CN104237464A - 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备 - Google Patents

纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备 Download PDF

Info

Publication number
CN104237464A
CN104237464A CN201410456096.2A CN201410456096A CN104237464A CN 104237464 A CN104237464 A CN 104237464A CN 201410456096 A CN201410456096 A CN 201410456096A CN 104237464 A CN104237464 A CN 104237464A
Authority
CN
China
Prior art keywords
porous structure
gas
oxide supported
supported palladium
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410456096.2A
Other languages
English (en)
Other versions
CN104237464B (zh
Inventor
何丹农
尹桂林
宣天美
葛美英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Original Assignee
Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai National Engineering Research Center for Nanotechnology Co Ltd filed Critical Shanghai National Engineering Research Center for Nanotechnology Co Ltd
Priority to CN201410456096.2A priority Critical patent/CN104237464B/zh
Publication of CN104237464A publication Critical patent/CN104237464A/zh
Application granted granted Critical
Publication of CN104237464B publication Critical patent/CN104237464B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明涉及一种纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,将锌盐和尿素加入去离子水中,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入恒温箱中静置反应;反应产物用去离子水反复清洗,产物离心分离,得到碱式碳酸锌片层结构;氯化钯、氯化铜至烧杯里,加入氨水溶解,加入碱式碳酸锌,充分搅拌,并缓慢烘干;退火,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料。本发明原料廉价,工艺简单,材料的结构形貌稳定,对CO气体检测敏感度高,选择性好。

Description

纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备
技术领域
本发明属于材料化学技术领域,涉及一种纳米多孔结构的气敏传感材料及其化学制备方法。
背景技术
氧化锌是一种多功能性宽禁带半导体材料,具有优良的电学、光学和催化特性,广泛应用在传感器、催化剂、透明电极等领域。氧化锌由于其电阻率会随表面吸附气体种类和浓度的不同而变化,成为性能优异的气敏材料,对氧化性气体、还原性气体(如CO、H2S、H2等)、有毒气体(如NH3等)都具有很好的敏感性能。氧化锌气敏传感器的性能的改善主要通过获得特定形貌和结构、对氧化锌进行元素掺杂来改变其电子态结构,以及通过两者的结合以提高其性能。例如Gu等人制备了纳米线结构氧化锌,并研究了其在气敏传感器中的应用(Sensors and Actuators B, 2013, 177: 453– 459),Hongsith N等人用金掺杂氧化锌纳米线,制备了性能优良的乙醇气敏传感器(Ceramics International, 2008, 34: 823–826)。大量的研究结果表明,通过制备纳米结构氧化锌以及通过贵金属、氧化物掺杂等方法能够有效提升氧化锌气敏传感器的性能。
发明内容
为克服现有技术的不足,本发明提供一种新的针对CO的氧化锌气敏传感材料的制备方法,具体涉及一种纳米氧化锌负载钯-铜多孔结构的气敏传感材料及其制备方法。
一种纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,包括以下步骤:
(1)将锌盐和尿素加入去离子水中,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入恒温箱中静置反应;
(2)反应产物用去离子水反复清洗,产物离心分离,得到碱式碳酸锌片层结构;
(3)称取氯化钯、氯化铜至烧杯里,加入氨水溶解,加入步骤(2)得到的碱式碳酸锌,充分搅拌,并缓慢烘干;
(4)将步骤(3)的粉末退火,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料。
步骤(1)中所述的锌盐为硝酸锌、氯化锌、醋酸锌、硫酸锌中的一种,其在最后混合溶液中的浓度为0.1~1 mol/L。
步骤(1)中所述的尿素在最后混合溶液中的浓度为0.5~5 mol/L。
步骤(1)中所述的在恒温烘箱中静置,温度为70~120℃,时间为10~15小时。
步骤(2)中所述的洗涤是用去离子水洗涤,每次洗涤后采用离心机沉淀或抽滤设备进行过滤。
步骤(3)中所述的氯化钯、氯化铜摩尔比为1:1,氯化钯、氯化铜的总质量分数为步骤(2)得到的碱式碳酸锌的1%~5%;氨水为浓度为质量百分数25%。
步骤(4)中所述的退火位在300℃-500℃退火1-5小时。
一种纳米氧化锌负载钯-铜多孔结构的气敏传感材料,根据上述任一所述方法制备得到。
本发明的有益效果:
(1)本发明制备的纳米氧化锌具有多孔结构,有利于气体吸附和氯化钯、氯化铜催化剂的负载,可大幅图提升材料的气体敏感性;
(2)本发明在制备纳米氧化锌基础上,负载对于CO有极高氧化活性的氯化钯/氯化铜催化剂,可借助于氯化钯/氯化铜对CO的强催化作用,进而大幅提升气敏材料的针对CO的选择性和灵敏度,解决一般半导体气敏材料选择性较差的问题;
(3)本发明工艺路线简单,操作简便,易于工业化生产,可用于高性能CO半导体传感器的制作。
附图说明
图1为实施例2所制备的碱式碳酸锌的SEM图片。
图2为实施例2所制备的纳米氧化锌负载钯-铜多孔结构的SEM图片。
图3为实施例2所制备的纳米氧化锌负载钯-铜多孔结构的气敏性能图。
具体实施方式
实施例1:
(1)配置0.1mol/L 氯化锌和0.5 mol/L尿素的混合溶液10L,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入70℃恒温箱中静置反应10小时;
(2)将所得反应产物用去离子水反复清洗,产物采用离心机沉淀或抽滤设备进行过滤,得到碱式碳酸锌片层结构粉末;
(3)称取0.057g氯化钯和0.043g氯化铜至烧杯,加入一定量25%浓度氨水溶解,加入10g步骤(2)所制备的碱式碳酸锌粉末,充分搅拌,并缓慢干燥;
(4)将步骤(3)的干燥粉末在300℃温度下退火5小时,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料粉体。将得到的粉体分散涂于六脚陶瓷管气敏测试元件上,采用WS-30A型气敏元件测试***测试对CO气体的响应。
实施例2:
(1)配置0.5mol/L硝酸锌和2 mol/L尿素的混合溶液10L,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入100℃恒温箱中静置反应12小时;
(2)将所得反应产物用去离子水反复清洗,产物采用离心机沉淀或抽滤设备进行过滤,得到碱式碳酸锌片层结构粉末;
(3)称取0.285g氯化钯和0.215g氯化铜至烧杯,加入一定量25%浓度氨水溶解,加入10g步骤(2)所制备的碱式碳酸锌粉末,充分搅拌,并缓慢干燥;
(4)将步骤(3)的干燥粉末在400℃温度下退火3小时,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料粉体。将得到的粉体分散涂于六脚陶瓷管气敏测试元件上,采用WS-30A型气敏元件测试***测试对CO气体的响应。图1为步骤(2)所制备的碱式碳酸锌片层结构SEM图,图2为所制备的纳米氧化锌负载钯-铜多孔结构材料的SEM图,图3所示为该材料在不同CO浓度条件下的气敏性能图。可以看出,制备的纳米氧化锌负载钯-铜具有明显的多孔片状结构,针对CO具有非常良好的响应性能。
实施例3:
(1)配置0.5mol/L醋酸锌和4 mol/L尿素的混合溶液10L,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入120℃恒温箱中静置反应15小时;
(2)将所得反应产物用去离子水反复清洗,产物采用离心机沉淀或抽滤设备进行过滤,得到碱式碳酸锌片层结构粉末;
(3)称取0.285g氯化钯和0.215g氯化铜至烧杯,加入一定量25%浓度氨水溶解,加入10g步骤(2)所制备的碱式碳酸锌粉末,充分搅拌,并缓慢干燥;
(4)将步骤(3)的干燥粉末在500℃温度下退火1小时,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料粉体。将得到的粉体分散涂于六脚陶瓷管气 敏测试元件上,采用WS-30A型气敏元件测试***测试对CO气体的响应。
实施例4:
(1)配置1mol/L硫酸锌和5mol/L尿素的混合溶液5L,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入100℃恒温箱中静置反应10小时;
(2)将所得反应产物用去离子水反复清洗,产物采用离心机沉淀或抽滤设备进行过滤,得到碱式碳酸锌片层结构粉末;
(3)称取0.171g氯化钯和0.129g氯化铜至烧杯,加入一定量25%浓度氨水溶解,加入10g步骤(2)所制备的碱式碳酸锌粉末,充分搅拌,并缓慢干燥;
(4)将步骤(3)的干燥粉末在300℃温度下退火2小时,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料粉体。将得到的粉体分散涂于六脚陶瓷管气敏测试元件上,采用WS-30A型气敏元件测试***测试对CO气体的响应。
实施例5:
(1)配置0.5mol/L醋酸锌和4 mol/L尿素的混合溶液10L,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入100℃恒温箱中静置反应10小时;
(2)将所得反应产物用去离子水反复清洗,产物采用离心机沉淀或抽滤设备进行过滤,得到碱式碳酸锌片层结构粉末;
(3)称取0.171g氯化钯和0.129g氯化铜至烧杯,加入一定量25%浓度氨水溶解,加入10g步骤(2)所制备的碱式碳酸锌粉末,充分搅拌,并缓慢干燥;
(4)将步骤(3)的干燥粉末在300℃温度下退火3小时,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料粉体。将得到的粉体分散涂于六脚陶瓷管气敏测试元件上,采用WS-30A型气敏元件测试***测试对CO气体的响应。
表1为实施例1-5所制备的氧化锌负载钯-铜纳米材料,对10ppm CO气体的响应灵敏度。
实施例编号 1 2 3 4 5
灵敏度(S) 18 36 30 27 28
从表1可以看出,实施例1-5所制备的氧化锌负载钯-铜纳米材料针对10ppm的CO的灵敏度均达到了18以上,针对CO具有良好的响应性。
    上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其它实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,对于本发明做出的改进和修改都应该在本发明的保护范围之内。

Claims (8)

1.一种纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,包括以下步骤:
(1)将锌盐和尿素加入去离子水中,搅拌均匀再将混合液移入带有聚四氟乙烯的水热反应釜中密封,放入恒温箱中静置反应;
(2)反应产物用去离子水反复清洗,产物离心分离,得到碱式碳酸锌片层结构;
(3)称取氯化钯、氯化铜至烧杯里,加入氨水溶解,加入步骤(2)得到的碱式碳酸锌,充分搅拌,并缓慢烘干;
(4)将步骤(3)的粉末退火,得到纳米氧化锌负载钯-铜多孔结构的气敏传感材料。
2.根据权利要求1所述纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,步骤(1)中所述的锌盐为硝酸锌、氯化锌、醋酸锌、硫酸锌中的一种,其在最后混合溶液中的浓度为0.1~1 mol/L。
3.根据权利要求1所述纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,步骤(1)中所述的尿素在最后混合溶液中的浓度为0.5~5 mol/L。
4.根据权利要求1所述纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,步骤(1)中所述的在恒温烘箱中静置,温度为70~120℃,时间为10~15小时。
5.根据权利要求1所述纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,步骤(2)中所述的洗涤是用去离子水洗涤,每次洗涤后采用离心机沉淀或抽滤设备进行过滤。
6.根据权利要求1所述纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,步骤(3)中所述的氯化钯、氯化铜摩尔比为1:1,氯化钯、氯化铜的总质量分数为步骤(2)得到的碱式碳酸锌的1%~5%;氨水为浓度为质量百分数25%。
7.根据权利要求1所述纳米氧化锌负载钯-铜多孔结构的气敏传感材料的制备方法,其特征在于,步骤(4)中所述的退火位在300℃-500℃退火1-5小时。
8.一种纳米氧化锌负载钯-铜多孔结构的气敏传感材料,其特征在于,根据上述任一权利要求所述方法制备得到。
CN201410456096.2A 2014-09-09 2014-09-09 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备 Expired - Fee Related CN104237464B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410456096.2A CN104237464B (zh) 2014-09-09 2014-09-09 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410456096.2A CN104237464B (zh) 2014-09-09 2014-09-09 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备

Publications (2)

Publication Number Publication Date
CN104237464A true CN104237464A (zh) 2014-12-24
CN104237464B CN104237464B (zh) 2016-04-06

Family

ID=52225955

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410456096.2A Expired - Fee Related CN104237464B (zh) 2014-09-09 2014-09-09 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备

Country Status (1)

Country Link
CN (1) CN104237464B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923648A (zh) * 2016-03-21 2016-09-07 黄山学院 一种氧化锌晶体及其制备方法和应用
CN106541143A (zh) * 2016-11-02 2017-03-29 山东大学 一种多孔氧化锌纳米片负载高分散纳米贵金属复合气敏材料的合成方法
CN107117643A (zh) * 2017-05-27 2017-09-01 安徽锦华氧化锌有限公司 一种高产率纳米氧化锌的制备方法
CN107790137A (zh) * 2016-08-31 2018-03-13 中国石油化工股份有限公司 一种铜锌催化剂的制法
CN108906077A (zh) * 2018-07-02 2018-11-30 合肥萃励新材料科技有限公司 一种Pd-Cu修饰的氧化锌合成方法
CN108918603A (zh) * 2018-07-11 2018-11-30 山东大学 一种多孔氧化锌纳米片负载过渡金属掺杂的g-C3N4复合气敏材料的合成方法
CN110395761A (zh) * 2019-07-26 2019-11-01 北京化工大学 一种表面钴掺杂氧化锌复合材料及其制备方法和应用
CN111044582A (zh) * 2019-12-04 2020-04-21 中国工程物理研究院化工材料研究所 一种氟碳膜/金属氧化物气敏膜复合叠层器件及其制备方法
CN113390929A (zh) * 2021-06-02 2021-09-14 清华大学 氧化锌基传感气敏复合材料及其制备方法和应用
CN117665062A (zh) * 2024-02-01 2024-03-08 乌镇实验室 一种高灵敏度快速响应的乙烯气敏传感器及其制备方法和应用
CN117665062B (zh) * 2024-02-01 2024-04-26 乌镇实验室 一种高灵敏度快速响应的乙烯气敏传感器及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016188A1 (en) * 1999-12-15 2001-08-23 Fumihiro Haga Methanol reforming catalyst
CN1746131A (zh) * 2005-05-19 2006-03-15 北京化工大学 一种贵金属掺杂复合金属氧化物气敏材料及其制备方法
CN101177296A (zh) * 2007-10-31 2008-05-14 山东大学 片状多孔结构的ZnO纳米粉体的制备方法
US20100179056A1 (en) * 2008-10-14 2010-07-15 Huang Yuh-Jeen Process for initiation of oxidative steam reforming of methanol at room temperature
CN103091369A (zh) * 2012-11-30 2013-05-08 郑州轻工业学院 一种Pd纳米粒子修饰多孔ZnO纳米片气敏材料及气敏元件的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016188A1 (en) * 1999-12-15 2001-08-23 Fumihiro Haga Methanol reforming catalyst
CN1746131A (zh) * 2005-05-19 2006-03-15 北京化工大学 一种贵金属掺杂复合金属氧化物气敏材料及其制备方法
CN101177296A (zh) * 2007-10-31 2008-05-14 山东大学 片状多孔结构的ZnO纳米粉体的制备方法
US20100179056A1 (en) * 2008-10-14 2010-07-15 Huang Yuh-Jeen Process for initiation of oxidative steam reforming of methanol at room temperature
CN103091369A (zh) * 2012-11-30 2013-05-08 郑州轻工业学院 一种Pd纳米粒子修饰多孔ZnO纳米片气敏材料及气敏元件的制备方法

Non-Patent Citations (14)

* Cited by examiner, † Cited by third party
Title
H. GONG等: "Nano-crystalline Cu-doped ZnO thin film gas sensor for CO", 《SENSORS AND ACTUATORS B》, vol. 115, no. 1, 23 May 2006 (2006-05-23), pages 247 - 251 *
JIN LI等: "Multilayered ZnO Nanosheets with 3D Porous Architectures: Synthesis and Gas Sensing Application", 《J. PHYS. CHEM. C》, vol. 114, no. 35, 31 August 2010 (2010-08-31), pages 14684 - 14691 *
JOHAN AGRELL等: "Preparation and characterisation of Cu/ZnO and Pd/ZnO catalysts for partial oxidation of methanol. Control of catalyst surface area and particle size using microemulsion technique", 《STUDIES IN SURFACE SCIENCE AND CATALYSIS》, vol. 130, 31 December 2000 (2000-12-31), pages 1073 - 1078 *
K.V. GURAV等: "LPG sensing properties of Pd-sensitized vertically aligned ZnO nanorods", 《SENSORS AND ACTUATORS B》, vol. 151, no. 2, 28 January 2011 (2011-01-28), pages 365 - 369 *
M. SAHIBZADA: "Pd-PROMOTED Cu/ZnO CATALYST SYSTEMS FOR METHANOL SYNTHESIS FROM CO2/H2", 《TRANS ICHEME》, vol. 78, no. 7, 31 October 2000 (2000-10-31), pages 943 - 946, XP022536724, DOI: doi:10.1205/026387600528193 *
O.V. SAFONOVA等: "Effect of combined Pd and Cu doping on microstructure, electrical and gas sensor properties of nanocrystalline tin dioxide", 《MATERIALS SCIENCE AND ENGINEERING B》, vol. 85, no. 1, 6 August 2001 (2001-08-06), XP004246510, DOI: doi:10.1016/S0921-5107(01)00640-7 *
QINGJIE GE等: "High performance Cu–ZnO/Pd-b catalysts for syngas to LPG", 《CATALYSIS COMMUNICATIONS》, vol. 9, no. 2, 29 February 2008 (2008-02-29), pages 256 - 261, XP022357422, DOI: doi:10.1016/j.catcom.2007.06.011 *
QINGJIE GE等: "Influence of Pd ion-exchange temperature on the catalytic performance of Cu–ZnO/Pd–b zeolite hybrid catalyst for CO hydrogenation to light hydrocarbons", 《CATALYSIS COMMUNICATIONS》, vol. 9, no. 8, 20 April 2008 (2008-04-20), pages 1775 - 1778, XP022588818 *
SHAOHONG WEI等: "CO gas sensing of Pd-doped ZnO nanofibers", 《MATERIALS LETTERS》, vol. 64, no. 21, 15 November 2010 (2010-11-15), pages 250 - 1, XP027265425 *
SHETIAN LIU等: "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component", 《APPLIED CATALYSIS A: GENERAL》, vol. 277, no. 12, 31 December 2004 (2004-12-31), pages 265 - 270, XP004633010, DOI: doi:10.1016/j.apcata.2004.09.019 *
SUN-WOO CHOI等: "Room temperature CO sensing of selectively grown networked ZnO nanowires by Pd nanodot functionalization", 《SENSORS AND ACTUATORS B: CHEMICAL》, vol. 168, 20 June 2012 (2012-06-20), pages 8 - 13, XP028508972, DOI: doi:10.1016/j.snb.2011.12.100 *
YI ZENG等: "Enhanced ammonia sensing performances of Pd-sensitized flowerlike ZnO nanostructure", 《SENSORS AND ACTUATOR B: CHEMICAL》, vol. 156, no. 1, 10 August 2011 (2011-08-10), pages 396 - 1 *
戴护民等: "气、光敏材料ZnO的掺杂改性研究", 《材料导报》, vol. 20, no. 6, 30 June 2006 (2006-06-30), pages 21 - 23 *
魏少红等: "Pd-ZnO 纳米纤维的制备及其气敏性能研究", 《仪表技术与传感器》, 31 July 2014 (2014-07-31) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105923648A (zh) * 2016-03-21 2016-09-07 黄山学院 一种氧化锌晶体及其制备方法和应用
CN107790137A (zh) * 2016-08-31 2018-03-13 中国石油化工股份有限公司 一种铜锌催化剂的制法
CN107790137B (zh) * 2016-08-31 2019-10-15 中国石油化工股份有限公司 一种铜锌催化剂的制法
CN106541143A (zh) * 2016-11-02 2017-03-29 山东大学 一种多孔氧化锌纳米片负载高分散纳米贵金属复合气敏材料的合成方法
WO2018082585A1 (zh) * 2016-11-02 2018-05-11 山东大学 一种多孔氧化锌纳米片负载高分散纳米贵金属复合气敏材料的合成方法
CN107117643A (zh) * 2017-05-27 2017-09-01 安徽锦华氧化锌有限公司 一种高产率纳米氧化锌的制备方法
CN108906077A (zh) * 2018-07-02 2018-11-30 合肥萃励新材料科技有限公司 一种Pd-Cu修饰的氧化锌合成方法
CN108918603B (zh) * 2018-07-11 2023-03-28 山东大学 一种多孔氧化锌纳米片负载过渡金属掺杂的g-C3N4复合气敏材料的合成方法
CN108918603A (zh) * 2018-07-11 2018-11-30 山东大学 一种多孔氧化锌纳米片负载过渡金属掺杂的g-C3N4复合气敏材料的合成方法
CN110395761A (zh) * 2019-07-26 2019-11-01 北京化工大学 一种表面钴掺杂氧化锌复合材料及其制备方法和应用
CN110395761B (zh) * 2019-07-26 2020-09-04 北京化工大学 一种表面钴掺杂氧化锌复合材料及其制备方法和应用
CN111044582A (zh) * 2019-12-04 2020-04-21 中国工程物理研究院化工材料研究所 一种氟碳膜/金属氧化物气敏膜复合叠层器件及其制备方法
CN113390929A (zh) * 2021-06-02 2021-09-14 清华大学 氧化锌基传感气敏复合材料及其制备方法和应用
CN113390929B (zh) * 2021-06-02 2022-08-26 清华大学 氧化锌基传感气敏复合材料及其制备方法和应用
CN117665062A (zh) * 2024-02-01 2024-03-08 乌镇实验室 一种高灵敏度快速响应的乙烯气敏传感器及其制备方法和应用
CN117665062B (zh) * 2024-02-01 2024-04-26 乌镇实验室 一种高灵敏度快速响应的乙烯气敏传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN104237464B (zh) 2016-04-06

Similar Documents

Publication Publication Date Title
CN104237464B (zh) 纳米氧化锌负载钯-铜多孔结构的气敏传感材料及制备
CN102680539B (zh) 多孔氧化镍/二氧化锡微纳米球的制备方法
CN106053556A (zh) 一种基于ZnO/SnO2异质结构复合材料的乙醇气体传感器及其制备方法
CN102502794B (zh) 多孔纳米二氧化锡的制备方法
CN104003454B (zh) 多孔氧化钴纳米线及其制备方法与应用
CN102495109A (zh) 一种基于wo3单晶颗粒的氮氧化物传感器元件的制备方法
CN107867714A (zh) 纳米晶状SnO2/石墨烯复合气敏材料及其制备方法
CN105588860A (zh) 过渡金属氧化物表面异质外延金属有机框架壳层及其制备方法和用途
CN109678214B (zh) 一种对丙酮敏感的四氧化三钴/氧化铟纳米管复合薄膜
CN102012386A (zh) 基于准定向三氧化钨纳米带的氮氧化物气体传感器元件的制备方法
CN110455891A (zh) 基于CoWO4-Co3O4异质结纳米结构敏感材料的二甲苯气体传感器及其制备方法
CN103508485B (zh) 一种纳米氧化锡负载偏钛酸气敏传感材料的制备方法
CN102539487A (zh) 一种二氧化钛纳米线与二氧化锡纳米颗粒复合的气敏材料及其制备方法
CN103713016A (zh) 钯掺杂二氧化锡包覆碳纳米管及其制备方法和应用
CN106018706A (zh) 一种氧化锡负载多孔氧化镍气敏传感器材料及制备和应用
CN109946358A (zh) 一种以MTiO3为敏感电极的YSZ基混成电位型SO2传感器、制备方法及其应用
CN104122305B (zh) 一种用于检测NOx的稀土掺杂改性的石墨烯复合材料气敏元件及其制备方法
CN102874874A (zh) 一种多级结构花状三氧化钼的制备方法及其应用
CN106564929A (zh) 一种Ag掺杂ZnO纳米气敏材料的制备方法
CN105000587B (zh) 一种星状自组装结构氧化铜的制备方法
CN104925869A (zh) 铁酸铋粉体的制备方法
CN102645453B (zh) 钨酸铜气敏传感器的制备方法
Chen et al. High-response of NiO-modified self-assembled nanosheets formed with ZnO nanoparticles for n-butanol detection
CN103760196B (zh) 一种水钠锰矿型二氧化锰纳米片氢气传感器及其制备方法
CN103691438B (zh) 一种Ag-一氧化锰纳米棒的可控制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160406

Termination date: 20180909