CN104254490B - 用作锂离子电池负极材料的介孔硅/碳复合材料以及其制备方法 - Google Patents

用作锂离子电池负极材料的介孔硅/碳复合材料以及其制备方法 Download PDF

Info

Publication number
CN104254490B
CN104254490B CN201180075199.9A CN201180075199A CN104254490B CN 104254490 B CN104254490 B CN 104254490B CN 201180075199 A CN201180075199 A CN 201180075199A CN 104254490 B CN104254490 B CN 104254490B
Authority
CN
China
Prior art keywords
composite
silicon
carbon
mesoporous
carbon black
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201180075199.9A
Other languages
English (en)
Other versions
CN104254490A (zh
Inventor
杨军
冯雪娇
张敬君
周龙捷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Robert Bosch GmbH
Original Assignee
Shanghai Jiaotong University
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University, Robert Bosch GmbH filed Critical Shanghai Jiaotong University
Publication of CN104254490A publication Critical patent/CN104254490A/zh
Application granted granted Critical
Publication of CN104254490B publication Critical patent/CN104254490B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及一种硅/碳复合材料,其包含介孔硅颗粒和在所述硅颗粒上提供的碳涂层,其中所述硅颗粒具有2‑4nm和20‑40nm两个孔径分布,还涉及制备所述硅/碳复合材料的方法,以及包括该硅/碳复合材料的锂离子电池负极材料。

Description

用作锂离子电池负极材料的介孔硅/碳复合材料以及其制备 方法
技术领域
本发明涉及一种硅/碳复合材料,所述硅/碳复合材料的制备方法,以及包括该硅碳复合材料的锂离子电池负极材料。
背景技术
硅(Si),由于其较高的理论容量(4200mA/g,约Li4.4Si),作为锂电池负极材料受到广泛深入的研究。虽然硅具有高容量,但硅在锂***和脱插时显示出大的体积变化(>300%),这导致导电网络的粉碎和瓦解,从而使得容量急剧衰减,循环稳定性快速降低。
近来,许多研究的焦点集中在用传导锂离子的活性碳相涂覆硅以防止颗粒被粉碎时发生颗粒团聚,从而降低这种体积变化。已经采用各种方法来制备涂覆碳的硅复合材料,例如热解或化学气相沉积(CVD)、球磨或机械研磨、凝胶的化学反应以及碳前体的脱水。从获得均匀的碳层结构的角度看,CVD是用于锂离子电池的可行方法。
另一方面,多孔结构是一种有效的容纳体积变化的方式。一些引入多孔结构作为体积变化的缓冲区的尝试证明了另一种容纳体积膨胀/收缩的方式。
Rongguan Lv等人在“Electrochemical behavior of nanoporous/nanofibrousSi anode materials prepared by mechanochemical reduction”,Journal of Alloysand Compounds,490(2010),84-87页中,通过SiCl4与Li13Si4在球磨下进行机械化学反应来制备纳米多孔和纳米纤维硅的混合物(NPNF-Si)。可获得纳米纤维和纳米多孔结构。但是,可逆容量较低(746.6mAh·g-1),在30个循环后容量迅速下降。
Hyunjung Kim等人在“Three-Dimensional Porous Silicon Particles forUsein High-Performance Lithium Secondary Batteries”,Angewandte Chemie-International Edition,2008,120,10305-10308中报道了用于形成3D多孔松散Si颗粒的模板方法,所述颗粒在1C倍率下经过100个循环后具有2800mAh·g-1的可逆容量。其循环性能的改进得益于其高度多孔互连的结构。然而,这种合成方法太复杂且昂贵。另外,该方法使用大量的强腐蚀性酸,例如氢氟酸,这种酸剧毒并且昂贵。
因此,对于具有优秀的容量和循环稳定性的用作锂离子电池负极材料的硅/碳复合材料以及不使用腐蚀性酸来制备这种硅/碳复合材料的温和简单的方法仍存在需求。
发明内容
根据本发明的一个方面,本发明提供一种硅/碳复合材料,其包含介孔硅颗粒和在所述硅颗粒上提供的碳涂层,其中所述硅颗粒具有2-4nm和20-40nm两个孔径分布。
根据本发明的另一方面,本发明提供一种制备所述硅/碳复合材料的方法,所述方法包括以下步骤:在玛瑙容器中用玛瑙球进行球磨或者在锆容器中用锆球进行球磨下使SiCl4与Li13Si4之间发生机械化学反应,然后进行热处理和洗涤,从而制备介孔硅颗粒;以及用碳涂覆所述介孔硅颗粒。
根据本发明的另一方面,本发明提供一种锂离子电池负极材料,所述负极材料包括所述硅/碳复合材料。
根据本发明的又一方面,本发明提供一种锂离子电池,所述锂离子电池包括所述硅/碳复合材料作为负极材料。
根据本发明的Si/C复合材料显示出优良的容量和循环稳定性,这得益于硅颗粒的介孔结构和均匀的碳涂层。
附图说明
本发明的这些方面以及/或者其它方面和优势将通过以下内容结合附图进行清楚的展示,在所述附图中,
图1是根据实施例1制备的介孔硅颗粒和Si/C复合材料的XRD曲线。
图2是根据实施例1制备的介孔Si/C复合材料的SEM图像。
图3是根据实施例1制备的介孔Si/C复合材料的TEM图像。
图4是显示介孔Si颗粒的孔径分布图。
图5是根据实施例1制备的Si/C复合材料的前两次放电/充电曲线。
图6是显示根据实施例1制备的介孔Si/C复合材料的循环性能的曲线图。
图7是显示根据实施例1制备的介孔Si/C复合材料的倍率性能的曲线图。
图8是显示根据实施例1制备的介孔Si颗粒和介孔Si/C复合材料的循环性能的曲线图。
具体实施方式
根据本发明的复合材料包含介孔硅颗粒和在所述硅颗粒上提供的碳涂层。所述硅颗粒具有2-4nm和20-40nm两个孔径分布,这可缓解硅的体积膨胀。
在一个优选的实施方案中,根据本发明的复合材料的碳涂层是通过化学气相沉积涂覆的。
在介孔Si上的碳涂层的厚度是5-10nm。
在根据本发明的复合材料中,基于该复合材料的总重量,涂覆在硅上的碳的含量为10-50重量%。
在一个优选的实施方案中,所述复合材料还包含炭黑,更优选Super P炭黑或乙炔黑,最优选Super P炭黑。炭黑的存在可进一步提高导电性以及在锂***/脱插过程中容纳硅的部分体积变化。在根据本发明的复合材料中,基于该复合材料的总重量,所述炭黑的含量为5.6-12.5重量%。
所述复合材料可通过本发明的方法来制备,所述方法包括以下步骤:在玛瑙容器中用玛瑙球进行球磨或者在锆容器中用锆球进行球磨下使SiCl4与Li13Si4之间发生机械化学反应,然后进行热处理和洗涤,从而制备介孔硅颗粒;以及用碳涂覆所述介孔硅颗粒。
所述机械化学反应是通过将SiCl4与Li13Si4放入惰性气氛例如氩气下的装有玛瑙球的玛瑙容器中或装有锆球的锆容器中,并在300-450rpm的转速下对混合物进行球磨5-30小时来进行。在所述混合物中可加入分散剂,以防止粉末的团聚。对所述分散剂没有特别限制。在一个实施方案中,炭黑可用作分散剂。炭黑的合适例子包括Super P炭黑和乙炔黑。在一个优选的实施方案中,Super P用作所述分散剂。Li13Si4:炭黑:SiCl4的重量比可以为0.84:0.05-0.12:2.3-3.4。
然后对经研磨的产物进行热处理,以除去过量的SiCl4并得到晶体硅。在一个优选的实施方案中,所述热处理在100-900℃的温度下在惰性气氛中例如在氩气流中进行0.5-10小时。
在热处理之后,用去离子水洗涤得到的Si/LiCl并分离,以完全除去LiCl,然后干燥得到介孔Si颗粒。
根据本发明,出人意料地发现在玛瑙容器或锆容器中进行机械化学反应有助于Si颗粒的介孔结构的形成。这可能是因为玛瑙容器或锆容器的组成有利于制备介孔Si。
然后,通过任何合适的方法,例如热解或化学气相沉积,用碳涂覆得到的介孔Si颗粒,以得到本发明的硅/碳复合材料。在一个优选的实施方案中,用碳涂覆是通过化学气相沉积(CVD)进行的。通过化学气相沉积,可在介孔Si颗粒的表面上更均匀地形成碳涂层。
在另一个优选的实施方案中,所述化学气相沉积如下进行:将介孔Si颗粒和碳前体放入炉中,将炉温以10℃·min-1的速率从室温升至750-800℃,并在750-800℃下保持30-90分钟。在高温下,所述前体被碳化并沉积在Si颗粒的表面上。
对碳前体没有特别限制。碳前体的合适实例包括甲苯和乙炔。
根据本发明的制备方法是简单且温和的。
所制备的Si/C复合材料可有利地用作锂离子电池负极材料。如图5所示,在100mA·g-1的电流密度下,所述复合材料的可逆容量为约1400mAh·g-1。如图6所示,当电流密度变为300mA·g-1时,得到约1180mAh·g-1的可逆容量。在经过240个循环之后,容量保持率为82.8%,从而得到977mAh·g-1的比容量。
以下实施例进一步说明本发明的方法,以及所制备的用作锂离子电池负极材料的复合材料的特征。这些实施例仅是示例性的,不以任何方式限制本发明。
实施例1:
将2ml SiCl4(阿拉丁试剂有限公司,中国,99.9%纯度),0.84g Li13Si4粉末(SIMIT,CAS,中国)和0.10g Super P炭黑(40nm,Timical)装入盛有15个直径为10mm的玛瑙球的充满氩气的玛瑙瓶中。在Planetary Mono Mill P-6(Fritsch,Germany)上以450rpm的转速进行研磨20小时。然后,将经研磨的产物(Si/LiCl)放入充满氩气的手套箱中的石英管中,并在恒定的氩气流下以5℃·min-1的速率加热至900℃的温度,并在900℃下保持2小时,然后自然冷却至室温。热处理之后,用去离子水洗涤Si/LiCl,并通过过滤器分离以完全除去LiCl,然后在100℃下真空干燥4小时,最后自然冷却至室温。
将得到的介孔Si粉末(0.1g)放入刚铝石舟皿中,并置于石英管式炉的中心。然后将氩气和甲苯以约100L/h的速率通入炉中。将炉温以10℃·min-1的速率从室温升至800℃,并在800℃下保持60分钟。将炉缓慢冷却至室温。在高温下,甲苯迅速分解,碳涂层沉积在Si颗粒的表面上。硅颗粒上碳涂层的重量比为25.3重量%。
实施例2:
以与实施例1相同的方式制备介孔硅粉末。
将得到的介孔Si粉末(0.1g)放入刚铝石舟皿中,并置于石英管式炉的中心。然后将氩气和甲苯以约100L/h的速率通入炉中。将炉温以10℃·min-1的速率从室温升至800℃,并在800℃下保持90分钟。然后将炉缓慢冷却至室温。在高温下,甲苯迅速分解,碳涂层沉积在Si颗粒的表面上。硅颗粒上碳涂层的重量比为34.5重量%。
电池组装和电化学测试:
用两电极纽扣式电池测试实施例1中得到的复合材料的电化学性能。将实施例1中制备的作为活性物质的介孔Si或Si/C复合材料、作为导电体的Super P炭黑(40nm,Timical)以及作为粘合剂的丁苯橡胶/羧甲基纤维素钠(SBR/SCMC,重量比3:5)的60:20:20重量比的混合物制成浆状,从而制备工作电极。将所述混合物涂覆在纯Cu箔上之后,干燥电极,切割成Φ12mm片状,在3MPa下压制,然后在50℃下真空中进一步干燥4小时。用1MLiPF6/EC+DMC(1:1体积比,碳酸亚乙酯(EC),碳酸二甲基酯(DMC))和2重量%亚乙烯基碳酸酯(VC)作为电解液,ENTEK ET20-26作为隔膜,以及纯锂箔作为对电极,在充满氩气的手套箱(MB-10compact,MBraun)中组装CR2016纽扣电池。在LAND电池测试***(武汉金诺电子有限公司,中国)中在25℃下用100mA·g-1或300mA·g-1的电流密度测试循环性能。对于放电(Li***)截止电压为0.01V(对Li/Li+),对于充电(Li脱插)截止电压为1.2V(对Li/Li+)。测试结果在图5-8中显示。
图1是实施例1中制备的介孔Si颗粒和介孔Si/C复合材料的XRD曲线。如图1所示,对于介孔Si颗粒,在约28.4°、47.3°、56.1°、69.2°、76.4°的散射角下的主衍射峰对应于硅晶体,而在22.4°附近的宽峰来自于制备介孔Si颗粒中使用的Super P。在介孔Si颗粒中Super P的重量比为约8%。对于Si/C复合材料,所有峰都与介孔Si颗粒类似,而在22.4°附近的宽峰来自于Super P和CVD得到的碳(25.3重量%)。
图2是介孔Si/C复合材料的SEM图像。如图2所示,Si/C复合材料的颗粒小且分布均匀。
图3是介孔Si/C复合材料的TEM图像。如图3所示,对于Si/C复合材料,碳均匀地沉积在Si的表面上,所涂覆的碳厚度为约8nm。
图4是介孔Si颗粒的孔径分布图。通过BET测量,测定硅颗粒的比表面积为73.9m2·0-1。该BET结果证明了Si颗粒中介孔结构的形成。图4显示了Si颗粒的BJH孔径分布。这两个孔径分布,2-4nm和20-40nm,可能是由酸洗LiCl和团聚导致的,这可容纳体积变化。
图5是在100mA·g-1的电流密度下介孔Si/C复合材料的前两次放电/充电曲线。在100mA·g-1下在0.01V和1.2V vs Li/Li+之间对纽扣电池进行充放电。Si/C复合材料的放电容量和充电容量分别为2134mAh·g-1和1413mAh·g-1,在初始循环中初始Coulombic效率为66.2%。
图6显示了介孔Si/C复合材料的循环性能。在300mA·g-1下在0.01V和1.2V vs Li/Li+之间对纽扣电池进行充放电。从图6可以看出,该复合材料显示出1181mAh·g-1的可逆容量,在经过240个循环之后可逆容量仍然高达977mAh·g-1,容量保持率为82.8%。Si/C复合材料的这种优秀的循环性能可归因于Si颗粒的介孔结构和均匀的碳涂层,其可抑制部分体积变化。
图7显示了介孔Si/C复合材料的倍率性能。倍率增加至1C时电池显示出940mAh·g-1的稳定的可逆容量,这表明较大的倍率并没有导致明显的极化。当倍率再次返回至0.1C时,则显示出1294mAh·g-1的高可逆容量,为0.1C的初始倍率下的初始可逆容量的93%。可以看出该Si/C复合材料显示出吸引人的倍率容量以及在锂存储上高的可逆性。
图8显示了实施例1中制备的介孔Si颗粒和Si/C复合材料的循环性能的对比。在100mA·g-1下在0.01V和1.2V vs Li/Li+之间对纽扣电池进行充放电。如图8所示,根据本发明的Si/C复合材料在循环稳定性和可逆容量上优于介孔Si颗粒。本发明的Si/C复合材料好的循环性能可归因于Si颗粒开放的介孔结构和均匀的碳涂层,其可抑制部分体积变化。该结果与图3所示的TEM相符。
这里虽然描述了本发明一些特定的实施方案,但本领域技术人员明白在不偏离由所附权利要求及其等同物所限定的本发明的范围的情况下可进行各种变化和改进。

Claims (18)

1.一种硅/碳复合材料,其包含介孔硅颗粒和在所述硅颗粒上提供的碳涂层,其中所述硅颗粒具有2-4nm和20-40nm两个孔径分布,所述硅颗粒是通过在玛瑙容器中用玛瑙球进行球磨或者在锆容器中用锆球进行球磨下使SiCl4与Li13Si4之间发生机械化学反应,然后进行热处理和洗涤而制备的。
2.根据权利要求1的复合材料,其中所述碳涂层的厚度为5-10nm。
3.根据权利要求1或2的复合材料,其中基于所述复合材料的总重量,碳的含量为10-50重量%。
4.根据权利要求1或2的复合材料,其还包含炭黑。
5.根据权利要求4的复合材料,其中所述炭黑包括Super P炭黑。
6.根据权利要求4的复合材料,其中基于所述复合材料的总重量,所述炭黑的含量为5.6-12.5重量%。
7.一种制备根据权利要求1-6之一的硅/碳复合材料的方法,所述方法包括以下步骤:在玛瑙容器中用玛瑙球进行球磨或者在锆容器中用锆球进行球磨下使SiCl4与Li13Si4之间发生机械化学反应,然后进行热处理和洗涤,从而制备介孔硅颗粒;以及用碳涂覆所述介孔硅颗粒。
8.根据权利要求7的方法,其中在所述机械化学反应中加入分散剂。
9.根据权利要求8的方法,其中将炭黑用作所述分散剂。
10.根据权利要求9的方法,其中所述炭黑包括Super P炭黑。
11.根据权利要求9的方法,其中Li13Si4:炭黑:SiCl4的重量比为0.84:0.05-0.12:2.3-3.4。
12.根据权利要求7的方法,其中在300-450rpm的转速下进行研磨5-30小时。
13.根据权利要求7的方法,其中所述热处理是在100-900℃的温度下进行0.5-10小时。
14.根据权利要求7的方法,其中所述用碳涂覆是通过化学气相沉积进行的。
15.根据权利要求14的方法,其中所述化学气相沉积如下进行:将介孔硅颗粒和碳前体放入炉中,将炉温以10℃·min-1的速率从室温升至750-800℃,并在750-800℃下保持30-90分钟。
16.根据权利要求15的方法,其中所述碳前体选自甲苯和乙炔。
17.一种锂离子电池负极材料,其包括根据权利要求1-6之一的硅/碳复合材料或通过根据权利要求7-16之一的方法制备的硅/碳复合材料。
18.一种锂离子电池,其包括根据权利要求1-6之一的硅/碳复合材料或通过根据权利要求7-16之一的方法制备的硅/碳复合材料作为负极材料。
CN201180075199.9A 2011-11-30 2011-11-30 用作锂离子电池负极材料的介孔硅/碳复合材料以及其制备方法 Active CN104254490B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/083243 WO2013078645A1 (en) 2011-11-30 2011-11-30 Mesoporous silicon/carbon composite for use as lithium ion battery anode material and process of preparing the same

Publications (2)

Publication Number Publication Date
CN104254490A CN104254490A (zh) 2014-12-31
CN104254490B true CN104254490B (zh) 2016-12-21

Family

ID=48534626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201180075199.9A Active CN104254490B (zh) 2011-11-30 2011-11-30 用作锂离子电池负极材料的介孔硅/碳复合材料以及其制备方法

Country Status (4)

Country Link
US (1) US9379381B2 (zh)
EP (1) EP2900596B1 (zh)
CN (1) CN104254490B (zh)
WO (1) WO2013078645A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103449400B (zh) * 2013-08-02 2015-05-27 杭州师范大学 一种工业生产高堆积密度的有序介孔碳材料的方法
CN103413922B (zh) * 2013-08-14 2016-08-17 湖北万润新能源科技发展有限公司 锂离子电池负极材料的制备方法
DE102014009554A1 (de) * 2014-06-12 2015-12-17 Daimler Ag Elektrodenmaterial für einen elektrochemischen Speicher, Verfahren zur Herstellung eines Elektrodenmaterials sowie elektrochemischer Energiespeicher
WO2016091957A1 (en) 2014-12-10 2016-06-16 Basf Se Process for producing an electrode containing silicon particles coated with carbon
WO2016201611A1 (en) * 2015-06-15 2016-12-22 Robert Bosch Gmbh Porous silicon particles and a method for producing silicon particles
CN105633407B (zh) * 2016-03-11 2018-07-27 中物院成都科学技术发展中心 锂离子电池用碳基负极材料表面改性方法及其碳基负极材料
CN107848809B (zh) * 2016-06-15 2021-04-06 罗伯特·博世有限公司 多孔硅颗粒及生产硅颗粒的方法
KR101773719B1 (ko) 2016-08-23 2017-09-01 (주)오렌지파워 2 차 전지용 실리콘계 활물질 입자 및 이의 제조 방법
WO2018152447A1 (en) * 2017-02-17 2018-08-23 The Regents Of The University Of California Nanocomposite silicon electrode and method
EP3428999A1 (en) 2017-07-12 2019-01-16 Evonik Degussa GmbH Silicon-carbon composite powder
CN109046618A (zh) * 2018-08-13 2018-12-21 昆明海创兴科技有限公司 一步法制备锂离子电池负极材料用纳米硅粉体的方法
CN113666354B (zh) * 2020-05-13 2023-04-04 北京小米移动软件有限公司 一种硅碳复合材料的制备方法、硅负极极片及电池
CN112645308B (zh) * 2020-12-17 2022-04-19 哈尔滨工程大学 一种铜碳原子级均匀共复合的超细多孔纳米硅的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102157731A (zh) * 2011-03-18 2011-08-17 上海交通大学 一种锂离子电池硅碳复合负极材料及其制备方法
CN102185128A (zh) * 2011-04-02 2011-09-14 上海交通大学 一种硅碳复合材料及其制备方法
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003096449A1 (fr) * 2002-05-08 2003-11-20 Japan Storage Battery Co., Ltd. Pile secondaire a electrolyte non aqueux
JP2009164104A (ja) * 2007-09-06 2009-07-23 Canon Inc 負極用電極材料、その製造方法ならびに該材料を用いた電極構造体及び蓄電デバイス
WO2010150513A1 (ja) * 2009-06-23 2010-12-29 キヤノン株式会社 電極構造体及び蓄電デバイス
US8148455B2 (en) * 2009-11-20 2012-04-03 GM Global Technology Operations LLC Hybrid two- and three-component host-guest nanocomposites and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102214817A (zh) * 2010-04-09 2011-10-12 清华大学 一种碳/硅/碳纳米复合结构负极材料及其制备方法
CN102157731A (zh) * 2011-03-18 2011-08-17 上海交通大学 一种锂离子电池硅碳复合负极材料及其制备方法
CN102185128A (zh) * 2011-04-02 2011-09-14 上海交通大学 一种硅碳复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electrochemical behavior of nanoporous/nanofibrous Si anode materials prepared by mechanochemical reduction;Rongguan Lv et al.;《Journal of Alloys and Compounds》;20091013;第490卷;摘要部分,第84页右栏倒数第3行-第85页左栏第18行,第85页左栏第30-48行,第85页左栏倒数第4行-右栏第2行,第86页左栏第3-7行,表1,附图3 *

Also Published As

Publication number Publication date
EP2900596B1 (en) 2017-09-27
US9379381B2 (en) 2016-06-28
WO2013078645A1 (en) 2013-06-06
CN104254490A (zh) 2014-12-31
EP2900596A1 (en) 2015-08-05
US20150024276A1 (en) 2015-01-22
EP2900596A4 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
CN104254490B (zh) 用作锂离子电池负极材料的介孔硅/碳复合材料以及其制备方法
Yu et al. Ultrafine SiO x/C nanospheres and their pomegranate-like assemblies for high-performance lithium storage
Papandrea et al. Three-dimensional graphene framework with ultra-high sulfur content for a robust lithium–sulfur battery
Yin et al. A graphene–amorphous FePO 4 hollow nanosphere hybrid as a cathode material for lithium ion batteries
CN102918684B (zh) 膨胀石墨在锂/硫电池组中的用途
TW201807870A (zh) 作爲電極之垂直對準的奈米碳管陣列
Lu et al. Cobalt-doped Zn 2 GeO 4 nanorods assembled into hollow spheres as high-performance anode materials for lithium-ion batteries
CN103165874A (zh) 一种锂离子电池多孔硅负极材料及其制备方法和用途
CN106654221A (zh) 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN112151799A (zh) 一种三维多孔互联骨架锂金属电池负极材料及其制备方法
Feng et al. Facile approach to an advanced nanoporous silicon/carbon composite anode material for lithium ion batteries
Qiao et al. A chain-like compound of Si@ CNT nanostructures and MOF-derived porous carbon as an anode for Li-ion batteries
CN107240693A (zh) 磷掺杂硅‑石墨复合材料及含有其的负极材料和锂离子电池
Liu et al. Li and Na storage behaviours of MgFe2O4 nanoparticles as anode materials for lithium ion and sodium ion batteries
Li et al. Large-scale synthesis of porous Li3V2 (PO4) 3@ C/AB hollow microspheres with interconnected channel as high performance cathodes for lithium-ion batteries
Wu et al. A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes
WO2020146630A1 (en) Red phosphorus/carbon nanocomposite as high capacity and fast-charging battery anode material
Rong et al. Graphene oxide assisted template-free synthesis of nanoscale splode-like NiCo2O4 hollow microsphere with superior lithium storage properties
CN107994214B (zh) 一种高性能磷酸铁锂复合材料及其制备方法
Wang et al. Hierarchical Ni-and Co-based oxynitride nanoarrays with superior lithiophilicity for high-performance lithium metal anodes
Zheng et al. Puffed rice inspired porous carbon Co-MOFs derived composite electrode for lithium ion batteries
CN115207304A (zh) 一种石墨负极复合材料及其制备方法和锂离子电池
Li et al. Chitosan derived carbon membranes as protective layers on zinc anodes for aqueous zinc batteries
Jiao et al. Facile synthesis of nano-si modified graphite composite as anode material for lithium ion batteries
Zhao et al. Three-dimensional porous framework constructed by hybrid of carbon nanotubes and carbon nanocoils for stable lithium metal anode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant