化学分析的电极
CN106115617A (zh) * 2016-06-28 2016-11-16 北京随能科技有限公司 一种聚合物纳米柱阵列的无模板制备方法
CN106601836A (zh) * 2016-12-16 2017-04-26 上海电机学院 一种基于纳米颗粒的光伏电池表面陷光结构的制造工艺
CN112326758A (zh) * 2020-09-21 2021-02-05 江苏元上分子工程研究中心有限公司 一种硅纳米生物传感器及制备方法和病毒检测方法
CN114813808A (zh) * 2022-04-24 2022-07-29 胜科纳米(苏州)股份有限公司 一种半导体芯片截面结构的检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497429A (zh) * 2009-03-06 2009-08-05 吉林大学 硅中空纳米锥阵列的制备方法
WO2012048870A2 (en) * 2010-10-13 2012-04-19 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V Process for producing highly ordered nanopillar or nanohole structures on large areas
CN102956774A (zh) * 2012-11-05 2013-03-06 中国科学院半导体研究所 制作纳米级柱形阵列氮化镓基正装结构发光二级管的方法
CN103213933A (zh) * 2013-03-27 2013-07-24 厦门大学 一种硅基三维微电池纳米电极结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101497429A (zh) * 2009-03-06 2009-08-05 吉林大学 硅中空纳米锥阵列的制备方法
WO2012048870A2 (en) * 2010-10-13 2012-04-19 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E.V Process for producing highly ordered nanopillar or nanohole structures on large areas
CN102956774A (zh) * 2012-11-05 2013-03-06 中国科学院半导体研究所 制作纳米级柱形阵列氮化镓基正装结构发光二级管的方法
CN103213933A (zh) * 2013-03-27 2013-07-24 厦门大学 一种硅基三维微电池纳米电极结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
童亮等: ""可控表面结构Si纳米柱阵列的制备及光学特性研究"", 《功能材料》, 9 January 2014 (2014-01-09) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104709872A (zh) * 2015-02-06 2015-06-17 中国科学院物理研究所 金刚石纳米线阵列、其制备方法及用于电化学分析的电极
CN106115617A (zh) * 2016-06-28 2016-11-16 北京随能科技有限公司 一种聚合物纳米柱阵列的无模板制备方法
CN106115617B (zh) * 2016-06-28 2018-12-11 北京随能科技有限公司 一种聚合物纳米柱阵列的无模板制备方法
CN106601836A (zh) * 2016-12-16 2017-04-26 上海电机学院 一种基于纳米颗粒的光伏电池表面陷光结构的制造工艺
CN112326758A (zh) * 2020-09-21 2021-02-05 江苏元上分子工程研究中心有限公司 一种硅纳米生物传感器及制备方法和病毒检测方法
CN114813808A (zh) * 2022-04-24 2022-07-29 胜科纳米(苏州)股份有限公司 一种半导体芯片截面结构的检测方法

Similar Documents

Publication Publication Date Title
US9196765B2 (en) Nanostructured solar cell
Chen et al. MACE nano-texture process applicable for both single-and multi-crystalline diamond-wire sawn Si solar cells
CN102725869B (zh) 包括晶体硅衬底的表面制备的光伏电池的制造方法
CN104310304A (zh) 可控尺寸及表面结构的纳米柱阵列制备方法
AU2010288393B2 (en) Method for texturing the surface of a silicon substrate, and textured silicon substrate for a solar cell
CN103956395B (zh) 阵列结构绒面及其制法和应用
CN109881250A (zh) 一种单晶硅倒金字塔阵列结构绒面及其制备方法和应用
CN102270688A (zh) 一种太阳能电池
CN102097497A (zh) 一种高转换效率的太阳能电池
CN103094374B (zh) 太阳能电池
CN102217080A (zh) 多结光电器件及其生产方法
CN103094401B (zh) 太阳能电池的制备方法
CN102142362B (zh) 利用金属化合物的电泳沉积图案进行光刻的方法
CN103346200A (zh) 玻璃基板及其制造方法和薄膜太阳能电池的制造方法
CN102185032B (zh) 一种单晶硅太阳能电池绒面的制备方法
CN102765695B (zh) 基于静电场奇点自聚焦的圆片级低维纳米结构的制备方法
CN104124286A (zh) 一种利用自生长贵金属等离基元纳米结构及其提高GaInP基太阳能电池光吸收的应用
US20110048518A1 (en) Nanostructured thin film inorganic solar cells
CN104538476A (zh) 基于硅纳米线绒面的异质结太阳能电池及其制备方法
CN102185037A (zh) 能提高光电转换效率的硅纳米柱太阳能电池及其制造方法
CN107881561A (zh) 单晶硅正金字塔周期阵列结构绒面制备方法及其应用
CN110176527A (zh) 一种基于mim结构的三维超材料的制备方法及其应用
CN104488090B (zh) 用于织构化硅基板表面的工艺、结构化基板和包括结构化基板的光伏装置
TW201340344A (zh) 太陽能電池的製備方法
Huang et al. Demonstration of enhanced absorption in thin film Si solar cells with periodic microhemisphere hole arrays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150128