CN104120263A - High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting - Google Patents

High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting Download PDF

Info

Publication number
CN104120263A
CN104120263A CN201410358031.4A CN201410358031A CN104120263A CN 104120263 A CN104120263 A CN 104120263A CN 201410358031 A CN201410358031 A CN 201410358031A CN 104120263 A CN104120263 A CN 104120263A
Authority
CN
China
Prior art keywords
rotary kiln
iron
kiln
nickel
mineral aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410358031.4A
Other languages
Chinese (zh)
Inventor
李成武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410358031.4A priority Critical patent/CN104120263A/en
Publication of CN104120263A publication Critical patent/CN104120263A/en
Pending legal-status Critical Current

Links

Abstract

Disclosed is a high-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting. The method comprises the steps that josephinite is broken and then dried, the water content is reduced, the josephinite, reduction coal and limestone are put into a blender mixer for being mixed, and are ground to be in a powder shape with the fineness diameter of 0.08 mm, the powdery ore with the diameter of 0.08 mm is fed into a high-solid-gas-ratio preheater for preheating and primary reduction, then the powdery ore enters a rotary kiln for continuous reduction and aggregation, the ore is reduced to the mixture of nickel iron alloy particles and molten slag materials to be discharged out of a kiln head, the discharged mixture passes through a side blown converter to enable the nickel iron alloy particles to be emulsified, under the gravity effect, particles in an iron nickel emulsification body collide with the molten slag materials to enable iron slag to be separated, finished molten nickel iron is obtained, the molten nickel iron is cast into a nickel iron finished product in a specified shape, and therefore the reduction method is completed. The technology is simple, the automation is high, and the production cost is greatly reduced.

Description

Nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method
Technical field
The present invention relates to a kind of rotary kiln for directly reducing method, be particularly useful for a kind of nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method.
Background technology
The nickel iron smelting process of existing maturation be rotary kiln-mineral hot furnace technique wherein: first josephinite is transported in toothed roll crusher broken by apron feeder, josephinite after fragmentation enters and in dryer, reduces water content, by the ferronickel after drying with go back raw coal, Wingdale and drop in mixer and mix according to 100:8:2, compound is sent into rotary kiln baking, and temperature is controlled at 800 DEG C.Rotary kiln burner is arranged on kiln hood, compound enters from kiln tail, first be dried, then arrive rotary kiln middle part, start to slough dry ore deposit crystal water, until before discharging, dry ore deposit is by coal and carbon monoxide partial reduction, the nickel finally obtaining in calcining matter exists with metal Ni and two kinds of forms of Ni2+, and the most of iron in dry ore deposit is also reduced to Fe2+; The calcining matter obtaining in rotary kiln is delivered to mineral hot furnace by transmitting device, and calcining matter is in mineral hot furnace, and under 1500 DEG C of conditions, output crude iron slag and slag, after cooling of furnace slag, store up or be recycled.Mine heat furnace smelting, need to be with coke as the energy for better circulation, and its production capacity is little, and energy consumption is high.
Summary of the invention
The object of the invention is to overcome the weak point in prior art, propose a kind of technique simple, be applicable to maximize and produce, less energy consumption, does not use mineral hot furnace, reduces the nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method that electric energy needs.
For realizing above-mentioned technical purpose, nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method of the present invention adopts toothed roll crusher, dryer, high humidity heatproof thin broken machine, sieve apparatus, vertical mill, high solid-gas ratio cyclone preheater, rotary kiln, side-blown converter and liquid filling machine, it is characterized in that comprising the steps:
A. josephinite is transported in toothed roll crusher broken by feeding machine, josephinite after fragmentation is sent into and in dryer, reduced water content, use high-temperature blower that the waste heat tail gas of rotary kiln is imported in dryer by high solid-gas ratio cyclone preheater simultaneously, make the temperature in dryer reach 600 DEG C, the josephinite water content after pulverizing is reduced to 15-18%;
B. the josephinite input high humidity heatproof thin broken machine that water content is reduced to 15%-18% continues broken, josephinite after fragmentation is admitted to sieve apparatus and sieves processing, the josephinite that makes diameter be less than 100mm is separated, diameter is greater than the josephinite of 100mm and delivers to high humidity heatproof thin broken machine continuation fragmentation, by isolated josephinite with go back raw coal, after mixing, Wingdale drops into mixed grinding in vertical mill, obtaining fineness of materials is the mixing mineral aggregate of diameter 0.08mm, 200 objects are mixed to mineral aggregate and be conveyed into high solid-gas ratio cyclone preheater, use high-temperature blower that the waste heat tail gas of rotary kiln is imported to high solid-gas ratio cyclone preheater simultaneously, make to mix mineral aggregate temperature and reach 800 DEG C, tentatively there is reduction reaction in the nickel in mixing mineral aggregate and the oxide compound of iron,
C. will send into rotary kiln from kiln tail through the preliminary mixing mineral aggregate that reduction reaction occurs, be blown into coal dust and air from the kiln hood of rotary kiln to kiln tail direction simultaneously, mixing mineral aggregate in rotary kiln is subject to again obtaining heating with the hot gas flow formation countercurrent movement of kiln hood combusting coal fines generation in rotary kiln heating, by controlling the reducing atmosphere forming in the air capacity being blown in rotary kiln and the coal dust amount control rotary kiln being blown into, mix mineral aggregate slowly moves ahead to kiln hood direction in rotary kiln, and carry out complete reduction reaction, mix mineral aggregate in rotary kiln from the kiln tail electrical path length in 7-8 kiln doubly that moves ahead, time is 20-30 minute, nickel in mixing mineral aggregate and the oxide compound of iron are reduced into nickel gradually, ferrous metal molecule,
D. in the time mixing mineral aggregate and move in the anterior 5-6 times of kiln of rotary kiln electrical path length, the temperature of rotary kiln progressively reaches 1350~1400 DEG C, now mix mineral aggregate and be heated to semi-melting state or molten state, the mixing mineral aggregate of semi-melting state or molten state moves to kiln hood with the running of returning brickkiln, and iron and the nickel iron-nickel alloy particle that Collision coagulation forms in liquid phase environment and the mixture of melting slag charge are exported from kiln hood;
E. the iron-nickel alloy particle transferring out and the mixture of melting slag charge are admitted to side-blown converter, the mixture of iron-nickel alloy particle and melting slag charge continues heating in side-blown converter, make the emulsification of iron-nickel alloy particle, and under the effect of gravity, make particulate and melting slag charge in iron nickel emulsified body mutually collide, after slag iron is separated, obtain ferronickel water, the used heat air that side-blown converter produces is simultaneously introduced rotary kiln from kiln hood under the draft effect of high-temperature blower;
F. ferronickel water is directly sent into liquid filling machine and be cast into the ferronickel finished product of designated shape, and slag charge is got rid of.
The tail gas that described high solid-gas ratio cyclone preheater contains carbon monoxide needs to carry out postreaction burning with coal before discharge, avoids objectionable impurities to enter atmosphere; Described step a~e all carries out under enclosed environment.
Useful technique effect:
1, present method adopts vertical mill that mixture is ground to form to particle diameter 0.08mm powdery mixing mineral aggregate, under the effect of meal wind-force in high solid-gas ratio cyclone preheater, become suspended state and under suspended state, carry out preheating and reduction, delivering to rotary kiln smelts again, because pulverulent material can be realized heat exchange more easily, faster, thereby greatly increase the output that ferronickel reduces;
2, present method therefrom material before entering rotary kiln, first through using the tail gas preheating of rotary kiln in high solid-gas ratio cyclone preheater, do not need again extra consume fuel heat supply, make to mix the temperature increase to 800 of mineral aggregate ° more than C, start preliminary ferronickel reduction reaction by the carbon monoxide in rotary kiln exhaust gas simultaneously, effectively energy-conservation and saved the overall time of ferronickel reduction; Mineral aggregate is entering after rotary kiln, using coal as supplying hot charge and reductive agent, thereby has reduced the use of coke, and inapplicable electric furnace, has saved electric energy; Finally, after mineral aggregate carries out the separation of slag iron by survey blown converter after rotary kiln reduction, direct pouring becomes ferro nickel ingot, has further reduced the consumption of heat energy, and in whole flow process, heat energy recycling has not only been saved the fuel of heating;
3, present method step all completes under enclosed environment, has realized all materials and " has not landed ", and all material is that powdery transports in the pipeline of sealing, is connected closely, cuts down the number of intermediate links, thereby has greatly reduced the pollution of dust to environment;
4, each equipment using in present method is closely connected, thus the generation of having stopped accident; Level of automation is high, has reduced cost of labor.
Brief description of the drawings
Fig. 1 is method flow diagram of the present invention.
Embodiment
Below in conjunction with accompanying drawing, enforcement of the present invention is further described.
As shown in Figure 1, nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method of the present invention, adopt toothed roll crusher, dryer, high humidity heatproof thin broken machine, sieve apparatus, vertical mill, high solid-gas ratio cyclone preheater, rotary kiln, side-blown converter and liquid filling machine, it is characterized in that comprising the steps:
A. josephinite is transported in toothed roll crusher broken by feeding machine, josephinite after fragmentation is sent into and in dryer, reduced water content, use high-temperature blower that the waste heat tail gas of rotary kiln is imported in dryer by high solid-gas ratio cyclone preheater simultaneously, make the temperature in dryer reach 600 DEG C, the josephinite water content after pulverizing is reduced to 15-18%;
B. the josephinite input high humidity heatproof thin broken machine that water content is reduced to 15%-18% continues broken, josephinite after fragmentation is admitted to sieve apparatus and sieves processing, the josephinite that makes diameter be less than 100mm is separated, diameter is greater than the josephinite of 100mm and delivers to high humidity heatproof thin broken machine continuation fragmentation, by isolated josephinite with go back raw coal, after mixing, Wingdale drops into mixed grinding in vertical mill, obtaining fineness of materials is the mixing mineral aggregate of diameter 0.08mm, 200 objects are mixed to mineral aggregate and be conveyed into high solid-gas ratio cyclone preheater, use high-temperature blower that the waste heat tail gas of rotary kiln is imported to high solid-gas ratio cyclone preheater simultaneously, the dust-laden exhaust gas that described vertical mill is discharged enters atmosphere under the effect of exhaust blower after bag dust cleaning,
Described high solid-gas ratio preheater, makes parallel double series air-flow combine with serial material stream, and the solid and gas mass ratio of each heater unit is enhanced about more than once, and makes production hear rate trend towards theoretical hear rate.The system of preheater is set to the plural serial stage of 2-2-2-2-1 built-up type five-stage cyclone preheater, go out the gas of five-stage whirlwind cylinder equably by the bi serie preheaters at different levels that be arranged in parallel, and all powder alternately feeds each preheater step by step from a series to another series, solid-gas ratio in each cyclone preheater is brought up to 2.0 left and right, thereby significantly improve the heat exchange efficiency of pre-heating system, reduce the spent air temperture that preheater.The tail gas that described high solid-gas ratio cyclone preheater contains carbon monoxide needs to carry out postreaction burning with coal before discharge, avoid objectionable impurities to enter atmosphere, coal dust is sprayed into prereduction chamber, at the indoor formation reducing atmosphere of prereduction, there is preliminary reduction reaction in the mineral aggregate mixing, the gas that contains CO that goes out prereduction chamber burns with the high temperature air mixing on high solid-gas ratio top, avoids obnoxious flavour to enter atmosphere.The preheating of process high solid-gas ratio system and preliminary reduction, mix mineral aggregate temperature and reach 800 DEG C, and reduction reaction tentatively occurs for the nickel in mixing mineral aggregate and the oxide compound of iron, and reduction ratio is in 75% left and right;
C. will send into rotary kiln from kiln tail through the preliminary mixing mineral aggregate that reduction reaction occurs, be blown into coal dust and air from the kiln hood of rotary kiln to kiln tail direction simultaneously, mixing mineral aggregate in rotary kiln is subject to again obtaining heating with the hot gas flow formation countercurrent movement of kiln hood combusting coal fines generation in rotary kiln heating, by controlling the reducing atmosphere forming in the air capacity being blown in rotary kiln and the coal dust amount control rotary kiln being blown into, mix mineral aggregate slowly moves ahead to kiln hood direction in rotary kiln, and carry out complete reduction reaction, mix mineral aggregate in rotary kiln from the kiln tail electrical path length in 7-8 kiln doubly that moves ahead, time is 20-30 minute, nickel in mixing mineral aggregate and the oxide compound of iron are reduced into nickel gradually, ferrous metal molecule,
D. in the time mixing mineral aggregate and move in the anterior 5-6 times of kiln of rotary kiln electrical path length, the temperature of rotary kiln progressively reaches 1350~1400 DEG C, now mix mineral aggregate and be heated to semi-melting state or molten state, the mixing mineral aggregate of semi-melting state or molten state moves to kiln hood with the running of returning brickkiln, and iron and the nickel iron-nickel alloy particle that Collision coagulation forms in liquid phase environment and the mixture of melting slag charge are exported from kiln hood;
E. the iron-nickel alloy particle transferring out and the mixture of melting slag charge are admitted to side-blown converter, the mixture of iron-nickel alloy particle and melting slag charge continues heating in side-blown converter, make the emulsification of iron-nickel alloy particle, and under the effect of gravity, make particulate and melting slag charge in iron nickel emulsified body mutually collide, thereby after slag iron is separated, discharge slag charge and obtain ferronickel water, the used heat air that simultaneously side-blown converter produces is introduced rotary kiln from kiln hood under the draft effect of high-temperature blower, and described side-blown converter is not less than by importing oxygen level the heat that 85% hyperoxia gas and coal dust firing produce;
F. ferronickel water is directly sent into liquid filling machine and be cast into the ferronickel finished product of designated shape, and slag charge is got rid of.
Above-mentioned coal dust is raw coal, and through air swept mill, grinding obtains; Above-mentioned steps a~e all automatically carries out under enclosed environment.
The composition of the josephinite that uses in described method of reducing, coal, Wingdale is as follows:
Josephinite:
Title Ni ΣFe H 2O SiO 2 MgO P CaO
Laterite ~1.7 18~19% ~35 35~45 <30 <0.01 <3.0
Coal composition:
Project Total moisture Interior water Ash content Fugitive constituent Fixed carbon Phosphorus Sulphur Calorific value
Also raw coal 26.2 —— 12.0 2.0 84.8 0.004 0.50 6920
Bunker coal 11.0 4.3 15.6 39.1 41.0 0.007 1.5 6310
Wingdale composition:
Scaling loss SiO 2 Fe 2O 3 Al 2O 3 CaO MgO P S
43.63 0.29 0.10 0.15 55.08 0.37 0.004 0.007

Claims (3)

1. a nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method, adopt toothed roll crusher, dryer, high humidity heatproof thin broken machine, sieve apparatus, vertical mill, high solid-gas ratio cyclone preheater, rotary kiln, side-blown converter and liquid filling machine, it is characterized in that comprising the steps:
A. josephinite is transported in toothed roll crusher broken by feeding machine, josephinite after fragmentation is sent into and in dryer, reduced water content, use high-temperature blower that the waste heat tail gas of rotary kiln is imported in dryer by high solid-gas ratio cyclone preheater simultaneously, make the temperature in dryer reach 600 DEG C, the josephinite water content after pulverizing is reduced to 15-18%;
B. the josephinite input high humidity heatproof thin broken machine that water content is reduced to 15%-18% continues broken, josephinite after fragmentation is admitted to sieve apparatus and sieves processing, the josephinite that makes diameter be less than 100mm is separated, diameter is greater than the josephinite of 100mm and delivers to high humidity heatproof thin broken machine continuation fragmentation, by isolated josephinite with go back raw coal, after mixing, Wingdale drops into mixed grinding in vertical mill, obtaining fineness of materials is the mixing mineral aggregate of diameter 0.08mm, 200 objects are mixed to mineral aggregate and be conveyed into high solid-gas ratio cyclone preheater, use high-temperature blower that the waste heat tail gas of rotary kiln is imported to high solid-gas ratio cyclone preheater simultaneously, make to mix mineral aggregate temperature and reach 800 DEG C, tentatively there is reduction reaction in the nickel in mixing mineral aggregate and the oxide compound of iron,
C. will send into rotary kiln from kiln tail through the preliminary mixing mineral aggregate that reduction reaction occurs, be blown into coal dust and air from the kiln hood of rotary kiln to kiln tail direction simultaneously, mixing mineral aggregate in rotary kiln is subject to again obtaining heating with the hot gas flow formation countercurrent movement of kiln hood combusting coal fines generation in rotary kiln heating, by controlling the reducing atmosphere forming in the air capacity being blown in rotary kiln and the coal dust amount control rotary kiln being blown into, mix mineral aggregate slowly moves ahead to kiln hood direction in rotary kiln, and carry out complete reduction reaction, mix mineral aggregate in rotary kiln from the kiln tail electrical path length in 7-8 kiln doubly that moves ahead, time is 20-30 minute, nickel in mixing mineral aggregate and the oxide compound of iron are reduced into nickel gradually, ferrous metal molecule,
D. in the time mixing mineral aggregate and move in the anterior 5-6 times of kiln of rotary kiln electrical path length, the temperature of rotary kiln progressively reaches 1350~1400 DEG C, now mix mineral aggregate and be heated to semi-melting state or molten state, the mixing mineral aggregate of semi-melting state or molten state moves to kiln hood with the running of returning brickkiln, and iron and the nickel iron-nickel alloy particle that Collision coagulation forms in liquid phase environment and the mixture of melting slag charge are exported from kiln hood;
E. the iron-nickel alloy particle transferring out and the mixture of melting slag charge are admitted to side-blown converter, the mixture of iron-nickel alloy particle and melting slag charge continues heating in side-blown converter, make the emulsification of iron-nickel alloy particle, and under the effect of gravity, make particulate and melting slag charge in iron nickel emulsified body mutually collide, after slag iron is separated, obtain ferronickel water, the used heat air that side-blown converter produces is simultaneously introduced rotary kiln from kiln hood under the draft effect of high-temperature blower;
F. ferronickel water is directly sent into liquid filling machine and be cast into the ferronickel finished product of designated shape, and slag charge is sent.
2. nickel-iron smelting high solid-gas ratio rotary kiln for directly reducing method according to claim 1, it is characterized in that: the tail gas that described high solid-gas ratio cyclone preheater contains carbon monoxide needs to carry out postreaction burning with coal before discharge, avoids objectionable impurities to enter atmosphere.
3. nickel-iron smelting solid-gas ratio rotary kiln for directly reducing method according to claim 1, is characterized in that: described step a~e all carries out under enclosed environment.
CN201410358031.4A 2014-07-25 2014-07-25 High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting Pending CN104120263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410358031.4A CN104120263A (en) 2014-07-25 2014-07-25 High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410358031.4A CN104120263A (en) 2014-07-25 2014-07-25 High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting

Publications (1)

Publication Number Publication Date
CN104120263A true CN104120263A (en) 2014-10-29

Family

ID=51765893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410358031.4A Pending CN104120263A (en) 2014-07-25 2014-07-25 High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting

Country Status (1)

Country Link
CN (1) CN104120263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463214A (en) * 2015-07-27 2016-04-06 潘料庭 Method for producing high-nickel iron by adopting low-grade laterite-nickel ores
CN110637101A (en) * 2017-05-24 2019-12-31 住友金属矿山株式会社 Method for smelting oxide ore
CN112138862A (en) * 2020-08-13 2020-12-29 中国矿业大学 Method for improving magnetic composition of medium for coal dressing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
CN102840766A (en) * 2012-09-17 2012-12-26 无锡龙山科技有限公司 Waste heat utilizing system for rotary kiln-submerged arc furnace process ferro-nickel production line
CN103233114A (en) * 2013-04-28 2013-08-07 江苏曦元金属材料有限公司 Method for producing nickel/ferrum from nickel laterite ores
CN103421924A (en) * 2013-07-10 2013-12-04 中国恩菲工程技术有限公司 Fluidization laterite ore reducing method
CN103468930A (en) * 2013-08-16 2013-12-25 武汉建筑材料工业设计研究院有限公司 Method and device for preparing nickel iron roasted ore by utilizing lateritic nickel ore
CN103773949A (en) * 2014-01-09 2014-05-07 李成武 Direct reduction method for smelting ferronickel in rotary kiln

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials
CN102840766A (en) * 2012-09-17 2012-12-26 无锡龙山科技有限公司 Waste heat utilizing system for rotary kiln-submerged arc furnace process ferro-nickel production line
CN103233114A (en) * 2013-04-28 2013-08-07 江苏曦元金属材料有限公司 Method for producing nickel/ferrum from nickel laterite ores
CN103421924A (en) * 2013-07-10 2013-12-04 中国恩菲工程技术有限公司 Fluidization laterite ore reducing method
CN103468930A (en) * 2013-08-16 2013-12-25 武汉建筑材料工业设计研究院有限公司 Method and device for preparing nickel iron roasted ore by utilizing lateritic nickel ore
CN103773949A (en) * 2014-01-09 2014-05-07 李成武 Direct reduction method for smelting ferronickel in rotary kiln

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
(加拿大)J.R.小博尔德 等: "《镍(提取冶金)》", 30 September 1977, article "日本冶金工业公司", pages: 198-201 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463214A (en) * 2015-07-27 2016-04-06 潘料庭 Method for producing high-nickel iron by adopting low-grade laterite-nickel ores
CN105463214B (en) * 2015-07-27 2018-05-25 潘料庭 A kind of method that high ferronickel is produced using low poor grade lateritic nickel ore
CN110637101A (en) * 2017-05-24 2019-12-31 住友金属矿山株式会社 Method for smelting oxide ore
CN110637101B (en) * 2017-05-24 2021-07-20 住友金属矿山株式会社 Method for smelting oxide ore
CN112138862A (en) * 2020-08-13 2020-12-29 中国矿业大学 Method for improving magnetic composition of medium for coal dressing

Similar Documents

Publication Publication Date Title
CN102951640B (en) Calcium carbide producing device
CN107304460B (en) A kind of iron ore prereduction sintering method and its device
CN103468930B (en) Method and device for preparing nickel iron roasted ore by utilizing lateritic nickel ore
CN103773949B (en) Nickel-iron smelting rotary kiln for directly reducing method
CN105603214A (en) Method for producing ferronickel by directly reducing laterite-nickel ore in rotary kiln
CN106282467B (en) A kind of iron ore fine coal base production direct-reduction facilities and method
CN104120263A (en) High-solid-gas-ratio rotary kiln direct reduction method for nickel iron smelting
CN113604662B (en) Pellet roasting system and method based on sintering machine
CN105236774A (en) Method for producing cement clinker by employing phosphorus slag
CN105347702B (en) A kind of rotary kiln device for producing cement
CN109868360A (en) A kind of energy saving technique of sinter production
CN108411131A (en) Manganese-silicon production system and manganese-silicon production technology
CN209669074U (en) A kind of powdered lime preparation system
CN105174756A (en) Method for preparing cement from manganese iron slag
CN207452218U (en) A kind of suspension preheating melting and reducing ferronickel production equipment
CN214747299U (en) Device for producing mineral admixture by using coal gangue
CN109809717A (en) A kind of powdered lime preparation system
CN102787193B (en) Coking reduction smelting device
CN105066703B (en) Highly effective energy-conserving vertical sintering machine
CN106676222B (en) The facility and method of a kind of lateritic nickel ore coal original washing powder state also original production ferronickel
CN101845529B (en) Preheating reduction furnace for iron making through smelting reduction
CN203403141U (en) Device for preparing ferronickel roasted ores by means of nickel laterite ores
CN101738081A (en) Shaft kiln
CN106222447B (en) A kind of pyrolysis of fume afterheat furnace interior recycling type lateritic nickel ore dry bulb group and reduction reaction system and method
CN205990420U (en) A kind of reduction reaction system of fume afterheat furnace interior recycling type lateritic nickel ore dry bulb group

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20141029

WD01 Invention patent application deemed withdrawn after publication